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Abstract
Neuropsychiatric disorders are diagnosed based on behavioral criteria, which makes the diagnosis challenging.
Objective biomarkers such as neuroimaging are needed, and when coupled with machine learning, can assist the
diagnostic decision and increase its reliability. Sixty-four schizophrenia, 36 autism spectrum disorder (ASD), and 106
typically developing individuals were analyzed. FreeSurfer was used to obtain the data from the participant’s brain
scans. Six classifiers were utilized to classify the subjects. Subsequently, 26 ultra-high risk for psychosis (UHR) and 17
first-episode psychosis (FEP) subjects were run through the trained classifiers. Lastly, the classifiers’ output of the
patient groups was correlated with their clinical severity. All six classifiers performed relatively well to distinguish the
subject groups, especially support vector machine (SVM) and Logistic regression (LR). Cortical thickness and subcortical
volume feature groups were most useful for the classification. LR and SVM were highly consistent with clinical indices
of ASD. When UHR and FEP groups were run with the trained classifiers, majority of the cases were classified as
schizophrenia, none as ASD. Overall, SVM and LR were the best performing classifiers. Cortical thickness and subcortical
volume were most useful for the classification, compared to surface area. LR, SVM, and DT’s output were clinically
informative. The trained classifiers were able to help predict the diagnostic category of both UHR and FEP Individuals.

Introduction
The current diagnostic model in psychiatry, while the

best available, is not highly reliable due to three main
factors: patient heterogeneity (i.e., patient’s psychological
state, their ability to provide reliable information, and
differences in clinical presentation), clinician incon-
sistency (i.e., different opinions on the same case) and
nomenclature inadequacy1,2. As nosology is a key aspect
of psychiatry, on which patient assessment and treatment

options are based, it would be helpful to have a layer of
appraisal centered around objective evaluations to estab-
lish a more reliable classification decision. Neuroimaging
is one objective measure that might facilitate the diag-
nostic process, yet it is not currently used in aiding the
diagnostic decision in psychiatry, despite much interest.
Machine learning uses statistical methods to find pat-

terns in large amount of data. The learning process starts
with the data at hand and improves autonomously over
time. Recent advances in machine learning, combined
with neuroimaging techniques, are capable of assessing
differences in local morphological features of various
brain subregions to elucidate novel disorder-related brain
patterns3–5. Such patterns can be used by computational
models to build classifiers for the purpose of aiding the
diagnostic decision. Several studies were conducted using
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similar models to classify patients into their respective
diagnostic category for both autism spectrum disorder
(ASD)6–10 and schizophrenia11–16. However, the majority
of these studies focused on distinguishing between typi-
cally developing (TD) individuals and those with psy-
chiatric disorders4,11,17. This classification is important for
identifying brain patterns that are different from what is
considered typical, but does not inform about the varia-
tions between different patient groups which is essential
for a reliable psychiatric nosology and understanding the
overlap between different neuropsychiatric disorders18.
Using both approaches, on the other hand, provides a
clearer picture about the nature of the disorders and how
they differ from one another. Moreover, investigating how
the classifiers that are pretrained on distinct clinical
phenotypes would perform on “intermediate phenotypes”
or early disease states, aids in the quantification of disease
progression, predicting outcome, and understanding the
intersection between different nosological, phenotypic
and neurobiological continua.
Classifying psychiatric disorders, especially schizo-

phrenia and ASD, has been performed using different
neuroimaging modalities. In structural magnetic reso-
nance imaging (MRI), several studies classified patients
based on a single modality, such as voxel based mor-
phometry19,20, cortical thickness3,4, or surface morpholo-
gical measures21. Moreover, most of these studies use a
single classifier to perform the classification15,22–27. Few
have conducted the analysis using multiple classifiers,
which is important to avoid bias towards a particular
classifier28. To our knowledge, there is no study yet that
has compared several brain indices, such as cortical

thickness, surface area, and subcortical volume using
multiple machine learning algorithms between schizo-
phrenia and ASD, and assessed the performance of these
classifiers on at-risk and early disease stage patients.
Thus, the current study was aimed to (i) construct and

compare classifiers that can distinguish between indivi-
duals with schizophrenia, ASD, and TD based on their
MRI scans, (ii) uncover the most important brain feature
groups contributing to the classification, (iii) assess the
consistency of the classifiers with clinical severity, and (iv)
predict the diagnostic category of ultra-high risk for
psychosis (UHR) and first-episode psychosis (FEP) sub-
jects using the classifiers pretrained on a combination of
ASD, TD, and/or schizophrenia data.

