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The robotic lumbar spine (RLS) is a 15 degree-of-freedom, fully cable-actuated robotic lumbar spine which can mimic in vivo
human lumbar spine movements to provide better hands-on training for medical students. The design incorporates five active
lumbar vertebrae and the sacrum, with dimensions of an average adult human spine. It is actuated by 20 cables connected to
electric motors. Every vertebra is connected to the neighboring vertebrae by spherical joints. Medical schools can benefit from a
tool, system, or method that will help instructors train students and assess their tactile proficiency throughout their education.The
robotic lumbar spine has the potential to satisfy these needs in palpatory diagnosis. Medical students will be given the opportunity
to examine their own patient that can be programmed with many dysfunctions related to the lumbar spine before they start their
professional lives as doctors. The robotic lumbar spine can be used to teach and test medical students in their capacity to be able
to recognize normal and abnormal movement patterns of the human lumbar spine under flexion-extension, lateral bending, and
axial torsion.This paper presents the dynamics and nonlinear control of the RLS. A new approach to solve for positive and nonzero
cable tensions that are also continuous in time is introduced.

1. Introduction

Teaching art of palpation to medical students is a challenging
task. In institutions that teach palpatory diagnosis, it is taught
by using voluntary human patients who are mostly palpated
by the instructor for demonstrative purposes. Meanwhile,
the students usually watch the process and get to palpate
only their lab partners as “patients” who are, considering
the general population of medical students, relatively young
and healthy (many with limited dysfunctions). It is, however,
very difficult to be able to find and demonstrate a different
patient for every single dysfunction that the students are
taught during the lectures or in the laboratories. Therefore, it
is still hard to teach and learn palpatory diagnosis for different
variations of dysfunctions.The lack of a means for evaluating
the transfer of practical information from the instructor to
the students is another drawback that themedical schools are
facing today.There exists no assessment device for instructors
to objectively evaluate progress and success of the students in
real-life situations.

The need for a “gold standard” to objectively assess the
palpation accuracy is apparent. The design of such a device
has the potential of becoming a standardized means for
training medical students since the repeatability of many
dysfunctions would be possible. Repeatability is a main
concern in real-life medical education situations, because the
properties of human soft tissue (stiffness, tenderness, etc.) can
alter when it is touched by the examiner.The tissue properties
are not the same even between the beginning and end of an
examination. A legitimate method of evaluating the students
would be comparing the first diagnosis of the instructor with
the diagnosis of the student. However, when the student takes
over the patient, he/she tries to diagnose movement patterns
and/or the tissue properties that have already been changed
due to the stimulation of the instructor.

The role of simulation in medical education is rapidly
increasing.The simulations to train nurses, veterinarians, and
doctors (osteopathic and allopathic) have been and are still
being developed due to their effectiveness and cost-reducing
advantages. These simulations can be computer based or in
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the form of mannequins that can simulate some functions of
the real human body such as breathing and blood pressure.
Computer-based haptic simulations require the utilization of
a haptic interface to interact with the virtual objects inside a
computer screen. That is clearly not the case when humans
really interact with real objects. For instance, the VHB [1],
the only simulation that is being used to improve palpatory
skills of medical students, simulates somatic dysfunctions by
increased stiffness of an area on the virtual back and the
users “touch” the back with PHANToM haptic devices which
only stimulate the proprioceptive receptors and introduces
an extra layer of disturbance between the fingers and the
computer-generated objects to be sensed. Therefore, a sim-
ulation system which allows the user to interact with a real
object would be a better and more effective approach.

