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Abstract. Since 2003, coronaviruses have caused multiple 
global pandemic diseases, including severe acute respira‑
tory syndrome (SARS), Middle East respiratory syndrome 
(MERS) and coronavirus disease 2019 (COVID‑19). Clinical 
and autopsy findings suggest that the occurrence of kidney 
injury during infection may negatively affect the clinical 
outcomes of infected patients. The authoritative model predicts 
that outbreaks of other novel coronavirus pneumonias will 
continue to threaten human health in the future. The aim of the 
present systematic review was to summarize the basic knowl‑
edge of coronavirus, coronavirus infection‑associated kidney 
injury and the corresponding therapies, in order to provide 
new insights for clinicians to better understand the kidney 
involvement of coronavirus so that more effective therapeutic 
strategies can be employed against coronavirus infection in the 
future.
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1. Introduction

Coronavirus pneumonia is a respiratory infectious disease 
caused by coronavirus infection. Since the severe acute 
respiratory syndrome coronavirus (SARS‑CoV) spread and 
caused infection globally in 2003, coronaviruses have gradu‑
ally attracted public attention and have caused several serious 
epidemics (1‑3).

Coronaviruses are a group of single‑stranded positive‑sense 
RNA viruses, of which 26 species are currently known (4,5). 
Based on their differences in antigen cross‑reactivity and genetic 
composition, they are divided into 4 genera (α, β, γ and δ), of 
which only genera α and β contain strains that are pathogenic 
to humans (6‑8). SARS‑CoV‑2 (the 2019 novel coronavirus), 
SARS‑CoV and Middle East respiratory syndrome corona‑
virus (MERS‑CoV) belong to the β‑coronavirus family (9,10). 
There are seven known coronaviruses that may cause human 
diseases, including HCoV‑229E, HCoV‑OC43, HCoV‑NL63, 
HCoV‑HKU1, SARS‑CoV and MERS‑CoV (11,12) and the 
newly discovered SARS‑CoV‑2 (13). These viruses may cause 
a variety of clinically critical conditions, including kidney 
injury. The aim of the present systematic review was to 
summarize the knowledge of coronavirus infection from the 
perspective of kidney injury.

2. SARS‑CoV and kidney injury

SARS was first reported in Asia in early 2003, and similar 
diseases were subsequently reported in North America and 
Europe (14,15). Of a total of 8,422 patients diagnosed with 
SARS, 916 succumbed to the disease, bringing the case 
fatality rate to 10.87% (16). SARS‑CoV was found to be the 
main pathogen of SARS based on the findings from a macaque 
infection model (17). SARS‑associated coronavirus was the 
SARS pathogen identified from the Macaca fascicularis infec‑
tion experiment (18). During the SARS‑CoV infection, ~100% 
of adult and pediatric patients had fever, approximately half of 
all patients had cough and/or myalgia, and a small number of 
patients experienced upper respiratory symptoms (19,20). In 
10‑20% of the patients, blood urea nitrogen and urine creatinine 
levels were increased, indicating that SARS may directly or 
indirectly cause kidney injury (Table I) (21‑26). Chu et al (21) 
reported that kidney involvement in SARS was significantly 
correlated with the severity of the disease, and that patients 
with chronic diseases were more likely to suffer from kidney 
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injury. Autopsy reports of some patients with SARS indicated 
local renal hemorrhage and varying degrees of acute tubular 
necrosis (27). In situ hybridization and electron microscopy 
indicated the presence of viral sequences and particles, 
respectively, in distal renal tubular epithelial cells (27‑29). 
The presence of the virus in the distal tubules may explain the 
findings of viral RNA and isolation of SARS‑CoV from urine 
samples (30‑32).

