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ABSTRACT: We present deterministic and stochastic pro-
gramming models for the workover rig problem, one of the
most challenging problems in the oil industry. In the
deterministic approach, an integer linear programming model
is used to determine the rig fleet size and schedule needed to
service wells while maximizing oil production and minimizing
rig usage cost. The stochastic approach is an extension of the
deterministic method and relies on a two-stage stochastic
programming model to define the optimal rig fleet size
considering uncertainty in the intervention time. In this
approach, different scenario-generation methods are com-
pared. Several experiments were performed using instances
based on real-world problems. The results suggest that the
proposed methodology can be used to solve large instances and produces quality solutions in computationally reasonable times.

1. INTRODUCTION

Before oil wells can begin operation, equipment must be installed
to bring the oil to the surface. Various artificial lifting techniques
can be employed to bring oil to the surface, including mechanical
pumping, progressive cavity pumping, and gas lift. As the
equipment develops faults over time, interventions must be
performed in wells to maintain production or improve well
productivity. The aim of these interventions may be, among
others, recompletion, restoration, cleaning, and stimulation.1

Interventions are performed by workover rigs, a scarce
resource with high operating costs of which there are usually
not enough to service all the wells that require maintenance.2

The rigs can be classified according to their service level, which is
derived from the matching of technical specifications of the rig
and the technical requirements for the service, such as technical
limitations related to the depth of the wells, depth from water
levels, the traction capacity, pressure, and others. The rigs with
higher service levels are capable of performing services in wells
with lower levels (i.e., requirements). For example, the tubing
limits of the rigs vary by depth, from 2590 to 8839 m. While a rig
with 2590 m specification for tubing limit would not be capable
to service a well with depth of 5000 m, any rig with tubing longer
than that (for example, those with 8839 m) would.3

When defining the service schedule, various factors in addition
to the service level must be considered, such as well production,
the duration of the intervention, the time horizon within which
the services can be performed, the geographical location of the rig
in relation to the well, the environmental risk, and safety issues. A

delay in the interventions can lead to substantial production
losses.4

The workover rig problem can be classified as the workover rig
scheduling problem (WRSP) and the workover rig routing
problem (WRRP). The WRSP can be seen as a problem of
scheduling jobs on parallel machines, where the times required to
move the rigs between the wells are disregarded because they are
not significant compared to the intervention times. The WRRP
can be seen as a problem of routing and scheduling with multiple
vehicles, where the travel times are significant and thus must be
considered. According to Gouveâ et al.5 the adoption of the
WRSP as a modeling standpoint is appropriate when the times
required to move the rigs between the wells are on the order of
minutes or hours and the rig intervention time is on the order of
days or weeks.
Various studies in which a deterministic approach to the

WRSP is adopted can be found in the literature. Costa6 proposed
a 0−1 integer linear programming model and constructed a
group of instances based on real-world problems in Brazil. The
paper by Costa6 has been used as a reference in many other
papers as the basis for a range of metaheuristics such as genetic
algorithms, the greedy randomized adaptive search procedure,
and the simulated annealing algorithm.7−9 Although metaheur-
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istics yield good results for small and medium-sized instances
(with less than 75 wells), they do not produce optimal values for
large instances (with more than 100 wells). Peŕez et al.10

proposed an improvement to the model described by Costa6 and
managed to solve optimally all the instances he constructed in
short computational times, including large instances whose
solutions were not previously known. The model proved to be
more effective than the other metaheuristics tested.
A deterministic approach is also reported in the literature to

solve the WRRP. Aloise et al.4 proposed a variable neighborhood
search heuristic and tested it on real-world cases in Brazil. Ribeiro
et al.11 proposed the clustering search and adaptive large
neighborhood search heuristics using instances generated by
Neves.12 Ribeiro et al.13 proposed a mathematical model and a
branch-price-and-cut algorithm and generated a group of
random instances. Duhamel et al.14 proposed three mixed-
integer programming models: the first is an improvement of the
model proposed by Aloise et al.;4 the second is based on the open
vehicle routing model; and the third is based on the set covering
model. Ribeiro et al.15 developed a branch-price-and-cut
heuristic and a hybrid genetic algorithm. Monemi et al.16

proposed a mixed-integer programming model that includes a
hyper-heuristic.
Few studies in the literature deal with the rig fleet sizing