The robotic spine concept has been studied over the past
years [2–4].These studies built humanoid robots with a flexi-
ble spinewhichwould enhance the human-likemovements of
the robots and increase the range of movement of the robot’s
torso.These humanoid robots dealt with themovement of the
whole spine, rather than the relative position and stiffness of
a vertebra with respect to the adjacent ones. They sufficiently
accomplished flexible spine movements with less than the
total number of vertebrae in a human spine. However, no
research has yet been completed on the subject of developing
a robotic spine with anatomically accurate vertebrae geom-
etry and movements for tactile medical education and/or
proficiency assessment. In this paper, the dynamic model of
a robotic lumbar spine is derived and used in designing a
nonlinear controller. A new method to solve for positive and
nonzero cable tensions that are also continuous in time is
introduced. Simulations to test the controller for the RLS are
presented. In the RLS, individual vertebra is controlled by
four cables that are attached to four motors. In this case, a
cable-actuated robot is practical due to the space limitations
between vertebrae. The robot will be controlled by a joystick
or autonomously by preprogramming. The user will interact
by touching the posterior aspect of the lumbar spine that is
covered with a skin-like material. The user will try to find
the type and region of the dysfunction by comparing the
movement patterns at different configurations of the robotic
lumbar spine. In this current form, the RLS will be capable
of training users in terms of healthy and dysfunctional
movements of the lumbar spine. Addition of the capability to
adjust (rotational) stiffness of the vertebrae associated with
normal and abnormal rotational limits is also underway.This
will enable users to train on anatomically normal (abnormal)
movement patterns as well as feel normal (abnormal) joint
stiffness associated with a healthy (dysfunctional) lumbar
spine.

2. Construction of the Lumbar Spine Geometry

The geometry of the lumbar spine was constructed using
dimensions of an average human spine based on published
experimental data [5]. All parameters used for the recon-
struction of the geometry except for the facet plane and facet
plane angle (𝜑) have been previously used in the literature
and measured to define the morphology of the vertebrae.

Facet plane

𝜙

Figure 1: Facet plane and angle.

We, assuming sagittal symmetry, define a facet plane as the
plane that connects the centers of the four facets (left/right,
superior/inferior) of a vertebra. This plane (manufactured as
a plate) will allow the attachment of posterior elements with
various dimensions on the same vertebral body making the
system modular. The facet plane angle is defined to be the
angle between the facet plane and the posterior wall of the
vertebral body. In modeling, a cylindrical shape is assumed
for the vertebral bodies. Figure 1 shows the facet plane angle
and the approximation of the vertebral bodies as cylinders.
The constructed lumbar spine geometry is shown Figure 2. A
detailed explanation on the construction of the lumbar spine
geometry can be found in [6].

3. 3D Static Model of the Human
Lumbar Spine

In order to design a device that mimics an average adult’s
lumbar spine, it is necessary to have anatomically correct
movement patterns of each lumbar vertebra. In this study,
these movement patterns were acquired by using a three-
dimensional staticmodel of the human spine.Themathemat-
ical model includes five lumbar vertebrae and the sacrum,
elastic elements that connect inferior facets of one vertebra
to the superior facets of the lower one and torsion springs
that represent the collective torque resisting effects of the
intervertebral disc and ligaments. It has been shown with
several studies [5, 7–9] that the significant motion of the
vertebrae during the movement of the spine is the rotational
motion. Therefore, a spherical joint is chosen to connect
each vertebra to the lower one. The location of this joint
is critical in order to provide anatomically correct motion
for each vertebra during the movement of the entire lumbar
spine. In this model, the spherical joints are located at the
inferoposterior corners of the vertebral bodies since the
experimental data used for validation is based on the findings
from [5]. The complete details including derivation and
validation of this model can be found in [10].

4. RLS Kinematics

The robotic spine, shown in Figure 3, was designed based
on the study by [5] since it details how lumbar spine moves
in prespecified loading conditions. In that study, the upper-
most vertebrae of freshly frozen cadaveric human lumbar
spines with no abnormalities were exposed to external pure
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Figure 2: Three-dimensional geometry of the lumbar spine [6].

Figure 3: The robotic lumbar spine (RLS).

moments in order to induce motion, and both rotational and
translational movements of each vertebra were recorded.

The RLS is actuated by 20 cables connected to electric
motors. Every vertebra is connected to the neighboring
vertebrae by spherical joints. The use of spherical joints is
intentional since the rotational motion of the vertebrae is
more prominent as compared to their translational motion.
The location of the spherical joint for each vertebra is at
the inferoposterior corner in the mid-sagittal plane of the
vertebral body. These locations correspond to the origin of
the coordinate frames with respect to which the angles of
rotation were recorded in [5]. As discussed previously, the
facet plane in Figure 1 was designed to be used as the base
on which posterior elements with various dimensions can be
attached.