3. MERS‑CoV and kidney injury

The earliest reports of MERS can be traced back to 
June 2012, when MERS‑CoV was isolated from a patient 
in Saudi Arabia who succumbed to severe respiratory 
disease (33). By December 2019, there were 868 reported 
deaths among 2,496 MERS cases worldwide, with a case 
fatality rate of 34.77% (16). Researchers indicated that 
MERS‑CoV, the causative agent of the disease, may originate 
from bats (11), with dromedary as its intermediate host (34). 
The clinical manifestations in patients with MERS‑CoV 
infection range from asymptomatic to severe infectious 
pneumonia, acute respiratory distress, septic shock and 
multiple organ failure leading to death (11). Approximately 
40% of patients exhibited increased urine creatinine levels, 
suggesting that MERS‑CoV may cause kidney injury in some 
patients (Table I) (35‑37). In vitro infection experiments with 
primary human renal epithelial cells (PromoCell) revealed 
that MERS‑CoV robustly replicated in culture and produced 
more infectious virions (38). Poissy et al (39) reported that 
the virus could be detected in the blood and the urine of their 
most severely ill patients with MERS‑CoV infection. Patients 
with MERS‑CoV infection usually manifested with early and 
rapid‑onset acute renal failure, which adversely affected the 
disease progression (38‑41). Alsaad et al (42) indicated that, 
in patients with MERS‑CoV infection, the kidney displayed 
the characteristics of renal tubular epithelial cell degenera‑
tion and regeneration/acute kidney injury (AKI). Ng et al (43) 
found that, in patients with MERS‑CoV infection, the kidney 
exhibited an increase in global sclerosing glomeruli, affecting 
5‑10% of the total glomeruli; thickening Bowman capsules; 
severe atherosclerosis and hyaline arteriolosclerosis; patchy 
interstitial inflammation; and intratubular proteinaceous and 
granular casts. 

4. SARS‑CoV‑2 and kidney injury

Coronavirus disease 2019 (COVID‑19) is an infectious disease 
caused by a novel coronavirus (44,45). The pathogen of this 
disease, SARS‑CoV‑2, shows 75‑80% similarity to the nucleo‑
tide sequence of SARS‑CoV (45‑47). The bat is presumed to 
be its animal host and an intermediate host (48‑50). Although 
the main target organ of SARS‑CoV‑2 is the lung, several 
studies have demonstrated that SARS‑CoV‑2 may also induce 
kidney injury; 5‑30% of patients exhibit increase blood 
urea nitrogen and urine creatinine levels and kidney injury, 
indicating that the kidney is also targeted by SARS‑CoV‑2 
(Table I) (13,51‑56). During the current COVID‑19 pandemic, 
4‑7% of patients infected with SARS‑CoV‑2 developed AKI, 
and the AKI incidence may be even higher among patients with 
severe symptoms admitted to the intensive care unit (ICU) (51). 

Huang et al (54) analyzed 41 patients with SARS‑CoV‑2 
infection and found that >10% had elevated creatinine levels. 
Among patients treated in the ICU, 23% had AKI. Patients 
with kidney injury (including increased creatinine and urea 
nitrogen, proteinuria, hematuria and AKI) were more likely to 
die in the hospital in a study of 710 patients with COVID‑19. 
Cox regression analysis confirmed that kidney injury is one of 
the independent risk factors for poor prognosis (57). Su et al 
analyzed renal pathologies in 26 autopsies of patients with 
COVID‑19 and found prominent acute proximal tubular 
injury, peritubular erythrocyte aggregation and glomerular 
fibrin thrombi with ischemic collapse (58). In another study, 
251 of 333 patients (75.4%) presented with renal complica‑
tions, including proteinuria, hematuria and AKI. Although 
renal complications often resolved within 3 weeks after the 
onset of symptoms, renal complications in COVID‑19 were 
associated with higher mortality (59). 