problem. Irgens et al.17 used a local search algorithm and a
formulation that minimizes production loss and included as a
constraint the condition that the cost of using the rigs should not
exceed the designated budget. Bissoli et al.18 incorporated rig
rental cost into the mathematical model proposed by Ribeiro et
al.13 and implemented an adaptive large neighborhood search
metaheuristic. The first use of a stochastic approach was
described by Bassi et al.,19 who considered the probability
distribution of the intervention time and analyzed the trade-off
between rig rental cost and the expected cost of lost production.
They developed a simulation−optimization method that
involved sampling the uncertain parameter (generating scenar-
ios) with the Monte Carlo method and then solving the problem
using a greedy algorithm.
Even though mathematical programming techniques have also

been applied for optimizing production operations, the majority
of studies available in the literature tackle daily oil production
optimization problems using heuristic rules that are incorporated
into software tools known as well management routines.20 The
present work involves studying the workover rig problem from a
perspective that reflects real-world operations and takes into
account the variety of rigs in a fleet and the uncertainty inherent
in the well intervention time. The main contribution of our study
to the existing literature is the development of a thorough
framework that can be employed to solve large challenging
instances in reasonable computational times for the workover rig
problem under uncertainty. To this end, we extend the
mathematical model proposed by Peŕez et al.,10 which was
originally developed to determine a schedule for a homogeneous
fleet of rigs servicing a set of wells with a deterministic
intervention time. In the stochastic approach, the uncertainty
in the intervention time is represented using scenario-generation
methods. The Monte Carlo, scenario reduction, and quasi-
Monte Carlo methods are compared to determine the method
that produces the best results in terms of approximating the
uncertainty satisfactorily with the fewest scenarios. The paper
also contributes to the existing literature by providing data that
can be used to build instances for the workover rig problem
(based on the review of various papers).

The remainder of this paper is organized as follows. Section 2
describes the workover rig fleet sizing and scheduling problem
based on a deterministic approach, while section 3 describes the
workover rig fleet sizing problem under uncertainty using a
stochastic approach. Section 4 reviews the scenario-generation
methods used for the stochastic approach. In section 5,
computational experiments are performed to assess the perform-
ance of the proposed mathematical models and the scenario-
generation methods. Section 6 provides conclusions and
suggestions for further studies.

2. THE WORKOVER RIG FLEET SIZING AND
SCHEDULING PROBLEM

In the deterministic approach, the workover rig fleet sizing and
scheduling problem (WRFSSP) can be formulated as follows: a
set of wells i = 1, ..., J needs to be maintained by a fleet of rigs n =
1, ...,N in a planning timeT. The rigs are grouped into classesm =
1, ..., M, there are a certain number of rigs available in each class
Mm, and each class has a nominal service level wm and hourly rig
cost of βm. Each rig n has a certain service level vn derived from the
rig class service level wm of a given class of rig m. These service
levels serve as a proxy to represent the technical specifications of
the rig and their compatibility with operational requirements of
the well. Each well i is associated with an intervention time di, an
oil flow rate pi, and a required service level ri. A well can only be
serviced by rigs with service levels greater than or equal to the
service level required for the well. Wells that are not serviced are
left for another round of planning together with new wells that
may need to be serviced. The problem is considered from the
point of view of production companies that own the right of
exploring the wells but do not possess their own rig fleet and
must thus rent them for a fixed time period. The problem
consists of determining the size of a fleet of heterogeneous rigs
required to service a set of wells while minimizing the cost of lost
oil production and the rig rental over a time horizon. The cost of
lost production is calculated using the oil price α. The rig
displacement, assembly, and disassembly costs are assumed to be
included in the cost of rig rental.
Peŕez et al.10 developed an efficient reformulation of the

mathematical model proposed by Costa6 that allows posterior
decomposition of the model for the WRSP. The mathematical
models proposed by Peŕez et al.10 and Costa6 are called the
decomposed mathematical model (DMM) and original
mathematical model (OMM), respectively. The decomposition
procedure reduces the number of variables and constraints
considered in the OMM. The decomposition procedure allows
the model to be developed without considering the problem of
well allocation to rigs, making it even smaller in size. The
formulations of the DMM and OMM are provided in Appendix
A and Appendix B of the Supporting Information, respectively.
Next, we show how the DMM can be extended such that it can

