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Abstract The dynamics of infectious disease epidemics are
driven by interactions between individuals with differing dis-
ease status (e.g., susceptible, infected, immune). Mechanistic
models that capture the dynamics of such Bdependent
happenings^ are a fundamental tool of infectious disease ep-
idemiology. Recent methodological advances combined with
access to new data sources and computational power have
resulted in an explosion in the use of dynamic models in the
analysis of emerging and established infectious diseases.
Increasing use of models to inform practical public health
decision making has challenged the field to develop new
methods to exploit available data and appropriately character-
ize the uncertainty in the results. Here, we discuss recent ad-
vances and areas of active research in the mechanistic and
dynamic modeling of infectious disease. We highlight how a
growing emphasis on data and inference, novel forecasting
methods, and increasing access to Bbig data^ are changing
the field of infectious disease dynamics. We showcase the
application of thesemethods in phylodynamic research, which
combines mechanistic models with rich sources of molecular
data to tie genetic data to population-level disease dynamics.
As dynamics and mechanistic modeling methods mature and
are increasingly tied to principled statistical approaches, the
historic separation between the infectious disease dynamics

and Btraditional^ epidemiologic methods is beginning to
erode; this presents new opportunities for cross pollination
between fields and novel applications.
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B…the ‘how’ precedes the ‘why’;^—Galileo

Introduction: a Brief History of Dependent
Happenings and Infectious Disease Modeling

In 1916, Ronald Ross coined the term Bdependent happen-
ings^ to capture the fundamental difference between the study
of infectious diseases in populations and other health phenom-
ena [1]. Because infectious diseases are, for the most part,
acquired from the people around us, our own future health
status depends on that of our neighbors (e.g., the more people
we know who are infected, the more likely we are to become
infected ourselves). For acute infectious diseases, the health
status of the population often changes quickly over time, with
the number of people infectious, susceptible to being infected,
and immune to the disease changing substantially over the
course of an epidemic. Further, the membership in each of
these groups does not vary arbitrarily over time but is driven
by often well-understood biological processes (Box 1). For
instance, in the simple example of a permanently immunizing
infection spread through person-to-person transmission such
as measles, new susceptible individuals only enter the popu-
lation through birth and immigration; these individuals can
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then only become infected by contact with existing infectious
individuals, who, in turn, will eventually become immune or

die and be removed forever removed from participation in the
epidemic process.

Box 1. Drivers of infectious disease dynamics

The epidemic dynamics of infectious diseases are driven by similar mechanistic relationships between the 

current and future health states of the population. The expected number of infections at some time T is 
illustrated for a directly transmitted disease in the above equation. Dynamic and mechanistic models of 

disease spread, regardless of complexity, capture these relationships in order to improve inference or 

predict the disease dynamics. The study of infectious disease dynamics encompasses the study of any of 

the shared drivers of the mechanistic processes of disease spread with an eye towards better 

understanding disease transmission.  As illustrated above, these include:

The size of the susceptible population ( ): The number of people available to be infected. The 
dynamics of susceptibility is not shown here, but can itself can be complex, as new susceptibles enter the 

population through birth, immigration and loss of immunity. For many diseases (e.g., dengue, influenza), 

susceptibility is not a binary state, and complex models may be needed. 

The force of infection: The force of infection is the probability that any individual who is susceptible at a 
given time becomes infected (analogous to the hazard of infection). The size of the susceptible population 

times the force of infection is the reproductive number ( ). When this value is above 1, the epidemic will 

grow. When it falls below 1, it will recede. 

The infectious process ( ): The infectious process dictates the chances of becoming infected on a 
direct or indirect contact with an infectious individual. Here represented as a per contact probability of 

infection, this itself can be a complex, multi-faceted process. 

The contact process ( ): The process by which infectious contacts are made, whether directly or 
mediated by a some vector or the environment, is one of the most complex parts of the infectious 

process. Much modern research focuses on accounting the role of space and population structure in the 

contact process. 