5. Comparison of kidney injury among SARS‑CoV, 
MERS‑CoV and SARS‑CoV‑2

Previous studies have reported that patients infected with 
SARS‑CoV, MERS‑CoV or SARS‑CoV‑2 may present with 
AKI, but the incidence across studies was not consistent. 
AKI was reported to develop in 5‑15% cases of SARS and 
MERS‑CoV infections, whereas early reports suggested a 
lower incidence of AKI among patients with COVID‑19 infec‑
tion (13,51). Chen et al (60) found that the mortality rate of 
AKI was highest in SARS (86.6%), followed by COVID‑19 
(76.5%) and MERS (68.5%). Autopsy results in patients with 
SARS‑CoV infection revealed that the kidney exhibited local 
hemorrhage and different degrees of acute tubular necrosis 
instead of glomerular lesions (21,27). Unlike SARS, a MERS 
autopsy report revealed that the kidney had the characteristic 
of epithelial cell degeneration and regeneration, but the size 
and shape of the glomeruli were normal, with only minor isch‑
emic changes (42). Su et al (58) analyzed renal pathologies in 
26 autopsies of patients with COVID‑19 and found prominent 
acute proximal tubular injury, peritubular erythrocyte aggre‑
gation and glomerular fibrin thrombi with ischemic collapse. 
Ding et al (29) reported that SARS‑CoV was detected in distal 
convoluted renal tubules. In situ hybridization and electron 
microscopy also indicated the presence of viral sequences 
and particles, respectively, in distal renal tubular epithelial 
cells (27‑29). MERS‑CoV particles were localized in renal 
proximal tubular epithelial cells (42). SARS‑CoV‑2 particles 
were identified by electron microscopy in the cytoplasm of 
renal proximal tubular epithelial cells and podocytes, but less 
so in the distal tubules (58). Interestingly, all three coronavi‑
ruses were isolated from urine samples (30‑32,61,62).

6. Possible mechanism of coronavirus‑associated kidney 
injury

Kidney injury in coronavirus infection is mainly due to the 
ability of coronavirus proteins to bind to specific cell surface 
receptors (63‑65). To date, two major functional receptors for 
coronavirus have been identified:

Angiotensin‑converting enzyme 2 (ACE2) is mainly 
expressed in the lung, kidney, heart and other tissues; 
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in the kidney, this protein is prominently expressed 
in the proximal tubule and at a lower level in the glom‑
eruli (66,67). Dipeptidyl peptidase 4 (DPP4; also referred 
to as CD26) is also highly expressed in the kidney, small 
intestine and lung (68‑70). DPP4 is also one of the renal 
tubular brush border membrane proteins and is present in 
glomerular podocytes and capillaries (71). The expression 
levels of ACE2 and DPP4 in normal tissues were exam‑
ined by searching two public databases, A Database of 
Hepatocellular Carcinoma Expression Atlas (http://lifeome.
net/database/hccdb/home.html) (72) and the Human 
Protein Atlas (HPA; https://www.proteinatlas.org/) (73,74). 
At the RNA level, the expression level of ACE2 in kidney 
tissues was higher compared with that in lung tissues 
(Fig. 1A and C), which is consistent with previous reports 
by Xu et al (75) and Hoffmann et al (76). The DPP4 expres‑
sion in the kidney was also higher compared with that in the 
lung (Fig. 1B and D). ACE2 was abundantly expressed in 
the kidney (77), mainly in the brush border of the proximal 
tubule (65,78), which was consistent with immunohisto‑
chemistry results in the HPA (Fig. 1E). Pala et al (79) found 
that DPP4 was abundantly expressed in human glomerular 
endothelial cells, which was also consistent with the immu‑
nohistochemistry results in the HPA (Fig. 1E).

ACE2 is a functional receptor for SARS‑CoV (80,81). 
Li et al (67) isolated the ACE2 protein from African green 
monkey (Chlorocebus sabaeus) kidney cells (VERO E6) infected 
with SARS‑CoV, showing that ACE2 could efficiently bind to the 
S protein for the SARS‑CoV. SARS‑CoV efficiently replicated 
in 293T cells transfected with ACE2; however, when anti‑ACE2 
antibodies were added to the culture media, SARS‑CoV was 
unable to replicate in 293T cells transfected with ACE2 (82). 
Batlle et al (83) found that only a few cell lines could be naturally 
infected by SARS‑CoV, but when they were modified to express 
ACE2, the virus could infect and replicate in other cells. ACE2 
expression is associated with virus titer. Yang et al (84) found 
that high ACE2 expression resulted in more serious SARS‑CoV 
infection in mice. Analogous to other virus‑receptor interac‑
tions, SARS‑CoV spike protein binding to ACE2 in cell lines or 
SARS‑CoV infections in vivo resulted in reduced ACE2 protein 
expression and aggravated lung injury (80). Both SARS‑CoV 
RNA and viral particles were observed in kidney tubules in 
SARS autopsy specimens (27), indicating direct infection and 
replication in the kidney. These observations support that ACE2 
is a functional receptor for SARS‑CoV that can bind to the 
SARS‑CoV S protein and undergo membrane fusion.