Methods
Participants
The data of 131 schizophrenia spectrum (26 UHR, 25 FEP,

and 80 schizophrenia), 45 high functioning ASD, and 125
TD individuals were included in this study. After assessing
the T1-weighted images, 97 schizophrenia spectrum (26
UHR, 17 FEP, and 64 schizophrenia), 36 ASD, and 106 TD
scans were analyzed. The ages of the subjects ranged
between 14 and 60 years old (y.o.) for schizophrenia (mean
± SD: 29.8 ± 10.1), 20–44 y.o. for ASD (mean ± SD: 30.1 ±
6.7), 16–60 y.o., for TD (mean ± SD: 29.1 ± 6.0), 16–28 y.o.
for UHR (mean ± SD: 20.9 ± 3.1), and 17–34 y.o. for FEP
(mean ± SD: 23.5 ± 5.2). Individuals with ASD were all
males, those with schizophrenia, TD, UHR, and FEP were of
mixed sex. The participants were mostly right-handed (ASD,
right (R): 28/left (L): 3/mixed (M): 5; TD R: 104/L: 0/M: 2;
schizophrenia R: 55/L: 1/M: 8, UHR R: 23/L: 0/M: 3; FEP

Table 1 Demographic characteristics of the participants.

Variables mean (SD) ASD [N= 36] Schi [N= 64] TD [N= 106] UHR [N= 26] FEP [N= 17] P value [ASD/Schi) P value [ASD/TD] P value [Schi/TD]

Age [years] 30.1 (6.7) 29.8 (10.1) 29.1 (6) 20.9 (3.1) 23.5 (5.2) 0.87 0.42 0.59

Sex [M/F] 36/0 37/27 59/47 15/11 12/5 <0.001 <0.001 0.78

Handedness [R/L/M] [28/3/5] [55/1/8] [104/0/2] [23/0/3] [16/0/1] 0.239 <0.001 0.007

ADI-R

Social 14.7 (6.2)

Communication 11.9 (3.8)

RRB 4.2 (2)

AQ

SS 8.1 (2.1)

AS 7.5 (1.8)

AD 6.2 (2.3)

Communication 7.7 (2.2)

Imagination 7 (2)

PANSS

PS 14.5 (4.9) 12.9 (3.9) 12.9 (4.8)

NS 18.8 (6) 16.3 (6.4) 17.9 (4.8)

GS 34.2 (9.1) 31.8 (8.9) 33.4 (8.5)

GAF 47.2 (14.8) 54.3 (18.6) 48.4 (14)

ASD autism spectrum disorder, TD typically developing, Schi schizophrenia, UHR ultra-high risk for psychosis, FEP first-episode psychosis, SD standard deviation, N
sample size, M male, F female, R right, L left, M mixed, ADI-R autism diagnostic interview- revised, RRB restricted and repetitive behavior, AQ autism quotient, SS social
skills, AS attention switching, AD attention to details, PANSS positive and negative syndrome scale, PS positive symptoms, NS negative symptoms, GS general
symptoms, GAF global assessment of functioning, P value set at P= 0.05.
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R: 16/L: 0/M: 1) (Table 1). All participants are ethnically
Japanese and were recruited at The University of Tokyo
Hospital. The diagnostic criteria for schizophrenia, and ASD
and inclusion and exclusion criteria can be found else-
where29–31, additionally, a comprehensive explanation was
added to the supplemental materials. The ethical review
board of The University of Tokyo Hospital approved this
study (Nos. 397 and 2226). All participants gave written
informed consent before their participation.