Previous infections ( ): Fundamental to the nature of infectious diseases is the number of previous 
infections, however, these may not as directly lead to current infections as illustrated here if transmission 

is mediated by a vector or the environment. 

The natural history of disease ( ): How infectious people are at particular times after their 
infection determines their contribution to ongoing disease transmission, and fundamentally drives the 

speed at which epidemics move through the population. Other aspects of disease natural history (e.g., 

the incubation period) may determine our ability to control a disease and its ultimate health impact. 
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Over the course of the twentieth century, the main body of
epidemiologic research became increasingly reliant on models
of statistical association, often with strong assumptions of in-
dependence between observations (hereafter referred to as as-
sociative models) [2]. However, as a result of the need to deal
with dependent happenings, there remained a strong subpopu-
lation within infectious disease epidemiology that used models
of an entirely different type. Variously referred to as
Bmathematical,^ Bdynamic,^ or Bmechanistic^ models, these
models are characterized by having a mechanistic representa-
tion of the dynamic epidemic process that determines how the
population’s state at time t + 1 depends on its state at time t
(hereafter referred to as mechanistic models). Historically, these
models have more often been deterministic and built top-down
from first principles rather than based on patterns in any partic-
ular dataset. However, as increasing computational power has
caused an explosion in the types of models that can be subject
to rigorous statistical analysis, there has been a shift toward

more data-driven and statistical approaches and a greater focus
on stochasticity and uncertainty. This confluence between prin-
cipled statistical inference and mechanistic processes is paying
huge dividends in the quality of the work being produced and
the types of questions being answered across disciplines within
infectious disease epidemiology. Infectious disease models are
being given a firmer empirical footing, while the use of gener-
ative mechanistic approaches allows us to use models as tools
for forecasting, strategic planning, and other activities in ways
that would not be possible withmodels that do not represent the
underlying dynamic epidemiologic processes.

In this manuscript, we review current research into dynam-
ic and mechanistic models of infectious disease with a focus
on how the confluence of mechanistic approaches, new statis-
tical methods, and novel sources of data related to disease
spread are opening up new avenues in infectious disease re-
search and public health. For those interested in further pur-
suing the topic, we provide a list of key resources in Box 2.

Box 2. Key tools and resources

A Focus on Data and Inference

Recent work in infectious disease dynamics has been charac-
terized by an increasing focus on data and principled

approaches to inference. Traditionally, deterministic models
were a dominant tool for studying the theoretical and practical
basis of disease transmission in humans and animals. This
approach yielded important practical and theoretical results

There exist a number of freely available resources that aid infectious disease modelling efforts. 

Courses

1. MOOCs - There are several Massive Open Online Courses (MOOCs) that focus on the 

basic concepts around modeling of infectious diseases. One of the most popular is the 

Epidemics - the Dynamics of Infectious Diseases MOOC created by Penn State and 
available on Coursera (www.coursera.org), that offers an introduction to basic concepts 

on infectious disease dynamics

Software/technical resources

2. BEAST2 - Powerful open source platform for phylodynamic inference (beast2.org). 

3. The R-epi project. A project that includes a number of packages to perform inference in 
infectious disease outbreaks. Operates on the freely available and open source R 

platform (sites.google.com/site/therepiproject).

4. GLEAM - Flexible platform that combines human mobility data (e.g., from flight path 

data) with stochastic transmission models to allow epidemic forecasting 

(www.gleamviz.org).

Data resources

5. WorldPop - Population and demographic maps at 100m2 grid cells throughout the globe 

(available at www.worldpop.org.uk).
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that form the basis of our understanding of disease dynamics
[3•, 4] but was limited in approach. Deterministic models are
usually parameterized through some combination of trajectory
matching (i.e., minimizing the distance between observed and
simulated data) and specifying parameters based on previous
literature. This approach may be sufficient to describe the
expected behavior of an infectious disease in a large popula-
tion, but an increasing focus on how stochasticity and param-
eter uncertainty impact public health decision making, com-
bined with the growing availability of computational power,
has driven a move toward more statistically principled and
data-driven likelihood-based approaches.