SARS‑CoV‑2 and SARS‑CoV exhibited high homology 
(up to 79%) on bioinformatics analysis (50). The affinity 

Table I. Kidney involvement in coronavirus infection.

 Blood urea nitrogena Creatinineb

 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
 Normal Increased Normal Increased Acute kidney
Study (Refs.) (value ± SD) [no./total (%)] (value ± SD) [no./total (%)] injury [no./total (%)]

SARS
  Chu et al (21) 4.6±4.8 NA 93.5±48.7 NA 36/536 (6.7)
  Lu et al (22) NA 167/801 (20.9) NA 89/801 (11.2) NA
  Lee et al (23) 6.3±7.2 NA 99.0±111.8 NA NA
  Hsu et al (24) 3.2±1.5 NA 65.4±12.4 NA NA
  Jang et al (25) NA NA NA 6/29 (20.7) NA
  Cheng et al (26) 5.3±1.8 24/142 (16.9) 86.0±16.0 14/142 (9.9) NA
MERS
  Sun et al (35) NA NA 89.9±28.3 NA NA
  AlGhamdi et al (36) NA NA NA 21/51 (41.2) NA
  Sherbini et al (37) 14.2±2.1 NA 148.3±29.3 NA NA
COVID‑19
  Chen et al (13) 5.9±2.6 6/99 (6.1) 75.6±25.0 3/99 (3.0) 3/99 (3.0)
  Wang et al (51) 4.4±1.4 NA 72.0±21.0 NA 5/138 (3.6)
  Guan et al (52) NA NA NA 12/752 (1.6) 6/1099 (0.5)
  Yang et al (53) NA NA 76.3±27.4 NA 15/52 (28.8)
  Huang et al (54) NA NA 74.2±19.5 4/41 (9.8) 3/41 (7.3)
  Xu et al (55) NA NA NA 3/62 (4.8) NA
  Cai et al (56)   4.0±0.9 NA 63.0±13.4 NA 17/298 (5.7)
  Su et al (58) 16.1±2.7 NA 99.7±16.2 NA NA
  Pei et al (59)   4.3±1.2 NA 70.0±13.5 NA 35/333 (10.5)

aNormal range, 3.6‑9.5 mmol/l. bNormal range, 57.0‑111.0 µmol/l. SARS, severe acute respiratory syndrome; MERS, Middle East respiratory 
syndrome; COVID‑19, coronavirus disease 2019; NA, not available.
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of SARS‑CoV‑2 was markedly higher compared with that 
of SARS‑CoV when the S protein bound to the human 

ACE2 (85). SARS‑CoV‑2 can use ACE2 to enter the recip‑
ient cells and activate the S protein by the serine protease 

