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REVIEW

The reversal of antineoplastic drug 
resistance in cancer cells by β‑elemene
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Abstract 

Multidrug resistance (MDR), defined as the resistance of cancer cells to compounds with diverse structures and 
mechanisms of actions, significantly limits the efficacy of antitumor drugs. A major mechanism that mediates MDR in 
cancer is the overexpression of adenosine triphosphate (ATP)-binding cassette transporters. These transporters bind 
to their respective substrates and catalyze their efflux from cancer cells, thereby lowering the intracellular concentra‑
tions of the substrates and thus attenuating or even abolishing their efficacy. In addition, cancer cells can become 
resistant to drugs via mechanisms that attenuate apoptosis and cell cycle arrest such as alterations in the p53, check 
point kinase, nuclear factor kappa B, and the p38 mitogen-activated protein kinase pathway. In this review, we discuss 
the mechanisms by which β-elemene, a compound extracted from Rhizoma zedoariae that has clinical antitumor 
efficacy, overcomes drug resistance in cancer.
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Background
Curcuma belongs to the Zingiberaceae family and is a 
medicinal plant that distributes worldwide. The plants of 
this genus are mainly grown in southeastern Asia, Brazil, 
and Australia [1]. Recently, approximately 20 Curcuma 
species have been discovered in China [2]. The Chinese 
Pharmacopoeia indicates that Rhizoma zedoariae is the 
dry rhizome derived from Curcuma wenyujin [1], Cur-
cuma phaeocaulis [2], and Curcuma kwangsiensis [3]. 
Rhizoma zedoariae has been used as an anti-microbial, 
anti-inflammatory, anti-proliferative, and antitumor drug 
[3–7]. β-elemene [(1S,2S,4R)-2,4-diisopropenyl-1-me-
thyl-1-vinylcyclohexane], a naturally occurring com-
pound isolated from Rhizoma zedoariae, is approved 
for use in Chinese medicine to treat a variety of cancers, 
including leukemia and brain, breast, prostate, ovar-
ian, cervical, and lung cancers [8–14]. The structure of 
β-elemene is shown in Fig. 1. β-elemene does not produce 

significant or problematic toxicity and is well tolerated by 
patients [12]. It has been postulated that the anticancer 
effect of β-elemene is due to the induction of apoptosis 
and cell cycle arrest [8, 14].

Currently used antitumor drugs can produce their 
therapeutic action via a number of distinct mechanisms. 
For example, antitumor drugs can (1) damage DNA or 
inhibit DNA replication, (2) inhibit DNA and RNA syn-
thesis, (3) interfere with RNA transcription, (4) inhibit 
protein synthesis, (5) interfere with hormone homeosta-
sis, and (6) disrupt cellular microtubules via stabilization 
or destabilization [15]. However, it is well established 
that cancer cells can become resistant to many antitumor 
drugs; this phenomenon is known as multidrug resist-
ance (MDR) [16]. MDR occurs when cancer cells become 
resistant to a variety of drugs that have distinct structures 
and mechanisms of action [17]. A number of mechanisms 
have been reported to produce MDR, including altered 
activity of specific enzyme systems such as glutathione 
S-transferase (GST) and topoisomerase, which can atten-
uate the efficacy of anticancer drugs [18, 19]. In addition, 
alterations in the levels of proteins that control apoptosis 
can occur; such alterations decrease the efficacy of anti-
cancer drugs by inducing apoptosis [20]. A well-docu-
mented mechanism that produces or elicits MDR is the 
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overexpression of adenosine triphosphate (ATP)-binding 
cassette (ABC) transporters, such as the ABCB1 (P-gly-
coprotein, P-gp/MDR1), ABCCs [multidrug resistance-
associated proteins (MRPs)], and ABCG2 transporters 
(BCRP/MXR/ABCP) [21]. These transporters use energy 
obtained from the hydrolysis of ATP to remove or efflux 
compounds from cancer cells, thereby significantly low-
ering their intracellular concentrations and attenuating 
their efficacy [22]. The ABC transporter P-gp is expressed 
by cancer cells derived from epithelial cells of the colon, 
liver, adrenal gland, and pancreas and has been reported 
to produce resistance to a broad spectrum of anticancer 
drugs, including anthracyclines, vinca alkaloids, etopo-
side, and taxanes [23–26]. In addition, the overexpression 
of other ABC transporters, such as ABCCs and ABCG2, 
can also produce MDR in cancer cells [21, 27–29]. 
Numerous studies indicate that the blockade of the efflux 
function of specific ABC transporters by various com-
pounds can resensitize resistant cancer cells to specific 
antitumor drugs by increasing the intracellular concen-
tration of these transporters. However, this approach has 
been hampered because inhibitors of the efflux activity of 
ABC transporters have produced severe adverse effects 
and toxic drug–drug interactions [30].