be used to determine the optimal size of a heterogeneous fleet of
rigs while minimizing the cost of lost production and the rig
rental. We refer to this extended mathematical model as DMM′.
The notation used for the sets, parameters, and variables is
defined in the Nomenclature section.
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In this mathematical model, the objective function 1
represents minimization of the cost of lost production and the
cost of rig rental over the time horizon. The first component of
lost production corresponds to the loss from wells that have been
selected for intervention, and the second to the loss from wells
that have not been selected. Lost production in the wells not
selected occurs over the entire time horizon. Notice that the
index t is used also as a scalar to determine the beginning of the
interventions in each well. Constraint 2 ensures that the start of
an intervention in each well (Sint) occurs no more than once for
each rig at a specific time. Constraint 3 ensures that at a given
time, the rigs that have been rented (SAn) perform no more than
one intervention and that there is no interference between
interventions in different wells; that is, if a well i is being serviced
by a rig n in the range [t− di + 1, t], no other well can be serviced
in that range by the same rig n. Constraint 4 specifies the number
of rigs rented per class (SUm), i.e., rigs with a service level vn equal
to the service level wm of rig class m are grouped together.
Constraint 5 ensures that the number of rigs rented in each class
does not exceed the number of rigs available in that class.
Constraints 6−8 define the decision variable domains.
Constraint 6 ensures that the interventions in the wells start
within the time horizon and that each well is serviced by a rig with
an appropriate service level.
The DMM′ is reformulated into the deterministic mathemat-

ical model (DTMM), which is composed by two separated parts
(DTMM1 and DTMM2). The DTMM includes the binary
variable SDimt, which represents whether a rig of class m starts
servicing well i at time t. The variable SDimt is used to replace Sint
to reduce the number of variables and constraints, as the number
of rig classes is generally smaller than the number of available rigs
(M < N). We determine SDimt as follows:
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Equation 9 associates the rig classmwith the rig n allocated to the
well i according to the service level (vn = wm). As rigs in the same
class m have a service level wm, the sum ∀n|vn = wm can be used in
constraint 3:
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Constraint 11 ensures that no more than SUm interventions are
performed by rigs of class m at a given time t and that there is no
interference between the interventions in the wells. The DTMM
is then formulated as follows:

∑ ∑ ∑

∑ ∑ ∑ ∑

α

β

+ −

+ − +

= = =

= = = =

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

t d pSD

T p SD T SU

(DTMM1) Min ( 1)

1

i

J

m

M

t

T

i i imt

i

J

i
m

M

t

T

imt
m

M

m m

1 1 1

1 1 1 1 (12)

subject to
eqs 5, 8, and 11

∑ ∑ ≤ ∀
= =

SD i1
m

M

t

T

imt
1 1 (13)

∈ ∀ | ≤ ≤ − + ≤SD i m t t T d r w{0, 1} , , 1 1 andimt i i m
(14)

In this mathematical model, the objective function 12
represents minimization of the cost of lost production and the
cost of rig rental over the time horizon. Constraint 13 ensures
that the start of an intervention in each well occurs no more than
once for each rig class at a specific time. Constraint 14 defines the
domain of the decision variable SDimt. It ensures that
interventions in the wells start within the time horizon and
that each well is serviced by a rig in a class with an appropriate
service level.
The optimal solutions for SDimt* and SUm* determined with the

DTMM1 can be used to solve the problem of allocating wells to
the rented rigs. This configuration is shown below:
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In this mathematical model, the objective function 15
represents minimization of the cost of lost production and the
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cost of rig rental over the time horizon. Constraint 16 ensures
that the total numbers of rigs rented in each class are exactly the
same as the values of SUm* found. Constraint 17 limits the domain
of the decision variable Sint and ensures that the start of the
interventions and the allocation of rigs in each class are the same
as the values found in SDimt* .