Figure 1. Analysis of ACE2 and DPP4 expression in different normal tissues using two databases. (A) ACE2 and (B) DPP4 expression data from A Database 
of Hepatocellular Carcinoma Expression Atlas. (C‑D) ACE2 and DPP4 expression data from the Human Protein Atlas. (E) The ACE2 and DPP4 expression 
in kidney derived from the Human Protein Atlas (data was from antibody‑based protein profiling using immunohistochemistry). Red box, kidney tissue; blue 
box, lung tissue. ACE2, angiotensin‑converting enzyme 2; DPP4, dipeptidyl peptidase 4.
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TMPRSS2 on the host cell surface (76). Two studies that 
recently published online investigated the mechanism of 
how SARS‑CoV‑2 identifies and binds to human ACE2 and 
the composite crystal structure, which enhanced our under‑
standing of the ACE2‑mediated SARS‑CoV‑2 recognition 
and cell infection processes (86,87). Pan et al (88) concluded 
that the cytopathic effects of SARS‑CoV‑2 on podocytes and 
proximal straight tubule cells may cause AKI in patients with 
COVID‑19, particularly those with evidence of SARS‑CoV‑2 
infection in blood samples. Electron microscopic examination 
revealed that coronavirus particles were present in podocytes 
and renal tubular epithelial cells. In addition, immunos‑
taining with SARS‑CoV nucleoprotein antibody was positive 
in the tubules (58). SARS‑CoV‑2 nucleocapsid protein was 
detected in the renal tubular structure, and nucleocapsid 
protein‑positive inclusion bodies were also observed in the 
renal cell cytoplasm (58). Researchers reported the presence 
of particles on the renal tubular epithelium, which were 
morphologically identical to SARS‑CoV‑2, and with viral 
arrays and other features of virus assembly, which constituted 
evidence of direct infection of the kidney by SARS‑CoV‑2. 
This finding confirmed that direct renal infection occurs in 
the setting of AKI in COVID‑19 (89). Patients infected with 
SARS‑CoV and SARS‑CoV‑2 developed kidney injury that 
may be caused by a direct attack on kidney cells through 
ACE2. It remains unclear how the virus causes AKI after 
infecting the kidney cells.

DPP4 is considered to be a functional receptor for 
MERS‑CoV (68‑70). MERS‑CoV causes renal dysfunction by 
infecting epithelial cells (90). Raj et al (68) found that DPP4 
specifically copurified with the receptor‑binding S1 domain 
of the MERS‑CoV spike protein from lysates of susceptible 
Huh‑7 cells. Antibodies directed against DPP4 can inhibit 
MERS‑CoV infection of primary human bronchial epithe‑
lial cells and Huh‑7 cells (68). Expression of human and bat 
DPP4 in non‑susceptible COS‑7 cells enabled infection by 
MERS‑CoV (68). These works identified DPP4 as a functional 
receptor for MERS‑CoV. Chinese researchers demonstrated 
that the MERS‑CoV receptor‑binding domain was composed 
of a core subregion and an external receptor‑binding subre‑
gion. The core subdomain is highly homologous to the 
SARS‑CoV spike molecule, but the external subdomain is 
highly variable (91). It is conceivable that DPP4 may be the 
receptor through which MERS‑CoV infects renal cells and 
causes kidney injury. 

In addition, immune activation caused by viral infection 
may release a large amount of inflammatory mediators (such 
as IL‑1, IL‑6 and TNF), resulting in kidney injury (92,93). 
During the SARS outbreak, some critically ill patients expe‑
rienced an inflammatory storm characterized by elevated 
IL‑1β, IL‑6, IL‑12, IFN‑γ, IP10 and MCP‑1 levels (94). The 
‘cytokine storm’ caused by MERS coronavirus is primarily 
associated with IFN‑γ, TNF‑α, IL‑15 and IL‑17 (95). SARS 
and MERS both induce a ‘cytokine storm’ in critically ill 
patients (96‑98). COVID‑19 patients may be affected by 
both the cytopathic effects directly induced by the virus 
as well as the systemic inflammatory responses caused 
by the cytokine storm, which may result in pathological 
changes in renal podocytes and proximal tubular cells 
and lead to AKI (88). Researchers analyzed the clinical 

characteristics of COVID‑19 patients and found that, in 
patients with pneumonia, particularly in severe cases, there 
was a significant decrease in the lymphocyte count, and that 
a number of inflammatory factors (such as IL‑6 and TNF) 
were increased significantly and that these may have caused 
kidney and other organ failure (51,54,99). Researchers also 
indicated that the virus may enter the blood circulation after 
lung infection, accumulate in the kidneys and cause kidney 
damage (100). Patients with viral infections suffered from 
anorexia, diarrhea and excessive perspiration, which may 
lead to hypovolemia and renal hypoperfusion, eventually 
causing kidney injury (101). Notably, certain antibiotics and 
antiviral drugs are also likely to cause drug‑related kidney 
injury (102,103).