One approach that has been used to overcome MDR in 
cancer cells is to find or synthesize compounds that can 
block the efflux action of the ABC transporters without 
producing significant toxic effects [31]. Over the last four 
decades, three generations of ABC transporter inhibi-
tors have been developed in an attempt to overcome 
MDR in cancer cells. One of the first-generation drugs, 
verapamil, a calcium channel blocker, was the first drug 
shown to inhibit the efflux function of P-gp [32]. How-
ever, clinical data indicated that verapamil produced 
significant toxic effects at concentrations required to 
overcome P-gp-mediated resistance [33]. In addition, 
verapamil and other first-generation compounds were 
shown to inhibit the activities of various cytochrome 
P450 (CYP450) enzymes, thereby increasing the like-
lihood of adverse and toxic drug–drug interactions 

[34–36]. To overcome the aforementioned limitations 
of first-generation compounds, second-generation com-
pounds were developed [37, 38]. Second-generation P-gp 
modulators included PSC833 and biricodar (VX-710). 
Compared with first-generation compounds, these P-gp 
inhibitors were reported to be more potent in reversing 
MDR and less toxic [37, 39]. Among second-generation 
P-gp modulators, PSC833 was the most well character-
ized, and it was used in clinical trials in combination with 
doxorubicin [DOX, also known as adriamycin (ADM)], 
vincristine, vinblastine, paclitaxel (TAX), or mitox-
antrone to treat MDR cancer [37, 39]. PSC833 alone did 
not produce significant adverse effects, but it increased 
the likelihood of toxic effects when used with antitumor 
drugs. For example, a significant pharmacokinetic inter-
action was observed when PSC833 was administered in 
combination with DOX and TAX [40, 41], thus requir-
ing a reduction in the doses of the anticancer drugs. It 
was subsequently shown that second-generation P-gp 
inhibitors significantly decreased the excretion of vari-
ous drugs, thereby increasing the incidence of significant 
adverse effects [41]. In addition, to overcome the prob-
lematic drug–drug interactions, the doses of these drugs 
had to be decreased, which attenuated their efficacy.

Third-generation P-gp inhibitors such as tariquidar 
(XR9576), laniquidar (R101933), and LY335979, were 
developed to overcome the limitations associated with 
second-generation inhibitors [42–45]. Although third-
generation P-gp inhibitors were significantly efficacious 
in vitro, these compounds are not used clinically because 
in vivo and preclinical studies indicated a lack of efficacy 
and/or significant adverse effects [46].

It has been well-established that certain compounds 
extracted from various natural sources have antitumor 
efficacy [47, 48]. However, relatively few studies have 
reported the effects of naturally derived compounds on 
the activities and functions of ABC transporters. Given 
the important role of ABC transporters in mediat-
ing MDR, we recently reported the in vitro effect of the 
compound β-elemene, extracted from the plant Rhizoma 
zedoariae, on MDR in cancer cells [49]. In addition, this 
compound may overcome MDR via other mechanisms 
[50]. Therefore, in this review, we discuss the mecha-
nisms by which β-elemene surmounts MDR. Figure  2 
illustrates the mechanisms by which β-elemene mediates 
the reversal of MDR in cancer cells.

Antitumor efficacy of β‑elemene
β-Elemene has been purported to inhibit the prolifera-
tion of cancer cells by inducing apoptotic cell death and 
cell cycle arrest [8, 51, 52]. The dysfunction or blockade 
of apoptosis has been proposed to play a role in abnor-
mal cell proliferation, thus initiating the carcinogenic 