The cable connection points on the ground are at the
corners of five trapezoids. The innermost trapezoid that
includes the connection points for the fifth lumbar vertebra

(L5) has posterior base length of 0.4m, anterior base length
of 0.2m, and height of 0.15m.The remaining four trapezoids
are constructed with increasing the height of the adjacent
(inner) one by 0.05m anteriorly and 0.05m posteriorly. This
placement of the cable connections on the ground prevented
cable interference during the simulations for six motion
types: flexion/extension, right/left bending, and right/left
axial torque [6].

5. RLS Dynamics and Control

5.1. Dynamic Model. In this section, we will develop the
dynamic equations for the robotic lumbar spine.Thedynamic
equations can be stated in the following general format:

M (𝑞) q̈ + V (𝑞, ̇𝑞) + G (𝑞) = 𝜏, (1)

where 𝑞 is the vector of generalized coordinates (joint vari-
ables), ̇𝑞 is the vector of generalized velocities,M is the inertia
matrix as a function of 𝑞,V is the Coriolis/centripetal term as
a function of 𝑞 and ̇𝑞, G is the gravity term as a function of
𝑞 and 𝜏 is the vector of generalized forces that are found by
using the forces applied by the cables. Note that, for systems
the links of which are actuated at the joints, 𝜏 is independent
of 𝑞 when they are defined to be the joint variables (angle
of rotation for revolute and distance for prismatic joints).
However, as shown later in the text, 𝜏 for the robotic lumbar
spine are functions of the generalized coordinates as well.The
friction is neglected during the dynamic modeling stage.

Wewill use the energy-based Lagrange equation to derive
the equations of motion for the robotic spine. The Lagrange
formulation does not require the knowledge of the constraint
forces when all of the constraints in a system are holonomic
[11]. In Newton-Euler formulation, however, the constraint
forces between adjacent links must be included as variables.
The robotic lumbar spine is composed of only rigid bodies
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that are connected to each other via spherical joints. That is,
all constraints in the system are holonomic constraints. The
Lagrange equation can be stated as

𝑑

𝑑𝑡
(
𝑑𝐿

𝑑 ̇𝑞
) −

𝑑𝐿

𝑑𝑞
= 𝜏, (2)

where 𝐿 is the Lagrangian and defined as the difference
between the kinetic and potential energy

𝐿 (𝑞, ̇𝑞) = 𝐾 (𝑞, ̇𝑞) − 𝑈 (𝑞) . (3)

Since the potential energy is not a function of the generalized
velocities, the Lagrange equation for the 𝑖th generalized
coordinate can be written as

𝑑

𝑑𝑡
(
𝜕𝐾

𝜕 ̇𝑞
𝑖

) −
𝜕𝐾

𝜕𝑞
𝑖

+
𝜕𝑈

𝜕𝑞
𝑖

= 𝜏
𝑖
. (4)

By using the chain rule, the above equation can also bewritten
as
𝑛

∑

𝑗=1

(
𝑑 (𝜕𝐾/𝜕 ̇𝑞

𝑖
)

𝑑𝑞
𝑗
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𝑗
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𝑖

+
𝜕𝑈

𝜕𝑞
𝑖

= 𝜏
𝑖
,

(5)

where 𝑛 is the total number of generalized coordinates.
Adapting to the general format of the dynamic equations

(1),M(𝑞), V(𝑞, ̇𝑞) and G(𝑞) can be deducted from (5) as:

M (𝑞) =
[
[

[

𝑚(𝑞)
11

⋅ ⋅ ⋅ 𝑚(𝑞)
1𝑗

... d
...