MRI acquisition
The structural MRI images for all of the subjects were

acquired using a 3.0-T MRI scanner (GeneralElectric
Healthcare, Signa HDxt. v14.0, Milwaukee, Wisconsin),
with a standard 8-channel head coil for signal reception.
The T1-weighted structural brain images were collected
using a three-dimensional Fourier-transform fast-spoiled
gradient recalled acquisition with steady state, because it
affords excellent contrast between the gray and white
matter (repetition time= 6.80 ms, echo time= 1.94 ms,
flip angle= 20°, slice thickness= 1.0 mm, field of view=
240mm, matrix= 256 × 256, number of axial slices=
176). The participant’s head was fixed with foam pads to
minimize movement. A trained neuroradiologist (O.A.,
W.G., or H.T.) checked the scans and found no gross
abnormalities in any of the subjects. Magnetic field
inhomogeneity in our scanner was monitored with daily
quality control. In order to ensure that the images were of
appropriate quality, the scans of all subjects were visually
examined, slice by slice across all orthogonal directions
before any image processing step. The scans were per-
formed between the year 2010 and 2013.

Data processing
Imaging
The structural MRI scans from all subjects were pro-

cessed with the same procedure, using the FreeSurfer
image analysis suite v.6.0 (http://surfer.nmr.mgh.harvard.
edu/). This processing step was performed using recon-all
pipeline with the default settings. The details of this
procedure32–34, can be found in the supplemental mate-
rials. Even though the FreeSurfer morphometric proce-
dures have been shown to be accurate and reliable35, we
implemented additional quality assurance steps. Enhan-
cing NeuroImaging Genetics through Meta-Analysis
wrapper script (http://enigma.ini.usc.edu/protocols/
imaging-protocols/), was employed after the FreeSurfer
processing steps for quality assurance. Subsequently, a
visual check was performed on the images to investigate
whether there was any sort of abnormality, and manual
edits were applied when necessary. When edits were not
possible, the scans were discarded from the study. The
FreeSurfer output, i.e., cortical thickness (150 regions),
surface area (150 regions), and subcortical volume (36

regions) were later used as feature groups in the classifi-
cation models described in detail in the supplemental
materials (Table S1).

Quality control and feature engineering
First, the data were checked for missing values, and

subjects with any missing value, were excluded from the
analysis. Second, the outliers of each group were detected
though the interquartile range method and were removed
before the start of the analysis. The total number of
excluded subjects throughout the study preprocessing
steps were 9 ASD, 16 schizophrenia, 8 FEP, and 19 TD
subjects. The features included in each group can be
found as a table in the Supplemental material (Table S1).
Before the features were used in the classification pro-

cess, they were standardized using StandardScalar, part of
scikit-learn (SKLearn), by removing the mean and scaling
to unit variance. StandardScalar was first applied on the
training data set and was then reapplied later with the
same transformation on the testing set. These sets were
randomly selected based on the train/test split function in
SKLearn (See “Classification architecture”).

Classification architecture
All the analyses were implemented using Python v2.7

available at (http://www.python.org) and SkLearn
v.0.19.136, a machine learning library for Python. The data
was split into training (80%) and testing (20%) sets using
the train/test split function in SKLearn. The test set was
not used until the very end to assess the performance of
the classifiers. StandardScalar was then applied as
described in the “Quality control and feature engineering”
section. Furthermore, dimensionality reduction was per-
formed using principle component analysis (PCA). PCA
utilizes linear dimensionality reduction by using the data’s
singular value decomposition to project it to a lower
dimensional space37. Moreover, as the features are
expected to be collinear, PCA also helps to overcome this
multicollinearity problem by producing orthogonal fea-
tures made from the linear combination of the input
vectors, i.e., principle components. PCA was performed
inside a pipeline which allows setting different parameters
and combines several steps that can be cross validated
together. This pipeline was implemented inside Grid-
SearchCV, with a tenfold cross-validation, which per-
forms an exhaustive search over the assigned parameters
to construct the best possible classifier using a combina-
tion of optimal parameter values. Fine-tuning the classi-
fiers entailed using different parameter combinations
inside GridSearchCV. The parameters producing a clas-
sification with the best performance were chosen, and the
model was fit to the entire training set using those para-
meter values. All the classifiers utilized in this study were
fine-tuned and had the same overall architecture. As the
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sample size of each group is unbalanced, we used the
“class_weight” parameter and set it to “balanced”, to
ensure that we had more balanced classes. This parameter
option works by weighing classes inversely proportional
to their frequency. The classifiers used in our study are
logistic regression (LR), support vector machine (SVM),
random forest (RF), adaptive boosting (AdaB), decision
tree (DT), and k-nearest neighbor (kNN). Several classi-
fiers have been selected to avoid bias toward the use of a
particular classifier28, and to compare their performance
on our data. The classifiers were run with several subjects
and feature group combinations. Only those classifiers
that showed relatively high accuracy, with no signs of
overfitting, were reported in the manuscript. Four classi-
fication runs were performed with each classifier; one
multiclass classification (schizophrenia/ASD/TD), and
three binary classifications (schizophrenia/ASD, ASD/TD,
and schizophrenia/TD). The code is available upon
request.