3. THE WORKOVER RIG FLEET SIZING PROBLEM
UNDER UNCERTAINTY

In the stochastic approach, the workover rig fleet sizing problem
is analyzed under uncertainty. The main difference in relation to
the problem described in section 2 is that uncertainty in the well
intervention time is considered. Each well i is associated with a
finite set of intervention-time scenarios di

k, k = 1, ..., K, generated
from a random sample with a probability of occurrence πk, such
that∑k πk = 1. Thus, the stochastic problem can be written in its
deterministic equivalent form and can be solved by commercial
optimization softwares.
Under uncertainty, the workover rig fleet sizing problem

consists of determining the size of the rig fleet needed to service
the wells while minimizing rig rental cost and the expected cost of
lost production over a time horizon. The aim is to support
decision-making by reducing the impact of lost production due
to unexpected events that can delay or prolong interventions.
In the following description, the stochastic mathematical

model (STMM) is presented as an extension of the DTMM. It is
formulated as a two-stage stochastic programming model in
which the first-stage variables represent the fleet of rigs rented by
class (SUm), while the second-stage variables correspond to the
start of an intervention by a particular class of rigs in a particular
scenario (SDimt

k ). The notation used for the sets, parameters, and
decision variables is defined in the Nomenclature section. The
mathematical model is
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In this mathematical model, the objective function 18
represents minimization of the expected cost of lost production
and the cost of rig rental over the time horizon. Constraint 19
ensures that the start of an intervention in each well in each
scenario occurs no more than once for each rig class at a specific
time. Constraint 20 ensures that for each scenario, each rig class
starts no more than SUm interventions at a given time and that
the interventions in the wells do not interfere with each other.
Constraint 21 defines the domain of the decision variable SDimt

k .

Notice that the STMM has the fundamental nature of
providing first-stage decisions that are supposed to be made
before the uncertainty is realized. For decisions regarding the
second-stage (i.e., the scheduling decisions), the deterministic
version (DTMM, which is equivalent to STMM with a single
scenario) can be used considering as fixed the previously decided
rig fleet and the scenario observed for the intervention times.

4. SCENARIO-GENERATION METHODS
In particular, the two-stage stochastic programming model
presents two sources of difficulty when formulated with integer
variables:21

• The exact evaluation of the expected value of the second-
stage for a given first-stage decision. For continuous
probability distributions of the uncertain parameter, the
exact evaluation of the expected value of the second-stage
involves the calculation of a multidimensional integral in
the objective function, which is practically impossible. For
discrete probability distributions, the expected value
requires solving all possible realizations of the uncertain
parameter and can be computationally intractable.

• The optimization of the expected value of the second-stage
on the first-stage decisions. Consequently, the problem of
optimization brings serious computational difficulties.

In such conditions, it is not practical to solve a stochastic
optimization problem directly. However, one can use sampling
techniques (scenario-generation) that consider a random subset
of the probability distribution to obtain approximate results. The
approximation of the stochastic optimization problem with this
sampling strategy is known as sample average approximation
(SAA).22

By defining a scenario-generation method that ensures a good
approximation to the random variable with a minimum number
of scenarios, the computational resources required to solve the
problem can be reduced significantly.
Kaut and Wallace23 discuss how to evaluate the quality of

scenario-generation methods for a given stochastic programming
model. This approach establishes the number of scenarios
required to accurately solve a stochastic optimization problem
and is based on testing the stability of the several scenario-
generation methods and choosing the one that is best suited for
the given decision model. The stability tests have been widely
used in several areas of research, for example, finance,24−27 power
generation,28−32 transport,33−35 and petroleum supply manage-
ment.36

Several scenario-generation methods can be found in the
literature. Brief descriptions of some of the main techniques are
provided below.

4.1. Monte Carlo. The Monte Carlo method is the most
widely used approach for dealing with stochastic optimization
problems. It consists of generating a pseudorandom series (i.e., a
series that imitates randomness) of independent numbers
uniformly distributed in the interval [0−1] and then constructing
a sample by means of an appropriate transformation of the
probability distribution. The convergence rate associated with
the Monte Carlo method is O(1/√K),37 i.e., the rate at which
the error of the estimator decreases as the sample size K
increases.

4.2. Scenario Reduction. The scenario reduction method
was developed by Dupac ̌ova ́ et al.38 and Heitsch and
Römisch,39,40 and consists of finding a subset of scenarios that
approximates an initial set of scenarios in terms of a probabilistic
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distance metric. New probabilities are assigned to the preserved
scenarios, and a probability of zero is assigned to the eliminated
scenarios. The most commonly used metric is the Fortet−
Mourier metric.
The scenario reduction method is frequently used in problems

that involve many scenarios and require long computational
times. When used in problems with high-dimensional random
variables, the method suffers from the disadvantage that the error
between the approximate distribution and initial distribution
increases, producing suboptimal values of the objective
function.41