𝑚(𝑞)
𝑖1
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𝑖𝑗

]
]

]

,

V (𝑞, ̇𝑞) = [[
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,

(6)

where
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(7)

where 𝑚
𝑖
is the mass, 𝐵P

𝐶𝐺𝑖
is the augmented vector

involving center of gravity coordinates of the 𝑖th vertebra,
g = [𝑔x 𝑔y 𝑔z 0]

𝑇

= [0 −9.806 0 0]
𝑇 is the aug-

mented (a zero is added as the last element) gravitational
acceleration since 𝑦-axis is directed upward and [

𝐵

𝑖 𝑇] =

[
𝐵

1𝑇][
1

2𝑇] ⋅ ⋅ ⋅ [
𝑖−1

𝑖 𝑇] is the 4 × 4 homogenous transformation
matrix that represents 𝑖th vertebra coordinate system with
respect to the base frame {𝐵}. The transformation matrix of
a frame with respect to the neighboring one is expressed as:

[
𝑖

𝑖+1𝑇]4×4
= [

[
𝑖

𝑖+1𝑅]3×3
{
𝑖P
(𝑖+1)ORG}3×1

0 0 0 1
] . (8)

Total kinetic energy of the RLS is:

𝐾 =

𝑁V

∑

1

𝑖
𝐾
𝑖
, (9)

where 𝑁V is the total number of vertebrae and 𝑖𝐾
𝑖
is the

kinetic energy of the 𝑖th vertebra expressed in the local
vertebral frame and defined as

𝑖
𝐾
𝑖
=
1

2
𝑚
𝑖V
𝐺𝑖
⋅
𝑖V
𝐺𝑖
+
1

2

𝑖
𝜔
𝑖
⋅
𝑖H
𝐺𝑖
, (10)

where 𝑖V
𝐺𝑖

is the linear velocity of the center of gravity,
𝑖
𝜔
𝑖
is the angular velocity, 𝑖H

𝐺𝑖
=
𝑖I
𝐺𝑖

𝑖
𝜔
𝑖
is the angular

momentum of the 𝑖th vertebra with respect to its local frame,
and 𝑖I

𝐺𝑖
is the inertia tensor.

The right hand side of (2) is composed of the generalized
cable forces and the partial derivative of the potential energy
with respect to joint variables (𝑞) which is actually the gravity
term,G(𝑞), in the Lagrange equation. Note that 𝜏 is the vector
of generalized cable forces. The resulting generalized forces
must be calculated for proper use of the Lagrange equation.
The 𝑘th generalized force for the robotic lumbar spine can be
written as

𝜏
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=
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= A (𝑞)
15×20

{t}20×1,

(11)

where 𝑖P
𝑖𝑗
is the augmented position vector from the origin

of the local coordinate frame of the 𝑖th vertebra to the
connection point of the 𝑗th cable in {𝑖}, L̂

𝑖𝑗
is the unit vector in

the corresponding cable direction, and [ 𝐵
𝑖 𝑇] is the previously

defined 4 × 4 homogenous transformation matrix.

5.2. Cable Tension Optimization. One of the challenges of
designing a cable-actuated robot is the fact that the cables
must be in tension (positive) at all times during the operation
of a task. The robots with rigid links that are actuated with
motors are not subject to this limitation. The RLS, being a
fully cable-actuated robot, needs to be supplied with positive
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cable tensions.We start with the previously derived dynamics
equations (independent variables are not shown for clarity):

M
(𝑚×𝑚)

q̈
(𝑚×1)

+ V
(𝑚×1)

+ G
(𝑚×1)

= A
(𝑚×𝑛)

t
(𝑛×1)

, (12)

where 𝑚 is the number of degrees of freedom (=15) and 𝑛 is
the number of cables (=20). In order to solve for positive cable
tensions we introduce an intermediate variable 𝜏V, which is
the virtual input [12] to the system and defined as

𝜏V(𝑛×1) = Mq̈ + V + G. (13)

Therefore, the dynamics equation can be written as:

𝜏V = At. (14)