Fig. 1  Structure of β-elemene
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processes involved in tumor proliferation, angiogenesis, 
and metastasis [53]. Apoptosis can be initiated by the 
activation of the intrinsic and extrinsic pathways. The 
activation of the intrinsic pathway disrupts the balance 
between pro-survival proteins (e.g., Bcl-2 and Bcl-xL) 
and pro-apoptotic proteins of the Bcl-2 family (e.g., Bax 
and Bak), which triggers the release of cytochrome c from 
the mitochondrial outer membrane [54]. In contrast, 
the extrinsic pathway is activated by the binding of spe-
cific molecules to death receptors such as FAS receptor 
(FasR), tumor necrosis factor receptor 1 (TNFR1), death 
receptor 3 (DR3), and death receptor 4/death receptor 5 
(DR4/DR5) [55]. Numerous studies indicate that apop-
tosis is an important therapeutic target for cancer treat-
ment [56]. There are studies indicating that β-elemene 
affects the apoptotic process in cancer cells. For example, 
β-elemene significantly inhibits the growth and prolifera-
tion of various types of T24 bladder cancer cell lines by 
decreasing the expression of the anti-apoptotic proteins 
Mta-1, Survivin, and Bcl-xL [57]. In addition, β-elemene 
significantly inhibits the proliferation of lung and pros-
tate cancer cells by increasing the release of cytochrome 
c and the activation of caspases-3, -7, and -9 and of 

poly(ADP-ribose) polymerase (PARP) and by decreasing 
the expression of Bcl-2 [58].

There are data suggesting that β-elemene triggers cell 
cycle arrest by activating the p38 mitogen-activated 
protein kinase (MAPK) pathway. For example, in C6 
glioblastoma cells, β-elemene significantly increases 
the fraction of C6 cells at the G0/G1 phase [48]. The 
cell cycle-arresting action of β-elemene was associated 
with an increase in the phosphorylation of p38 MAPK, 
whereas this effect was reversed by the inhibition of p38 
MAPK [52]. Furthermore, in non-small cell lung cancer 
(NSCLC) and epithelial cell lines, β-elemene significantly 
arrested the cell cycle at the G2-M phase by decreasing 
the expression of Cyclin B1 and phospho-Cdc2 (Thr-161) 
and by increasing the expression of P27 (kip) and phos-
pho-Cdc (Tyr-15) [11]. Recently, Zhao et al. [59] reported 
that β-elemene can significantly inhibit the proliferation 
of NSCLC cells by inhibiting extracellular signal-regu-
lated kinases (ERK1/2) and the adenosine monophos-
phate-activated protein kinase α (AMPKα)-mediated 
transcription factor Sp1 and then by decreasing the pro-
tein expression of DNA (cytosine-5)-methyltransferase 
1 (DNMT1). In addition, the action of β-elemene on the 

Fig. 2  A schematic model of the mechanisms for β-elemene-induced apoptosis and augmentation of the efficacy of anticancer drugs. β-elemene 
may enhance the therapeutic effect of anticancer drugs by blocking the substrate efflux function (purple arrows) of the multidrug-resistant trans‑
porter P-glycoprotein (P-gp). In addition, it has been proposed that β-elemene may affect multiple pathways to produce apoptosis in tumor cells. 
Black arrows indicate stimulatory modifications, whereas red arrows indicate inhibitory modifications. XIAP X-linked inhibitor of apoptosis protein, 
ATP adenosine triphosphate, ADP adenosine diphosphate
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proliferation of NSCLC cells was reversed by the overex-
pression of DNMT1, and the inhibition of Akt signaling 
and DNMT1 expression by metformin can potentiate 
the effects of β-elemene [59]. In A2780/CP ovarian car-
cinoma cells (which are resistant to cisplatin), β-elemene 
induces cell cycle arrest at the G2/M phase by decreas-
ing the expression of B1 and Cdc2 and by increasing the 
expression of p53, p27, and growth arrest and DNA-dam-
age-inducible protein (GADD45) [8].

It is well documented that radiation therapy plays an 
important role in the treatment of radiation-sensitive 
tumors [60]. The overexpression of peroxiredoxin 1 (Prx-
1), a critical regulator of redox in cancer cells, has been 
reported to abrogate the response of cancer cells to radia-
tion therapy [60]. Thus, reducing the expression of Prx-1 
is a promising way to resensitize tumor cells to radia-
tion therapy. In this study, Li et  al. [60] demonstrated 
that 45 mg/kg β-elemene restores the sensitivity of A549 
tumor cells to radiation. Reverse transcription-poly-
merase chain reaction (RT-PCR) and Western blotting 
assays indicated that the potentiation of radiation therapy 
by β-elemene was mediated by the down-regulation of 
Prx-1.