Classifiers
Logistic regression
The logistic function, a core part of the LR, is a sigmoid

function that can take a real number and transforms it
into a value between 0 and 1, producing a “S”-shaped
curve. LR uses the maximum likelihood estimation
method to estimate the model coefficients. It is typically
used for binary classification problems, but a multiclass
classification is also possible, for example, through the
one-vs.-rest scheme.

Decision tree
The DT method uses a non-parametric supervised

learning approach to solve both regression and classifi-
cation problems. DT uses a tree representation where
each test on an attribute is represented by an internal
node, and each leaf denotes a class label. Thus, DT can
learn certain decision rules inferred from the features
used to build a model that predicts the value of the target
variable.

Random forest
RF is an ensemble learning method, consisting of several

DTs, that can be used for classification and regression.
Ensemble methods are algorithms that incorporate more
than one type of algorithm. RF works by constructing a
number of DT classifiers which learn and make predic-
tions independently, and outputs a combined single pre-
diction that is the same or better than the output made by
the previously constructed DT classifiers.

SVM classifier
SVM is a supervised discriminative classification

method that uses the features belonging to several labeled

training examples to construct hyperplanes, high-
dimensional planes, for optimally separating the data
into different groups. The implementation of the C-
support vector classification used in our study is based on
the library for SVMs (libsvm).

Adaptive boosting
AdaBoost is an ensemble boosting algorithm that

combines a set of “weak” classifiers into a weighted sum to
create a stronger more accurate “boosted” classifier.
AdaBoost starts by fitting a classifier on the dataset, and
then fits the same version of that classifier on the same
dataset where the weights of the misclassified instances
are modified so that the next classifier is improved to
work on the more challenging instances.

k-Nearest neighbor
kNN is an instance based learning algorithm, and yet

another non-parametric method used for classification
and regression. The input consists of a feature space with
k closest training examples, where k is assigned by the
user, and the output is a class membership. An object is
assigned to a class that is most common amongst its
nearest neighbors, as the nearest neighbors contribute
more to the average than the distant ones.

Classification performance metrics
The chosen indicator of proper classification was not

solely based on accuracy. Thus, we further calculated the
confusion matrix, recall score (i.e., sensitivity), precision
score, and F1/F2 scores. The metrics are described in
detail in the supplemental materials.

Classifier consistency with clinical severity
After the classification was complete, the correctly/

incorrectly classified (CC)/(IC) instances from both
patient groups were extracted, binarized and correlated
with their clinical scores. Their clinical scores were
assigned accordingly: autism diagnostic interview-revised
(ADI-R) sub-scale (social, communication, and restricted
and repetitive behavior (RRB)), and autism quotient (AQ)
subscale (social skills (SS), attention switching (AS),
attention to detail (AD), communication, and imagina-
tion) for the ASD group, and the Positive and negative
symptom scale (PANSS), which includes positive symp-
toms, negative symptoms, and general psychopathology
for the schizophrenia and FEP groups, the total scores of
these scales were also included. The CC and IC classes
were coded as “1” and “0”. The classifiers were also coded
“1” through “6” representing LR, SVM, RF, AdaB, DT, and
kNN. Then, for each classifier a Point-Biserial correlation
was run using Statistical Package for Social Sciences
(SPSS) v.20. For the ASD group, the ADI-R and AQ sub-
and total scores were correlated with the binarized CC
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and IC instances. The same procedure was conducted for
schizophrenia replacing the ADI-R and AQ scores with
PANSS sub- and total-scores. The statistical significance
threshold for this study was set at P < 0.05. Bonferroni
correction was used to correct for multiple comparisons.