Equation (14) can be solved by:

t = A+𝜏V + (I𝑚 − A+A) z , (15)

where A+ = A𝑇(AA𝑇)−1 is the Moore-Penrose pseudo-
inverse of A, I

𝑚
is the (𝑚 × 𝑚) identity matrix, the first

term on the right hand side is the particular solution and the
second term is the homogenous solution whichmaps z (𝑚×1
vector) to the null space of A. The homogenous solution can
take any value making the solution nonunique.This property
can be utilized to search for a solution that will generate
positive cable tensions that are needed to control the RLS. On
the other hand, when the homogenous solution is zero, the
tensions are calculated in the least-squares sense which does
not guarantee a solution that will satisfy the positive cable
tensions criterion. It is also imperative to obtain positive and
nonzero cable tensions in order to be able to keep the robot
under control during a task. Equation (15) can also be written
as [13]:

t = A+𝜏V + 𝑁 (A)𝜎, (16)

where 𝑁(A) is the (𝑛 × 𝑛 − 𝑚) kernel matrix of A and
𝜎
(𝑛−𝑚×1)

= {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑛−𝑚
}
𝑇 is an arbitrary vector.

An optimization procedure can be employed with a
proper objective function to solve (16) with positive and
nonzero cable tensions. One of the optimization procedures
is by using linear programming, which is formulated as [14]

min
𝜎

f𝑇𝜎,

such that t = A+𝜏V + 𝑁 (A)𝜎,

− 𝑁 (A)𝜎 ≤ A+𝜏V − b,

𝜎
𝑙
≤ 𝜎 ≤ 𝜎

𝑢
,

(17)

where f is the (𝑛 − 𝑚 × 1) linear objective function vector,
b is the (𝑛 × 1) vector that holds minimum allowed positive
tensions (lower boundary for t), and 𝜎

𝑙
and 𝜎

𝑢
are, respec-

tively the lower and upper boundaries for the arbitrary 𝜎
vector in (16). This optimization procedure, when converges
to a minimum solution, produces point-wise feasible positive
cable tensions that are equal or higher than the limits
specified in b. However, these feasible cable tensions are not

guaranteed to be continuous in time during the task. This
discontinuity is not desirable since it may cause instability
during real-time control of the robot.Therefore, we introduce
a new optimization scheme that will result in cable tensions
that are both point-wise feasible and continuous in time.The
proposed optimization scheme makes use of the previous
solution to be able to choose the current solution to be as close
to it as possible. This scheme which minimizes the norm of
the difference between the previous and current solution can
be formulated as follows:

min
𝜎𝑖

t𝑖 − t
𝑖−1

 ,

such that t
𝑖
= A+
𝑖
𝜏V𝑖 + 𝑁 (A

𝑖
)𝜎
𝑖
,

t
𝑖−1

= A+
𝑖−1
𝜏V𝑖−1 + 𝑁 (A

𝑖−1
)𝜎
𝑖−1
,

t
0
= b

− 𝑁 (A
𝑖
)𝜎 ≤ A+

𝑖
𝜏V𝑖 − b,

𝜎
𝑙
≤ 𝜎
𝑖
≤ 𝜎
𝑢
.

(18)

In order to minimize this constrained nonlinear multivari-
able objective function, a numerical method can be applied.
In this study, the built-in MATLAB (The MathWorks, Inc.)
function fmincon() is used for that purpose. The effect of
using the previous solution on the acquisition of positive
cable tensions with the above formulation is discussed after
the control problem is addressed.

5.3. Trajectory Control with Feedback Linearization. In this
section, we solve the control problem for the RLS by
using feedback linearization technique. Feedback lineariza-
tion control, also known as computed-torque control, aims
to cancel the nonlinearities of a system and reduce it to a
linear system to be controlled by a linear servo law. Decom-
posing the controller design into model-based and servo-
based portions helps solve the control problem in a more
systematic way. Model-based portion contains a model of the
nonlinearity and includes system parameters. Servo-based
portion includes only the control law and is independent of
the model-based portion and, therefore, system parameters
[15]. The dynamics equation for the RLS is

M (𝑞) q̈ + V (𝑞, ̇𝑞) + G (𝑞) = 𝜏V, (19)

where 𝜏V = At is the virtual input to the system which
was previously introduced as an intermediate variable. This
virtual input is utilized to be able to find positive and nonzero
cable tensions. The model-based portion of the controller is
defined as