Illustrative of this evolution is the contrast between early
descriptions of the key dynamic properties of HIV transmis-
sion with more recent dynamic characterizations of pandemic
H1N1 influenza (H1N1pdm), Middle Eastern Respiratory
Syndrome (MERS-CoV), and Ebola. In the late 1980s, several
papers were published laying out the essential properties of
HIV transmission dynamics that would govern the course of
the epidemic (at least in the near term) [5–7]. These papers
presented deterministic epidemic models that captured the
processes driving the epidemic and highlighted the key pa-
rameters, such as the speed of progression to AIDS, that need-
ed to be investigated. Uncertainty was largely addressed
through scenario-based approaches (e.g., different future epi-
demic trajectories were presented for different plausible sets of
parameters), and for the most part, different aspects of the
transmission dynamics were derived from independent stud-
ies, with only the growth rate (i.e., doubling time) estimated
from incidence data. While the parameters essential to charac-
terizing epidemic dynamics remain largely unchanged for re-
cently emerging pathogens, the approach to data and estima-
tion is qualitatively different. Integrated statistical frameworks
built on Markov chain Monte Carlo (MCMC) techniques are
used to estimate all, or most, parameters from different
datasets and to produce posterior distributions both for param-
eter estimates and forecasts of future incidence [8, 9•, 10].
These methods allow innovative use of unconventional data
sources, such as disease incidence among travelers [8, 9•], to
estimate population incidence of the disease, and molecular
data can supplement incidence data providing independent
estimates of the same parameters (see discussion of
phylodynamics below) [8, 9•].

These recent attempts to quickly characterize the properties
of emerging diseases are emblematic of an increasing focus on
developing statistical methods, grounded in dynamical
models, to estimate key epidemic parameters based on diverse
data sources. Surveillance data is often used to estimate the
reproductive number (Rt, the number of secondary infections
that a primary infection is expected to infect at any point, t, in
an epidemic), incubation period, and serial interval (the ex-
pected time between symptom onset in a case and the people
that case infects), as was done in recent outbreaks of MERS-

CoV [9•, 11] and Ebola [10]. Surveillance data has also been
paired with serological data to estimate force of infection (i.e.,
the hazard of infection) and basic reproductive number (Rt,
when the population is fully susceptible, designated R0) of
several pathogens, including dengue and chikungunya
[12–14].

Dynamic modeling approaches can also aid in the interpre-
tation of surveillance data. State-space models (e.g., hidden
Markov models) have been used to pair our mechanistic un-
derstanding of disease transmission with a statistical inference
framework by linking observed incidence and dynamics with
underlying population disease burden and susceptibility (i.e.,
the population’s state). Notably, this approach has been used
to estimate global reductions in mortality due to measles in the
face of incomplete reporting [15•]. Likewise, Valle and col-
leagues used hybrid associative and mechanistic models to
account for biases that treatment of detected malaria cases
might have on estimates of key values such as the incidence
rate [16].

Perhaps, the biggest limitation when attempting to charac-
terize the parameters driving disease transmission remains da-
ta availability. Data on disease transmission often comes from
incomplete surveillance data or represents one aspect of a
partially observed epidemic process. For example, epidemic
curves are usually limited to symptomatic cases. Similarly,
key events in the transmission process, such as the exact time
of infection, are generally not observable and have to be in-
ferred from observed data. Methods, such as the use of
MCMC-based data augmentation and known transmission
processes to infer the possible distribution of transmission
trees, have been developed to deal with partially observed data
and have been used to reconstruct outbreaks [17], characterize
risk factors for transmission [18], and quantify the impact of
interventions [19].