4.3. Quasi-Monte Carlo. The quasi-Monte Carlo method
generates samples known as low-discrepancy sequences or quasi-
random numbers, which are intended to increase the accuracy of
the estimator by generating highly uniform points.
Low-discrepancy sequences fill the spaces in the interval [0−

1] uniformly up to a specific density and have the potential to
accelerate the convergence rate associated with the Monte Carlo
method O(1/√K) to approximately O(1/K). The quasi-Monte
Carlo method is generally considered suitable for problems with
high-dimensional random variables. The most widely used
sequence is the Sobol sequence as it is more effective and
produces accurate results for various problems.37

A graphical example illustrating the differences between
Monte Carlo, scenario reduction, and quasi-Monte Carlo
methods with 1000 scenarios for a two-dimensional random
variable is given in Figure 1.
4.4. Assessment of the Scenario-Generation Method.

To establish the number of scenarios to be considered and assess
the stability of the scenario-generation method to be chosen to
model the uncertainty, we apply the in-sample and out-of-sample
stability tests proposed by Kaut and Wallace.23

In-sample stability determines whether similar or equal values
of the objective function are obtained for various replications
when the problem is solved with a set of scenarios generated to
represent an uncertain parameter. Out-of-sample stability checks
whether the optimal first-stage solutions obtained in each
replication produce similar or equal values of the objective
function when they are evaluated with the true distribution.
To evaluate out-of-sample stability, a set of reference scenarios

large enough to approximate the true distribution is usually
generated. The approximation to the true distribution is used for
the sake of practical convenience, as in most cases there is no
historical data for the uncertain parameter.

5. COMPUTATIONAL EXPERIMENTS

To evaluate the performance of the mathematical models
developed to solve the workover rig problem, various medium-
sized and large instances (with 50 and more than 100 wells,
respectively) were generated. The large instances generated are
difficult to solve and more complex than similar instances
available in the literature. Details of how the values of the
parameters used in the models were defined are given in
Appendix D of the Supporting Information. All data generated is
available in the Supporting Information zip file. Also, all data and
models implemented can be made available upon request to the
authors.
The time horizon considered is 15 days, broken into uniformly

sized time steps of half-day length (12 h). The oil flow rate, the
rig rental cost, and the oil price are reported in m3/day, US$/h,
and US$/m3, respectively. We highlight that the time-indexed
parameters have been scaled accordingly to the length of one
time period.

Figure 1. Scenarios for a two-dimensional uniform distribution on the open interval (0−1).

Table 1. Computational Results for the OMM′ and DTMM

No. of rigs used Time (s) No. of rigs used Time (s)

Inst. C3 C4 C5 Cost (US$) OMM′ DTMM Inst. C3 C4 C5 Cost (US$) OMM′ DTMM

50/1 3 0 2 804228 95.7 1.5 150/1 5 5 2 2655603 − 0.7
50/2 2 1 2 1002968 88.3 0.6 150/2 5 5 2 2821940 − 1.8
50/3 4 1 1 980735 95.8 0.5 150/3 5 5 2 2741773 − 1.9
50/4 4 0 1 911815 85.9 0.3 150/4 5 5 3 2654760 − 1.9
50/5 3 1 1 848755 94.2 0.1 150/5 5 5 4 3139315 − 4.9
100/1 4 4 1 1798595 − 1.4 200/1 5 5 5 4600353 − 1.9
100/2 4 4 1 1712425 − 1.2 200/2 5 5 5 3869185 − 1.1
100/3 4 4 2 2065730 − 0.7 200/3 5 5 5 3720820 − 0.6
100/4 4 2 2 1967948 − 1.4 200/4 5 5 5 4077768 − 0.7
100/5 4 3 2 1836493 − 1.5 200/5 5 5 5 3955583 − 1.7
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The models were implemented in AIMMS 3.14 using the
CPLEX 12.6 solver, and all experiments were performed on a
computer equipped with an Intel Core i7-3960X 3.3 GHz
processor and 64 GB of RAM.
5.1. Assessment of the Performance of the DMM. In this

first experiment, the DTMM is compared with the extension of
the OMM for the WRFSSP. The extended model (OMM′) is
described in Appendix C of the Supporting Information. This
assessment is intended to compare the running time required by
the DTMM for the different instances compared with a model
normally used in the literature as a benchmark. We highlight that
we use DTMM to refer to the process of solving DTMM1 and
subsequently solving DTMM2.
Table 1 gives the results for the OMM′ and DTMM for