UHR and FEP
After training the classifiers, we tested their perfor-

mance on a group of 26 individuals with UHR and 17 with
FEP. We chose the best performing multiclass classifier,
and binary classifier (schizophrenia/TD) for that purpose
out of all the runs. The recall score was considered here as
it represents the ability of the classifier to find the positive
samples. The resulting classes were then binarized and a
Point-Biserial correlation, evaluating the association of
the classification with the PANSS and the global assess-
ment of functioning (GAF) data 1 year or more after the
time of the first MRI scan was performed.
To assess whether medication affected the classification,

we ran two independent sample t-tests (one sided) on the
antipsychotic dose taken by the FEP and UHR subjects
that were classified into schizophrenia or TD using the
multiclass classifier.

Results
Classifiers
In the multiclass classification, the best results were

produced using the cortical thickness feature group,
especially using the LR classifier, with an overall accuracy
of 69.0% (Table 2).
In the binary classification model between schizo-

phrenia and ASD, the majority of the classifiers performed
well with several feature groups. Classification using the
whole brain feature group was best in both SVM and kNN
with an accuracy of 75% for both, as well as LR with
slightly lower accuracy at 70%. Using the subcortical

volume feature group, all of the classifiers showed rela-
tively good accuracy; LR, 75%, SVM, 80%, RF 75%, Ada-
Boost 75%, and kNN 85%. The surface area feature group
did the worst overall, although only LR had good results
with 70% accuracy. In classifying based on cortical
thickness, AdaBoost performed the best, at 85% accuracy,
followed by LR (80%), and SVM (75%) (Table 3).
In addition, to further investigate the performance of

the classifiers on the patient population versus the TD
group, we performed the following classifications
between; ASD and TD, and schizophrenia and TD. In the
ASD and TD group, only SVM was able to perform well
with an accuracy of 75.8% using the whole brain feature
group. In the subcortical volume, both LR, accuracy 72.4%
and SVM, accuracy 89.6% showed good performance.
Lastly, in cortical thickness, DT had the best performance
with an accuracy of 75.8% (Table 4).
While in the schizophrenia and TD group, LR per-

formed better than all the other classifiers using the whole
brain feature group with 70.5% accuracy. While using
subcortical volume, LR accuracy was 64.7%, SVM 67.6%,
RF 76.4%, and AdaBoost 73.5%. Lastly, using cortical
thickness, only LR, accuracy 67.6% and DT, accuracy
70.5% performed well (Table 5). All of the classifiers’
results, despite accuracy level and overfitting status, in
addition to the full metric data such as recall score,
F1/F2 scores, and others can be seen in the supplementary
material (Fig. S1, Tables S2–S9).

Classifiers and clinical severity
The results of the Point-Biserial correlation showed that

LR, SVM, and DT were highly consistent with the clinical
severity of the patients with ASD. LR in ASD for example,
showed high consistency with ADI-R’s RRB (F(1,46)=
7.91, P corrected= 0.021; CC mean= 5.5, SD= 2.0, IC
mean= 3.6, SD= 2.4), and AQ’s AD (F(1,46)= 8.45,
P corrected= 0.03; CC mean= 7.2, SD= 2.3, IC mean=
5.2, SD= 1.6). SVM also showed consistency with ADI-
R’s communication (F(1,39)= 7.73, P corrected= 0.024;
CC mean= 12.9, SD= 3.1, IC mean= 10.4, SD= 2.0),
and RRB (F(1,39)= 11.42, P corrected= 0.006; CC
mean= 5.6, SD= 2.1, IC mean= 3.4, SD= 1.6), and AQ’s
imagination (F(1,39)= 10.41, P corrected= 0.015; CC
mean= 6.6, SD= 8.2, IC mean= 8.2, SD= 1.5). Lastly,
DT was consistent with ADI-R’s social domain (F(1,14)=
8.23, P= 0.012–0.036; CC mean= 10.9, SD= 5.5, IC
mean= 18.5, SD= 4.2). In schizophrenia, no correlation
survived after correcting for multiple comparisons.

Classifiers and independent samples
The UHR group that was classified using the multiclass

classifier resulted in 15 schizophrenia (57.6%), and 11 TD
subjects, but none were classified as ASD. The Point-
Biserial correlation showed no relationship with either

Table 2 Classification between individuals with
schizophrenia, ASD, and TD.