A limitation of likelihood-based approaches, such as those
mentioned above, is that it is often impossible or impractical to
evaluate the data likelihood, in particular, for complex models
and large datasets. To deal with this challenge, several
Blikelihood-free approaches^ have been developed, including
approximate Bayesian Computation (ABC) and sequential
Monte Carlo (SMC) [20, 21]. An advantage of these ap-
proaches is that they only require the ability to simulate from
candidate models (i.e., if data can be simulated, calculation of
the likelihood is unnecessary) and therefore can be more eas-
ily applied thanmethods that require iterative evaluation of the
likelihood. ABC has been used to integrate phylodynamic and
epidemic models of influenza and other pathogens [22], and
SMC methods have been used to parametrize dengue trans-
mission models using data from multi-centric vaccine clinical
trials [23•].

Despite important advances over the past decades in
linking data and transmission models as tools of inference,
many challenges remain and are the topic of continued
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research. Inference for complex models and using large
datasets remain challenging, in part, due to computational
burden. Mechanistic models offer promise as a way to simul-
taneously link data from diverse, heterogenous data sources
(as in [24]), but this promise has yet to be realized, though
some phylodynamics methods come close (see below).
Further, rapid inference on emergent epidemics remains a tool
only used in high-profile epidemics [9•, 10], and these infer-
ential techniques remain inaccessible to field epidemiologists.

Forecasting

Scientists and physicians have tried to forecast the course of
epidemics since the time of Hippocrates. Associations be-
tween incidence and extrinsic factors such as time of year,
climate, and weather can and have been used to forecast in-
fectious diseases [25–27]. However, mechanistic models that
capture the natural history of the disease (e.g., duration of
immunity and cross protection) [28], mode of transmission
[29], and movement patterns [30, 31] can improve forecasts,
particularly when associations with extrinsic drivers of inci-
dence, such as climate, are weak or unknown (e.g., for emerg-
ing pathogens).

In recent years, forecasts based on models that capture the
underlying mechanistic processes of transmission and patho-
genesis have become common. Uses range from forecasting
the peak timing and magnitude of an influenza season [32], to
forecasting the spread and spatial extent of emerging patho-
gens such as Zika, Ebola, and chikungunya [33–35]. The
mechanistic underpinning of these models allows forecasts
to take into account dynamic processes that may, otherwise,
be impossible to capture, including changes in behavior and
resource availability in response to an epidemic [36].

Approaches adopted from computer science, machine
learning, and climate science have enhanced our ability to
provide reliable forecasts with quantified uncertainty.
Particularly important are ensemble approaches [37], which
integrate forecasts frommultiple imperfect models or different
parameterizations of the samemodel to calculate a distribution
of potential courses of the epidemic [38, 39]. Ensemble ap-
proaches have been used for forecasting influenza in temper-
ate regions [40], where influenza is highly seasonal, and more
recently in subtropical areas such as Hong Kong, where the
seasonal pattern is less distinct [32]. Similarly, ensemble-
based climate models have been incorporated with infectious
disease models to forecast climate-related disease including
plague and malaria [41]. These examples use multiple param-
eterizations of a single model. Ensemble approaches can also
be used to accommodate uncertainty in model structure by
comparing estimates from parameterizations across different
models, as is work by Smith and colleagues where an ensem-
ble of 14 different individual-based models was used to esti-
mate the impact of a future malaria vaccine [42].

There has been an explosion in the number of forecasts
being made to aid public health decision making, including
a number of government-sponsored contests to forecast the
progression epidemics of diseases ranging from influenza to
chikungunya and dengue [43–45]. As forecasts become more
widely used, care must be given to ensure that the purposes of
the model and uncertainty (both structural and statistical) are
well communicated. In a recent outbreaks of emerging infec-
tious diseases, like Ebola, groups raced to make forecasts of
the evolution and spatial spread of the outbreak [33, 34], with
some predicting an epidemic size orders of magnitude greater
than what was actually observed. While some of these ex-
treme forecasts were made as worst-case planning scenarios,
they were interpreted as likely scenarios, raising alarm and
casting doubt on the validity of model-based forecasts, thus
highlighting the importance of clear communication of a
model’s purpose and its limitations [33, 46].