instances with 50, 100, 150, and 200 wells. In this table are
presented five randomly generated instances for each number of
wells. A gap of 0% and running time of 300 s were set as the
stopping criteria for the solver. The table shows the number of
rigs used in classes 3 (C3), 4 (C4), and 5 (C5) as well as the total
cost and computational time for the OMM′ andDTMM(i.e., the
total computational time for DTMM1 and DTMM2 combined).
Table 1 shows that the DTMM required less time to solve all

the instances, including large ones. In fact, the majority of the
time reported for DTMM is taken by DTMM1, as DTMM2
takes negligible computational times to be solved (less than 0.1 s
in all cases). The mean running time for all the instances was 1.3
s. The OMM′ failed to solve the large instances before the
stopping criteria were met (as indicated by “−” in Table 1). A
comparison of the results shows that the DTMM can solve large-
scale deterministic problems efficiently.
We highlight that a comparison between the OMM and the

DMM for the WRSP has already been presented in Peŕez et al.,10

showing similar results. However, one should notice the
increment of the complexity of the problem when solving
WRFSSP. For example, the OMM for the WRSP takes nearly 36
s for an instance with 50 wells, while for WRFSSP the solution
time is approximately 96 s (considering the same computational
setting), that is, an increase of 167%. The DTMM presented a
reduced computational time without a significant increase from
the WRSP to the WRFSSP.

5.2. Selection of a Scenario-Generation Method. We
describe the experiment in which the STMM is used with a large
100-well instance to determine which of the following three
scenario-generation methods is best suited to the problem:
Monte Carlo (MC), scenario reduction (SR), and quasi-Monte
Carlo (QMC). The intervention-time scenarios are generated
based on the probability curve constructed by Costa6 using
historical intervention times.
The MC and QMC methods were implemented in MATLAB

R2013a. For the QMC, the Sobol low-discrepancy sequence was
used with the scramble option. The SRmethodwas implemented
with the SCENRED2 tool in GAMS configured with the Fortet−
Mourier metric, the forward reduction algorithm, the first-order
norm, and an initial set of 1000 scenarios. The parameters for the
SR method were defined based on preliminary experiments
considering several possible combinations for these parameters
and took into account the time required and efficiency of the
forward reduction algorithm.
To test the out-of-sample stability, a reference set of 10000

scenarios representing an approximation to the true distribution
was generated. For the in-sample test, 30 replications with
different numbers of scenarios were generated.
Initially, a preliminary analysis is performed based on 10, 20,

and 30 scenarios in each replication to determine first-stage
solutions for the in-sample test close to the “true” first-stage
optimal solution, which is obtained by solving the problem using
the set of reference scenarios. The first-stage solutions found in
the preliminary analysis can be used to solve the problem for a
larger number of scenarios in the in-sample test. Progressive
increases in the number of scenarios will cause the in-sample and
out-of-sample standard deviation to decrease, and the results can
be expected to converge to a single solution. To assess the results
of the in-sample test after the preliminary analysis, the STMM
described in section 3 is used. The variable SUm is assigned the
value found in each of the previous solutions, thereby reducing
the search space for the problem.
A stopping criterion of a 0.01% gap was established for the

solver in the preliminary analysis. This was necessary because the
CPLEX solver took a long time to converge from the lower limit
to the optimal value even when the best value found was known
to be the optimal value or one very close to it, as confirmed in the

Table 2. Computational Results for the Monte Carlo Method

Test In-sample Out-of-sample

#Scenarios #Sol. Cost (US$) Std. Dev. (US$) Time (s) Cost (US$) Std. Dev. (US$) Time (s)

10 3 1661725 25943 18.2 1662778 1139 4451.5
20 3 1659951 18579 50.1 1662792 1135 4448.4
30 2 1671085 16175 70.3 1662350 71 4530.1
50 2 1663545 10553 45.2 1662371 89 4525.5
100 2 1660835 7579 90.5 1662406 103 4517.7
200 2 1661481 5720 181.5 1662420 105 4514.6

Table 3. Computational Results for the Scenario Reduction Method

Test In-sample Out-of-sample

#Scenarios #Sol. Cost (US$) Std. Dev. (US$) Time (s) Cost (US$) Std. Dev. (US$) Time (s)