TD, ASD, and schizophrenia (cortical thickness)

Classifier Score (%) TD Schi ASD All

Logistic regression Mean accuracy 69.0

Recall score

(Sensitivity)

70.0 70.5 60.0

Specificity 46.8 77.2 89.6

Precision score 73.6 70.5 50.0

F1/F2 scores 71.7/70.7 70.5 54.5/57.6

ASD autism spectrum disorder, TD typically developing, Schi schizophrenia, All
whole brain or all features combined.
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PANSS or GAF data after correcting for multiple com-
parison. When run with the schizophrenia/TD subcortical
classifier, 96.1% of the sample were classified as
schizophrenia.
FEP subjects were also classified using the same pro-

cedure as the UHR. 70% of the FEP subjects were classi-
fied as schizophrenia by the multiclass classifier, 30% as
TD, while none as ASD. No correlation was found with
either PANSS or GAF data. When run with the schizo-
phrenia/TD subcortical classifier, 100% of the samples
were classified as schizophrenia.
For UHR and FEP, we found no significant difference in

antipsychotic dose between the patients classified into
schizophrenia and those into TD using the multiclass
classifier.

Discussion
To our knowledge, this is the first study to compare

cortical thickness, subcortical volume and surface area

using multiple machine learning classifiers between
schizophrenia, ASD and TD, and investigate how these
trained classifiers extrapolate to UHR and FEP. Our
findings indicate that, overall, SVM and LR, were the best
performing classifiers, producing high accuracy with least
overfitting. Second, cortical thickness and subcortical
volume were most useful for the classification, compared
to surface area. Third, the LR, SVM, and DT’s output
were clinically informative as they were consistent with
the patients’ clinical severity. Lastly, we showed that a
selection of the trained classifiers was able to predict the
diagnostic category of UHR and FEP Individuals.
SVM showed a good overall performance, which is

consistent with the published literature24,25,38–44. It is by
far the most utilized machine learning classifier in the
field of neuroimaging5,45,46. SVM has been used in
several studies involving both ASD41–44 and schizo-
phrenia24,25,38–40,47,48. Part of its strength comes from the
ability to make inferences at the level of an individual,

Table 3 Classification between individuals with schizophrenia, and ASD.

ASD and schizophrenia

(Subcortical) (Surface area) (Cortical thickness) (All features)

Classifier Score (%) Schi ASD All Schi ASD All Schi ASD All Schi ASD All

Logistic regression Mean accuracy 75.0 70.0 80.0 70.0

Recall score 72.7 77.7 72.7 66.6 90.9 66.6 81.8 55.5

Precision score 80.0 70.0 72.7 66.6 76.9 85.7 69.2 71.4

F1/F2 scores 76.1/74.0 73.6/76.0 72.7 66.6 83.3/87.7 75.0/69.7 75.0/78.9 62.5/58.1

Support vector machine Mean accuracy 80.0 75.0 75.0

Recall score 81.8 77.7 90.9 55.5 90.9 55.5

Precision score 81.8 77.7 71.4 83.3 71.4 83.3

F1/F2 scores 81.8 77.7 80.0/86.2 66.6/59.5

Random Forest Mean accuracy 75.0

Recall score 90.9 55.5

Precision score 71.4 83.3

F1/F2 scores 80.0/86.2 66.6/59.5

Adaboost Mean accuracy 75.0 85.0

Recall score 81.8 66.6 100.0 66.6

Precision score 75.0 75.0 78.0 100.0

F1/F2 scores 78.2/80.3 70.5/68.1 88.0/94.8 80.0/71.4

k-nearest neighbor Mean accuracy 85.0 75.0

Recall score 90.9 77.7 90.9 55.5

Precision score 83.3 87.5 71.4 83.3

F1/F2 scores 86.9/89.2 82.3/79.5 80.0/86.2 66.6/59.5

ASD autism spectrum disorder, TD typically developing, Schi schizophrenia, All whole brain or all features combined.
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which is important in a sample of patients with neu-
ropsychiatric disorders having within group hetero-
geneity5. Moreover, the multivariate nature of SVM
allows it to reveal subtle differences in the brain that
would otherwise not be detectable through univariate
group comparisons5,49, which helps its performance.
LR was the only classifier that showed no overfitting in

the multiclass classification model. In binary classification,
it showed a similar performance to SVM, with good
overall accuracy. LR has been used in many neuroimaging
studies as well9,42,50,51. However, we were unable to find
structural MRI studies using LR to classify individuals
with ASD and TD. Most of the studies that are published
use resting-state functional MRI, and show a similar
overall classification accuracy as our study42,50. One study
classifying individuals with ASD and TD, reported similar
results to ours, in which LR and SVM were the best
performing classifiers amongst those used (LR, RF, kNN,
SVM, linear discriminate analysis, and Naïve Bayes)9. In
schizophrenia, on the other hand, Greenstein et al.3