The quality of infectious disease forecasts and standards for
their interpretation are far from the gold standard of methods
and conventions used in the meteorology. Improvement in
both the methods used and their practical use remain critical
areas of future research.

Big Data

The advent of Bbig data^ has opened up new avenues in how
we parameterize and understand models of infectious disease
spread. Big data refers to massive datasets that are too large or
complex to be processed using conventional approaches [47].
However, advances in computing increasingly allow their use
without large delays in processing time or unrealistic comput-
ing capacity requirements.

One of the most successful attempts to use big data to
understand disease dynamics has been the use of call data
records (CDRs) to capture human mobility. For each call
that is made or received, mobile phone operators capture
the mobile phone tower through which the call is made.
By tracking tower locations for a subscriber, we can cap-
ture where he or she is moving. In practice, to ensure
confidentiality, CDRs are usually averaged over millions
of subscribers to provide estimates of flux between differ-
ent locations in a country. Transmission models built upon
CDR-based estimates of seasonal patterns of human
movement have been used to explain patterns of rubella
disease in Kenya [48] and dengue in Pakistan [31]. In
both instances, models built on empirical human move-
ments seen in CDRs outperformed alternative parametric
models of population movement based on our theoretical
understanding of human travel patterns (e.g., gravity
models where movement is based on community size
and distance [49]) and models where movement was not
considered. CDR-based models have also been used to
understand the dynamics of large-scale outbreaks such
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as Ebola in West Africa [50] and challenges in malaria
elimination [51]. Questions remain as to the generalizabil-
ity of CDR-based analyses in settings where mobile
phone ownership is low [52], and problems capturing
flows between countries remain. However, the large-
scale penetration of mobile phones, even in resource-
poor settings, makes CDRs a hugely valuable data source
for informing infectious disease models.

Another type of big data that has enormous potential
for furthering our understanding of disease dynamics is
satellite imagery. Detailed satellite imagery can provide
high-spatial-resolution estimates of key determinants of
many infectious disease processes, including environmen-
tal factors (e.g., land cover), climatic conditions (e.g.,
precipitation, temperature), and population density
throughout the globe [53, 54]. In infectious disease epi-
demiology, such datasets have recently been used as the
basis for statistical models that produce fine scale maps of
disease incidence, prevalence, and derived transmission
parameters (e.g., force of infection, basic reproductive
number) for a large number of diseases. Early efforts fo-
cused on mapping the global distribution of key drivers of
malaria transmission [55, 56]. These approaches have
since been used to estimate the burden from a wide range
of pathogens [57–60], vectors [61], and host reservoirs
[62]. These analyses have allowed disease burden and risk
to be estimated in areas with limited surveillance capabil-
ities, expanding our understanding of the global burden of
many pathogens. High-resolution geographic data can
gain additional power when paired with mechanistic
models that capture changes in disease risk, as in recent
analyses that accounted for the effect of birth, natural
infection, and vaccine disruptions driving increases in
measles susceptibility and epidemic risk in the wake of
the Ebola outbreak [63].