10 3 1615774 19184 17.7 1662507 689 4500.8
20 2 1619829 15102 50.2 1662357 78 4528.6
30 2 1622818 13097 81.2 1662343 63 4531.7
50 2 1625307 11594 44.7 1662350 71 4530.1
100 2 1630082 10312 90.7 1662350 71 4530.1
200 2 1636628 8878 183.5 1662350 71 4530.1
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experiments. To assess the in-sample test after the preliminary
analysis and the out-of-sample test, a gap of 0% was used as the
stopping criterion for the solver.
Tables 2, 3, and 4 present the computational results for

different numbers of scenarios for the MC, SR, and QMC
methods, respectively. The in-sample columns show the number
of different first-stage solutions found in 30 replications (#Sol.),
the expected total cost, the standard deviation of the total cost,
and the mean running time. The out-of-sample columns show
the expected total cost, the standard deviation of the total cost,
and the running time using the solutions found in the in-sample
test.
Tables 2 and 3 show that the MC and SR methods initially

found three first-stage solutions in the 30 replications. As the
number of scenarios increases to the maximum of 200, the
number of solutions decreases to two. Table 4 shows that the
QMC found two solutions initially and that with 200 scenarios it
converges to a single solution. In all cases the in-sample and out-
of-sample standard deviations decrease. The reduction is most
significant with the QMC and reaches zero in the out-of-sample
test. Notice that, although the in-sample test converges to a single
solution, the evaluation is performed considering 30 distinct sets
of 200 scenarios, and thus a small variation (standard deviation)
is expected. The mean running time in the in-sample test for 10,
20, 30, 50, 100, and 200 scenarios is around 18, 50, 80, 45, 91, and
182 s, respectively. For the out-of-sample test, the running time
to assess the set of reference scenarios is 4516 s on average.

Figures 2, 3, and 4 show the expected values, and Figure 5
shows the standard deviations of the MC, SR, and QMC
scenario-generation methods. The figures can be used to assess
the stability of each method.
These figures show that the QMCmethod is more stable than

either the MC or SR method in the in-sample and out-of-sample
tests. The in-sample standard deviation for the QMC method
decreases linearly after 20 scenarios, and the out-of-sample

standard deviation starts to decrease after 50 scenarios, reaching
US$0 for 200 scenarios.
The first-stage solution found by the QMC in Table 4 suggests

that this is the “true” first-stage optimal solution, with an optimal
value of US$1,662,322, as shown in the out-of-sample test. The
stability tests therefore indicate that the QMC method is the
most suitable scenario-generation method and that replications
with at least 100 scenarios should be generated to solve the
proposed instance.

5.3. Applications with Instances with Larger Numbers
of Scenarios. In this section, we present the results of
experiments with (a) 150 wells and (b) 200 wells, using the
STMM and the QMC scenario-generation method. These
experiments were intended to confirm that the STMM could
solve highly complex instances efficiently. The methodology is
the same as that used in section 5.2. Details of the computational
results for the in-sample and out-of-sample tests for these
instances with different numbers of scenarios are given in
Appendix E of the Supporting Information.

5.3.1. Instance with 150 Wells. Figures 6 and 7 show the
stability of the QMC method for an instance with 150 wells.
Figure 6 shows that the problem stabilizes after 100 scenarios. In
Figure 7, the standard deviation decreases almost linearly
between 20 and 200 scenarios in the in-sample test and between

Table 4. Computational Results for the Quasi-Monte Carlo Method

Test In-sample Out-of-sample

#Scenarios #Sol. Cost (US$) Std. Dev. (US$) Time (s) Cost (US$) Std. Dev. (US$) Time (s)

10 2 1666383 14411 17.7 1662392 99 4520.8
20 2 1660811 5733 51.0 1662392 99 4520.8
30 2 1662049 3679 87.9 1662385 96 4522.4
50 2 1661405 2507 45.1 1662399 101 4519.3
100 2 1662049 1351 91.3 1662336 52 4533.2
200 1 1662256 713 180.7 1662322 0 4536.3

Figure 2. Expected cost of the Monte Carlo method.

Figure 3. Expected cost of the scenario reduction method.