showed that LR was able to classify schizophrenia subjects
with a 73.6% accuracy using 74 anatomical brain sub-
regions.
Our results also show that RF, DT, kNN, and AdaB did

have high performance, at least in specific runs. These
classifiers were shown to be useful in several neuroima-
ging studies of ASD and schizophrenia3,4,7,9,52.
As mentioned previously, cortical thickness and sub-

cortical volume performed better than surface area.

Structural volume and cortical thickness features have
both shown high accuracy classification in the literature53.
A previous study compared their classification perfor-
mance between individuals with ASD and TD, and found
that thickness-based diagnostic models outperformed
those that are based on volume in most classifiers28. In
our case, the performance of these feature groups was
comparable. Another study, by Katuwal et al., showed that
surface area performed worse than subcortical volume,
which is consistent with our results, though they also
showed that surface area performed better than cortical
thickness54, which is different from what we report in this
study. Cortical thickness’s high overall performance sig-
nifies the presence of distinct cortical morphological
features that are unique to each diagnostic group. The
brain surface area’s stability in adults, where the majority
of changes such as neural stem cell proliferation and
migration happen during early embryonic development55,
compared to that of cortical thickness, where early
developmental changes continue into adulthood56, might
have contributed to more distinguishable features in
cortical thickness than surface area, which was revealed
consistently in the performance of all the classifiers used
in our study. A previous study comparing different psy-
chiatric disorders including ASD and schizophrenia found
that there is more divergence between disorders in cor-
tical thickness than surface area57, which would be
another reason why cortical thickness performed better
than surface area.

Table 4 Classification between individuals with ASD and TD.

ASD and TD

(Subcortical) (Surface area) (Cortical thickness) (All features)

Classifier Score (%) Schi ASD All Schi ASD All Schi ASD All Schi ASD All

Logistic regression Mean accuracy 72.4 70.0 80.0

Recall score 68.1 85.7 72.7 66.6 90.9 66.6

Precision score 93.7 46.1 72.7 66.6 76.9 85.7

F1/F2 scores 78.9/72.1 60.0/73.1 72.7 66.6 83.3/87.7 75.0/69.7

Support vector machine Mean accuracy 89.6 75.0 75.8

Recall score 100.0 57.1 90.9 55.5 77.2 71.4

Precision score 88.0 100.0 71.4 83.3 89.4 50.0

F1/F2 scores 93.6/97.3 72.7/62.5 82.9/79.4 58.8/65.7

Decision tree Mean accuracy 75.8

Recall score 77.2 71.4

Precision score 89.4 50.0

F1/F2 scores 82.9/79.4 58.8/65.7

ASD autism spectrum disorder, TD typically developing, Schi schizophrenia, All whole brain or all features combined.
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In the same study, by Park et al.57, they demonstrate
that ASD shows a trend toward an increase in cortical
thickness while schizophrenia towards cortical thinning,
this might explain why our results exhibited higher per-
formance distinguishing between ASD/TD, than schizo-
phrenia/TD. Using the multiclass classifier, cortical
thickness was the only feature group that was able to
distinguish between all three patient groups. This is
noteworthy as it suggests that cortical thickness might
hold information valuable for distinguishing between
schizophrenia and ASD, and that the overlap in their
symptoms might be less explained by cortical morpho-
logical features. Lastly, the results from the whole brain
feature group shows that integrating different modalities
doesn’t always improve the overall accuracy58,59, as the
combined features, whole brain, did not perform better
than the separate features, e.g., cortical thickness.
Most of the classifiers’ output showed an association

with the clinical indices of ASD, especially LR and SVM.