Finally, big data are increasingly being used with mecha-
nistic models to more directly estimate disease burden in real
time [64]. For example, patterns in the usage of different
Google search terms have been shown to correlate well with
incidence trends for diseases such as influenza [65, 66] and
dengue [67]. It is worth noting that big data alone can typically
only explain part of trends in incidence, and models that in-
corporate seasonal dynamics typically outperformmodels that
rely solely on search terms. Similar approaches have been
used with Wikipedia updates [68] and social media sites such
as Twitter and Facebook. Electronic medication sales data and
electronic medical records have also been proposed as novel
data sources of disease trends [69]. These approaches can
provide estimates much faster than traditional surveillance
systems, where it often takes weeks or months for results of
cases to be aggregated and analyzed. Mechanistic models can
then be fit to this data to better understand seasonal or spatial
parameters. For example, Yang et al. used mechanistic models

fit to Google Flu Trend data to estimate epidemiological pa-
rameters such as the basic reproductive number and the attack
rate for 115 cities in the USA over a 10-year period [69, 70].

Phylodynamic Inference

Phylodynamics, the study of how epidemiological, immuno-
logical, and evolutionary processes interact to shape pathogen
genealogies, is among the newest and fastest-growing areas in
infectious disease research [71]. The term phylodynamics was
coined in 2004 by Grenfell et al., who observed that the struc-
ture of pathogen phylogenies reveals important features of
epidemic dynamics in populations and within hosts [72].
This relationship provides a theoretical framework for linking
molecular data with population-level disease patterns using
dynamic models.

Early methodological work in phylodynamics concen-
trated on the formal integration of the Kingman’s coales-
cent and birth death models from population genetics with
standard deterministic epidemic models. The coalescent
model provides a framework for estimating the probabil-
ity of coalescent events (lineages converging at a common
ancestor) as we move back in time given changes in pop-
ulation size [73]. The branching patterns in a phylogenetic
tree describe the ancestral history of sequenced pathogens,
such that nodes closer to the root of the tree represent
historical coalescent events while nodes near the tip rep-
resent recent events. The strong relationship between the
genetic divergence of pathogens and time allows us to
estimate the timing of coalescent events and estimate the
rate of growth (or decline) of pathogen populations. These
estimates are the critical link between genetic and epidem-
ic models [74].

The formal statistical integration of population genetic
and epidemic models allows us to estimate the critical
epidemiological parameters such as the basic reproduc-
tive number directly from pathogen sequence data
[75–77]. For example, Magiorkinis et al. used sequence
data from viruses collected over a 12-year period in
Greece to estimate subtype-specific reproductive numbers
and generation times for hepatitis C [77]. Using data
from the ATHENA HIV cohort, which samples ∼60 %
of HIV-infected persons in the Netherlands, Bezemer et
al. used viral sequence data to estimate reproductive
numbers for hundreds of circulating transmission chains,
showing that large chains persis ted within the
Netherlands for years near the threshold for sustaining
an epidemic (R = 1) [77, 78].

Other phylodynamic applications have focused on elu-
cidating the spatial dispersal pattern diseases such as in-
fluenza and HIV. In an analysis of nearly 10,000 influ-
enza genomes, Bedford et al. showed fundamental differ-
ences in the global circulation patterns of H3N2, H1N1,
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and influenza B viruses and that these were potentially
driven by differences in the force of infection and rates
of immune escape (i.e., antigenic drift) [79]. Likewise,
Faria et al. used HIV sequence data from central Africa
to reconstruct the early epidemic dynamics of HIV-1
using phylodynamic methods and showed that Kinshasa
in the Democratic Republic of Congo likely served as the
focal point for global HIV spread [79, 80].

Phylodynamics plays an important role in real-time infec-
tious disease surveillance and targeted control [81]. In recent
epidemics of MERS-CoVand Ebola, genomic data was used
to assess transmission patterns, monitor viral evolution in pop-
ulations, and inform epidemic control [9•, 82–84]. Analyses
of HIVepidemics among US and Europeanmen who have sex
with men demonstrate that the amalgamation of epidemiolog-
ic and genomic data can be used to identify high-risk trans-
mitters and optimal targeted intervention packages [85•, 86].
However, the utility of real-time phylodynamic analysis in
many settings remains hindered by inadequate infrastructure,
few viral sequence data, and limited analytic capacity at local
levels.