Figure 4. Expected cost of the quasi-Monte Carlo method.
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30 and 200 scenarios in the out-of-sample test. The results
suggest that replications with fewer than 200 scenarios should
not be generated, as this number of scenarios produces lower
bounds for the optimal value for the problem, as shown in Figure
6.
5.3.2. Instance with 200 Wells. Figures 8 and 9 show the

stability of the QMC method for an instance with 200 wells.
Figure 8 shows that the problem is reasonably stable above 50
scenarios, and the second shows that the standard deviation falls
almost linearly in the in-sample and out-of-sample tests,
decreasing to zero with 50 scenarios and remaining at this
value as the number of scenarios increases. Again, the results
suggest that replications with at least 100 scenarios should be
considered.
In general, the three instances considered yielded good results

with 100 scenarios and there was little difference between the

expected cost in the in-sample and out-of-sample tests. Above a
certain number of scenarios, the standard deviation of the cost in
the QMC method decreased. The decrease appears to follow a
nearly constant rate as the number of scenarios increases. This
information could be useful when designing experiments with
different levels of variability.

6. CONCLUSIONS AND FURTHER RESEARCH
In this paper, we presented two mathematical programming
models for deterministic and stochastic cases of the workover rig
problem. We have also generated various instances to evaluate
the performance of the proposed models.
First, the deterministic version of the WRFSSP was

considered. The model was formulated as an extension of the
model proposed by Peŕez et al.10 applied to the WRSP. The
computational experiments performed considering medium-

Figure 5. Standard deviation of the cost.

Figure 6. Expected cost.

Figure 7. Standard deviation of the cost: in-sample (left) and out-of-sample (right).

Figure 8. Expected cost.
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sized and large instances were efficiently solved in shorter
computational times (1.3 s on average). The results confirmed
that the proposed model is more efficient than the model
described in the literature.
Second, the problem was formulated as a two-stage stochastic

programming model in which the uncertainty associated with the
well intervention times was considered. The assessment of
alternative scenario-generation methods suggested that the
quasi-Monte Carlo method was the most suitable for
representing the uncertainties considered, which involves a
high-dimensional random variable (the well intervention time).
The experiments revealed that theMonte Carlomethod does not
converge as quickly as the quasi-Monte Carlo method and that
the scenario reduction method converges slowly because
information is lost when the number of scenarios is reduced
and new probabilities are assigned to the scenarios. The
efficiency of the stochastic model combined with the quasi
Monte Carlo method was assessed by experimenting with large
size instances. Using the proposed methodology, the three
instances considered were solved satisfactorily.
Three areas could profitably be explored in future research.

First, different intervention-time probability distributions based
on real-world cases could be considered. Second, other scenario-
generation methods, such as the moment matching method,
could be used. Finally, efficient models for offshore oil fields
including new operating characteristics could usefully be
developed.
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■ NOMENCLATURE

Sets
i, j: Well index, i, j = {1, 2, ..., J}
n: Available rigs index, n = {1, 2, ..., N}
m: Rig class index, m = {1, 2, ..., M}
t, h: Time index, t, h = {1, 2, ..., T}
k: Scenario index, k = {1, 2, ..., K}

Parameters
J: Number of wells
N: Number of rigs
M: Number of rig classes
Mm: Number of rigs per class m
T: Time horizon
K: Number of scenarios generated
pi: Oil flow rate in well i
di: Duration of the intervention in well i
di
k: Duration of the intervention in well i in scenario k
πk: Probability of scenario k occurring
ri: Service level required for well i
vn: Service level of rig n
wm: Service level of rig class m
α: Price of oil
βm: Hourly cost of rig class m

Variables
Sit = 1, if the service in well i starts at time t; 0, otherwise
Sint = 1, if rig n starts to performmaintenance services on well i
at time t; 0, otherwise
SDint = 1, if a rig of class m starts to perform maintenance
services on well i at time t; 0, otherwise
SDint

k = 1, if a rig of class m starts to perform maintenance
services on well i at time t in scenario k; 0, otherwise
SAn = 1, if rig n is rented; 0, otherwise
SUm = Number of rigs of class m rented

■ REFERENCES
(1) Thomas, J. E. Fundamentos de Engenharia de Petroĺeo (Fundamentals
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(Optimizing the itinerary of workover rigs). Master’s Thesis, University of
Campinas, Campinas, SP, Brazil, 1997 (Refers to Supporting
Information).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.7b04500
Ind. Eng. Chem. Res. 2018, 57, 7544−7554

7553

http://dx.doi.org/10.1021/acs.iecr.7b04500


(43) Bissoli, D. C. Uma abordagem heuriśtica para o problema de
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