LR and SVM were highly associated with both ADI-R and
AQ, while DT showed an association with ADI-R only. As
for schizophrenia, only DT showed an association with
the PANSS’s negative symptoms, general symptoms and
total score, however this association did not survive
Bonferroni correction. To our knowledge, there are no
published studies that have assessed this in schizophrenia
or ASD.
The early phase of the disease, such as in the UHR as

well as FEP, is an important period that can have an
outstanding influence on disorder progression60. Early
intervention in both has been previously associated with
better outcomes60,61. The multiclass classifier was run on
26 individuals with UHR and 17 with FEP. The classifier
separated the UHR group into schizophrenia and TD, but
not ASD. While when the schizophrenia/TD classifier was
used, almost all of the subjects (96%) were classified into
the schizophrenic group. The results for FEP were very
similar to those in the UHR group. It is interesting that

Table 5 Classification between individuals with schizophrenia and TD.

Schizophrenia and TD

(Subcortical) (Surface area) (Cortical thickness) (All features)

Classifier Score (%) Schi ASD All Schi ASD All Schi ASD All Schi ASD All

Logistic regression Mean accuracy 64.7 67.6 70.5

Recall score 65.2 63.6 69.5 63.6 69.5 72.7

Precision score 78.9 46.6 80.0 50.0 84.2 53.3

F1/F2 scores 71.4/67.5 53.8/59.3 74.4/71.4 56.0/60.3 76.1/72.0 61.5/67.7

Support vector machine Mean accuracy 67.6

Recall score 73.9 54.5

Precision score 77.2 50.0

F1/ F2 scores 75.5/74.5 52.1/53.5

Random forest Mean accuracy 76.4

Recall score 82.6 63.6

Precision score 82.6 63.6

F1/F2 scores 82.6 63.6

AdaBoost Mean accuracy 73.5

Recall score 73.9 72.7

Precision score 85.0 57.1

F1/F2 scores 79.0/75.8 64.0/68.9

Decision tree Mean accuracy 70.5

Recall score 73.9 63.6

Precision score 80.9 53.8

F1/F2 scores 77.2/75.2 58.3/61.4

ASD autism spectrum disorder, TD typically developing, Schi schizophrenia, All whole brain or all features combined.
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even at these early stages in disease progression, UHR and
FEP have such structural brain similarities with schizo-
phrenia. Collectively, this mean that UHR and more
strongly FEP, have shared structural neurobiological pat-
terns with schizophrenia, but not with autism. This
method was used in a previous study, but showed modest
generalization when a classifier, that was trained on
schizophrenia and TD, was used to classify individuals
with FEP62. It is plausible that the schizophrenia/TD
classifier categorized FEP individuals in the schizophrenia
group more than the UHR, since the FEP individuals
already had their first psychotic episode. These results
shed light on the importance of brain structure in
understanding disease progression, especially whether or
not the patients had their first psychotic episode.
In our sample, the antipsychotic dose that might have

been associated with cortical thickness alterations was not
predicted by the multiclass classifier. We could not con-
duct the same analysis using the schizophrenia/TD clas-
sifier, as there are not enough samples classified as TD.
Given the variability in dose as well as the modest sample
size, we are unable to provide a measurably reliable
answer on whether, in general, this would influence the
classification.
In summary, we found that SVM and LR were the best

performing classifiers. Cortical thickness and subcortical
volume based classification had better performance
across different diagnostic labels and classifiers than
surface area. LR, SVM, and DT were consistent with
clinical severity of the patients. UHR and FEP show
similar neurobiological pattern as schizophrenia. Our
findings provide new knowledge about the best per-
forming classifiers between individuals with schizo-
phrenia, ASD, and TD, and reveal the most informative
brain feature groups that contribute to the classification.
The results also reveal the clinical relevance of these
classifiers, in addition to their importance in predicting
the diagnostic category. Lastly, they shed light on the
structural brain similarities between FEP, UHR and
schizophrenia. The knowledge gained from these feature
groups can be extrapolated to their use as biomarkers for
future targeted therapeutic interventions as well as pre-
dicting patients’ disease trajectory.
Parts of the discussion compared our findings to those

that are already published, however it should be taken into
consideration that comparisons such as accuracies, and
class predictions across studies is not ideal as it may be
affected by the number of instances, classifiers used, quality
and type of images, feature engineering, and other factors45.

Limitations
This study has some limitations. First, the ASD subjects

were all males. This, however, did not seem to affect the
classification, as we did not see that individuals with ASD

were particularly classified better than the other groups.
Second, the present study has a modest sample size,
nonetheless comparable to other published studies. Third,
as few of the ASD subjects, several of the UHR and FEP,
and all of the schizophrenia subjects were medicated, this
might have affected the results.
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