7. Coronavirus and blood purification 

In addition to antiviral therapy and respiratory support, 
blood purification is also an important modality for treating 
coronavirus infections. According to the Kidney Diseases 
Improving Global Outcomes AKI guidelines, when contin‑
uous renal replacement therapy (CRRT) is used to treat 
COVID‑19 patients, the therapeutic dose is 20‑25 ml/kg/h 
post‑dilution and 25‑30 ml/kg/h predilution (104). Clinical 
studies demonstrated that the AKI incidence in COVID‑19 
patients was 3‑7%, and the proportion of patients on CRRT 
was 1.5‑9.0%; the AKI incidence in severe and critically ill 
patients admitted to the ICU was significantly increased, 
ranging from 8.3 to 23.0%, and CRRT was required for 
5.6‑23.0% of the patients, whereas CRRT was required for 
66.7‑100% of patients with AKI (13,51,54). It was previ‑
ously demonstrated that 6.7‑11.1% of patients with SARS 
developed AKI and 1.8% received CRRT (21). The inci‑
dence of AKI in MERS was 26.7 and 13.5‑20% patients 
with AKI received CRRT (41,96). Up to 50% of MERS 
patients received CRRT (105). In addition, extracorporeal 
membrane oxygenation combined with CRRT was reported 
to effectively improve the patient's volume load and prog‑
nosis (106,107). However, it is worth noting that patients 
receiving maintenance hemodialysis are susceptible to 
COVID‑19 and that hemodialysis centers are high‑risk 
settings for COVID‑19 (108).

CRRT eliminates the overexpressed inflammatory factors 
and anti‑inflammatory transmitters in the blood circula‑
tion non‑selectively, reducing the peak concentrations of 
these factors and downregulating the body's inflammatory 
responses (109). Plasma replacement, adsorption, perfusion 
and other special blood purification treatment technologies are 
mainly used in the early and middle stages of cytokine storms 
in severe and critically ill patients with COVID‑19, mainly to 
block disease progression by reducing IL‑6 levels (110,111). 
In addition to using antibodies against inflammatory factors, 
such as tocilizumab, to combat the cytokine storm (112,113), 
blood purification treatment may also effectively suppress 
the cytokine storm and reduce the mortality rate of patients 
with severe COVID‑19 (110,114,115). However, according to 
a recent research, tocilizumab was not effective in preventing 
intubation or death in moderately ill hospitalized patients with 
COVID‑19 (116). A benefit of dexamethasone was demon‑
strated in hospitalized patients with COVID‑19 who were 
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treated with either invasive mechanical ventilation or oxygen 
alone (117).

In summary, blood purification is a key therapeutic strategy 
against COVID‑19, particularly in critically ill patients with or 
without renal failure, and it may improve the prognosis and 
outcome of these patients.

8. Conclusion

Kidney injury is an important clinical issue in coronavirus 
infection. The two currently identified receptors for coronavirus 
infection, ACE2 and DPP4, may be the key mediators triggering 
direct kidney injury by the coronavirus, while it remains unclear 
how the coronavirus causes kidney injury after entering renal 
cells. ACE2 and DPP4 are potential therapeutic targets, and 
target drugs are developed based on their structure to block 
virus invasion before injury occurs. Therefore, it is necessary 
to carry out further basic and clinical research to guide clinical 
practice. Blood purification is an important treatment measure 
in coronavirus infection with or without kidney injury. Early 
and timely blood purification therapy may reduce or prevent 
disease progression in patients with coronavirus infection.

The current COVID‑19 epidemic is still not under control 
globally. Although the vaccine is currently used on patients, it 
is still necessary to focus on infection prevention in patients 
with kidney disease, study the pathogenic mechanism of 
COVID‑19 in depth, and optimize the treatment strategies 
for severely ill patients with AKI in order to improve their 
prognosis.
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