𝜏V = 𝛼𝜏


V + 𝛽, (20)

where
𝛼 = M (𝑞) ,

𝛽 = V (𝑞, ̇𝑞) + G (𝑞) .
(21)

The servo-based portion that includes a proportional-
derivative control law is

𝜏


V = q̈d + Kpe + Kdė, (22)
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where q̈d is the desired accelerations, Kp and Kd are, respec-
tively, proportional and derivative control gain matrices. The
control gains are both 15 × 15 and diagonal matrices which
implies that the PD control law is implemented indepen-
dently for each degree of freedom (i.e., angle of rotation).
e = qd − q is the servo error between desired and actual
trajectories. The error dynamics of the proposed control law
can be found by first plugging (22) into (20) and the resulting
equation into the dynamics equation:

q̈ = q̈d + Kpe + Kdė. (23)

Noting that ë = q̈d − q̈ above equation written in error space
becomes

ë + Kdė + Kpe = 0. (24)

The equation above is a second-order differential equation
and the coefficients now can be chosen to shape the dynamic
response of the system. It should also be noted that the left-
hand side of the equation must be a Hurwitz polynomial to
provide a stable closed-loop response.

Controller architecture for theRLS is shown in Figure 4. It
is composed of a trajectory generator, PD controller, virtual to
real calculation, and the forward dynamics blocks. Trajectory
generator provides the desired angles (qd) at every time
step based on a quintic polynomial in order to control first
and second derivatives (q̇d, q̈d) of the desired angles at the
beginning and end of a path segment or trajectory. These
derivatives are generally set to be zero to be able to obtain
smooth movement of the robot. PD controller, as discussed
previously, is needed to control the robot to follow the tra-
jectory with a diminishing error between actual and desired
angles of rotation. Controller gains can be chosen to obtain
desired dynamic response, and they affect the error dynamics,
that is, how fast the robot can recover from an error at any
given time during the task. Virtual to real calculation is nec-
essary in order to acquire positive nonzero cable tensions (t

+
).

Table 1: Desired angles of rotation for right bending [5].

Motion segment 𝛼 (∘)† 𝛽 (∘)† 𝛾 (∘)†

L5-S1 0.50 1.00 2.60
L4-L5 1.00 1.00 3.00
L3-L4 0.75 0.75 3.10
L2-L3 0.75 0.50 3.50
L1-L2 0.25 0.00 2.75
†
𝛼, 𝛽 and 𝛾 are the angles of rotations about 𝑥-, 𝑦-, and 𝑧-axes, respectively.

The inner workings of this block were detailed previously in
the section that describes the cable tension optimization.

5.4. Simulation Results. The simulations were run for six
different motion types (flexion/extension, right/left lateral
bendings and right/left torsions). Due to space considera-
tions, however, the results for only (right) lateral bending
motion are presented.The results for remainingmotion types
can be found in [10]. Lateral bending is one of the most
involved motion types in terms of the existence of coupled
movements. Coupled movement of vertebrae occurs when
the motion to the lumbar spine is induced in one specific
plane (in frontal plane for lateral bending) which causes
vertebrae to move in more than one plane. The desired
angles of rotations (Table 1) for the RLS are acquired from
experimental data [5] which were obtained after applying
2.5Nm pure moment about 𝑧-axis of the freshly frozen
lumbosacral spine specimens. The masses of the vertebrae
from L5 to L1 are 0.0125, 0.0132, 0.0123, 0.0113 and 0.0100 kg,
respectively. The trajectory generator starts at 0.1 sec, and
simulation is run for a total of 1.5 sec. The control gains used
are 5 and 6 for Kp and Kd, respectively.

Figure 5 shows the commanded (desired) and actual
paths followed by the RLS.The corresponding tracking errors
are shown in Figure 6.