Initial phylodynamic models could only deal with sim-
ple epidemic patterns (e.g., exponential growth), and re-
cent methodological work has focused on extending the
phylodynamic framework to account for complex nonlin-
ear population dynamics [87, 88]. For instance,
Rasmussen and colleagues showed how phylodynamic
models could be extended to integrate more complex sto-
chastic and structured epidemic models using Bayesian
MCMC and particle filtering [89•]. Others have focused
on resolving transmission network structure from phylog-
enies [90, 91] or integrating data across multiple scales by
incorporating information on intra-host pathogen diversity
and ecological processes directly into phylodynamic
models [92]. However, equally important recent work
has shown that phylodynamic inferences can be highly
sens i t ive to sampl ing and unmeasured fac tors .
Simulation studies show that the relationship between
phylogenetic trees and the underlying transmission net-
works is a complex function of the sampling fraction
and underlying epidemic dynamics [93, 94] and that fail-
ure to account for intra-host viral diversity may bias
phylodynamic inference [95].

Other Uses of Dynamic and Mechanistic Models

Here, we have focused on areas where we feel that there
has been the most innovation in the use of dynamic epi-
demic models in recent years. This is not to imply that
innovation has stopped in other areas where dynamic
models play a key role. Dynamic models have long been
key to our understanding of epidemic theory. Innovative
models continue to be developed to deal with the

challenges posed by pathogen evolution [96], complex
immunological interactions [97], and host heterogeneity
[98]. There has been increasing emphasis on the use of
dynamic models in informing public health policy since
the early 2000s when they played a key role in the re-
sponse to the foot-and-mouth disease outbreak in the UK
[99] and assessment of the risk from a smallpox-based
bioterrorist attack [100, 101]. These uses have extended
to endemic disease, such as a 2009 modeling analysis by
Granich and colleagues [102] that highlighted the poten-
tial of Btest-and-treat^ strategies for HIV control.
Recently, dynamic models have played an important role
in guiding the response to emerging disease threats, from
pandemic influenza [103], to multi-drug resistant organ-
isms [104, 105] to MERS-CoV [106]. Many of the themes
discussed throughout this manuscript have had a profound
impact on these efforts, as does the need to report results
and assumptions in a way accessible to policy makers.

Mechanistic models also crop up in other areas of ep-
idemiology, often in less obvious ways. Nearly all of the
key methods of genetic epidemiology are based on a
mechanistic understanding of the underlying processes in-
heritance, mutation, and selective pressure. Social epide-
miology at its core is based on the idea that our health
depends on the behavior and health of those around us
and, hence, has its own approaches to dependent happen-
ings (though the terminology differs). Recently, there has
been increasing interest in using mechanistic modeling
approaches similar to those used for infectious disease to
understand health phenomena that are, in part, socially
driven, such as obesity [107]. Physiological measure-
ments are often founded on mechanistic models of pro-
cesses within the body (e.g., use of serum creatinine to
approximate the glomerular filtration rate, a key measure
of kidney function [108]).

Conclusion

Infectious disease dynamics is, perhaps, unique in epide-
miology in the number of researchers that it brings from
non-health related disciplines, particularly physics, com-
puter science, and ecology. This, combined with the
unique aspects of infectious disease systems, has contrib-
uted to the use of models that are distinct from Btradition-
al^ epidemiologic methods. However, the field is being
transformed by the same forces that are transforming ep-
idemiology in general: increasing access to technological
tools and computational power; an explosion in the avail-
ability of data at the molecular, individual, and population
levels; and a shift in what the important epidemiologic
questions are as we eliminate old health threats and
change our environment. Increasing emphasis on
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principled statistical analysis in infectious disease model-
ing combined with an increasing need to deal with dy-
namic phenomena in epidemiologic inference opens up
new opportunities for the cross pollination of ideas and
the erosion of the historical barriers between epidemiolog-
ic fields.
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