In order to test the effectiveness of the new method
for solving positive continuous cable tensions, the cable
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Figure 5: Desired and actual angles of rotations (right bending, 𝛼
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: desired, 𝛼
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Figure 6: Tracking errors (right bending, 𝛼err = 𝛼𝑑 − 𝛼𝑎, 𝛽err = 𝛽𝑑 − 𝛽𝑎, and 𝛾err = 𝛾𝑑 − 𝛾𝑎).
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Figure 7: Cable tensions solved without continuity algorithm (right bending).

tensions are solved with and without implementing the
proposed continuity algorithm. Figure 7 shows the cable
tensions without the continuity algorithm. Even though all
tensions are solved to be positive discontinuity is apparent.

Figure 8 shows the results of the simulation with the same
parameters before butwith the continuity algorithm. It is seen
that the solved tensions are all positive and continuous in
time.
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Figure 8: Cable tensions solved with continuity algorithm (right bending).
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6. Discussion

Conceptually, the RLS was designed to support some appar-
ent needs that the instructors and the students of institutions
that teach palpatory diagnosis are currently facing. These
needs can be collected under three main items:

(1) limited variation of dysfunctions that can be practiced
in a lab environment,

(2) repeatability issues due to the inherent characteristics
of tissues to change properties due to repetitive man-
ual manipulation,

(3) lack of an objective assessment tool to evaluate the
transfer of practical knowledge from the instructor to
the students.

With the RLS, there would be virtually no limit to the
abnormal movement patterns to practice. These abnormal
movement patterns could be programmed easily if the data
are readily available, that is, if experimental data or accurate
models exist. If no data are available, experience of pro-
fessional experts may be utilized to generate the required
data for abnormal movement patterns by trial and error
until a general consensus among the experts is reached.
The RLS, as any other robot, would be repeatable (to a
certain degree that needs to be calculated and validated
experimentally) by configuring itself correctly according to
the user’s input from the joystick/haptic device. Asmentioned
previously, there exists no assessment device for instructors
to objectively evaluate progress and success of the students
in real-life situations. By means of the RLS, all students can
be objectively tested on identifying the normal/abnormal
movement patterns of the lumbar spine. Since the RLS is also
repeatable, any number of studentsmay be tested for the same
or different dysfunctions as needed.

The equations of motion were complex and highly non-
linear. This is expected due to the number of degrees of free-
dom considered (15DOFs) and the actuation redundancy.
Note that, for systems the links of which are actuated at the
joints, 𝜏 in (1) is independent of the generalized coordinates
(𝑞) when they are defined to be the joint variables (angle
of rotation for revolute and distance for prismatic joints).
However, as shown in the text, 𝜏 for the robotic lumbar
spine is a function of the generalized coordinates since the
actuation is not performed at the spherical joints. This adds
to the complexity of the equations.

The simulations for the control of the RLS showed that the
tracking errors were less than 0.005 degrees for all degrees of
freedomduring the entire range ofmotionwhich implied that
the designed controller performed as expected.The results of
the simulations also showed that the new method proposed
to solve for positive cable tensions was very effective in
eliminating the spikes in the cable tensions. The results for
all motion types, when the effect of the continuity algorithm
was tested, were very similar to the results of the right lateral
bending as presented here.

The RLS was designed to change configuration by a force-
feedback joystick or an affordable haptic device (such as
Falcon from Novint Technologies Inc.). By moving the joy-
stick, the angles of rotations will be commanded to the RLS,

therefore representing a normal lumbar spine movement.
A static model of the human lumbar spine was derived to
obtain these normal movement patterns of the lumbar spine
for six different types of motion. It is also planned that
some abnormalities consistent with known dysfunctional
movement patterns (vertebral fusion, rotational resistance of
vertebra about an axis, etc.) could be mimicked based on
these normal movement patterns.

7. Conclusion

The dynamic model and nonlinear control of a 15-degree-
of-freedom, cable-actuated robotic lumbar spine (RLS) were
presented. A new method was proposed that enables the
solution of positive and continuous cable tensions for cable-
actuated robots. The simulation results confirmed that the
tracking errors during the simulated motion were small and
the proposed continuity algorithm proved to be very effective
in obtaining positive cable tensions that are also continuous
in time.
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