Reversal of MDR by β‑elemene
Reversal of ABC transporter‑mediated MDR by β‑elemene
As mentioned above, one of the well-documented 
mechanisms responsible for MDR is the overexpression 
of P-gp. Therefore, our laboratory conducted a study to 
examine the in vitro effect of β-elemene on P-gp-induced 
MDR in drug-resistant and non-drug-resistant parental 
cell lines [49]. We determined the effect of β-elemene 
on the cytotoxic effects of the antitumor drugs colchi-
cine, vinblastine, and TAX (P-gp substrates) in paren-
teral KB-3-1 cells and in KB-C2 cells overexpressing 
P-gp. β-elemene (100  μmol/L) significantly increased 
the efficacy (i.e., the cytotoxicity) of P-gp substrate drugs 
in KB-C2 cells but not in parenteral KB-3-1 cells. For 
example, the responses to TAX, vinblastine, and col-
chicine in KB-C2 cells were 648-, 11.7-, and 720-fold 
lower, respectively, than those in parental KB-3-1 cells. 
β-elemene (100 μmol/L) significantly lowered the magni-
tude of resistance to TAX, vinblastine, and colchicine (by 
4.6-, 5.4-, and 1.1-fold, respectively) in KB-C2 cells. The 
results of accumulation and efflux assays indicated that 
β-elemene potentiated the cytotoxic action of the anti-
tumor drugs that were P-gp substrates by blocking their 
efflux via P-gp, thereby increasing their intracellular con-
centrations (by 3.6-fold) in KB-C2 cells overexpressing 
P-gp. It is possible that β-elemene could potentiate the 
actions of antitumor drugs by decreasing the expression 
of P-gp protein. However, the incubation of KB-C2 with 
β-elemene for 24, 48, or 72  h did not significantly alter 

the expression of P-gp. Overall, our results suggested 
that β-elemene potentiated the actions of P-gp substrate 
drugs by inhibiting the efflux function of P-gp. Our study 
did not rule out the possibility that β-elemene could pro-
duce its potentiating action by decreasing the insertion of 
the P-gp transporter into the cell membrane.

Similar to our findings, Xu et  al. [61] reported that 
β-elemene (30  μmol/L) significantly potentiated (6.38-
fold) the action of DOX in DOX-resistant MCF-7 cells. 
Furthermore, it was shown that β-elemene (30 μmol/L) 
significantly increased the intracellular accumulation of 
DOX and the compound Rh123, which is a substrate of 
P-gp. Interestingly, Xu et al. [61] showed that β-elemene 
(30 μmol/L) significantly decreased P-gp protein expres-
sion, suggesting that the action of β-elemene is due in 
part to this mechanism. This finding was in contrast to 
our results indicating that β-elemene did not significantly 
alter the expression of P-gp. The exact explanation for 
this discrepancy is unknown, but it may be due to differ-
ences in the cell lines used (MCF-7/DOX versus KB-C2 
and HEK293/ABCB1) [61].
β-Elemene significantly increases the suppressive effect 

of DOX and docetaxel (Doc) on the growth and prolifera-
tion of the resistant MCF-7/Adr and MCF-7/Doc breast 
cancer cell lines [7]. β-elemene may attenuate MDR by 
influencing MDR-related microRNA expression and sub-
sequently regulating the target genes phosphatase and 
tensin homolog (PTEN) and P-gp, which are responsible 
for the proliferation of resistant breast cancer cells [7].

β‑Elemene reverses MDR by promoting apoptosis of resistant 
cancer cells
It is known that mechanisms that inhibit or attenuate the 
induction of cancer cell apoptosis produce resistance to 
certain antitumor drugs [20]. The induction of apopto-
sis by antitumor drugs has been shown to trigger a sig-
nificant generation of reactive oxygen species (ROS) and 
disruption of mitochondrial membrane potential [62]. 
Numerous studies suggest that apoptosis involves the 
complex interaction and regulation of many genes and 
proteins [56]. The suppressor gene p53 is a key mediator 
of apoptosis-induced cellular transformation [63, 64]. Fol-
lowing DNA damage by certain antitumor drugs, p53 is 
activated, resulting in G1 phase arrest and, subsequently, 
apoptosis [56, 65]. Thus, the loss of p53 or inactivation 
of the p53 pathway could contribute to drug resistance 
[63, 66]. In addition, proteins whose expression is regu-
lated by p53, such as B cell lymphoma-2 (Bcl-2) and Bax, 
are also involved in mediating resistance to antitumor 
drugs [67]. Indeed, proteins categorized as anti-apop-
totic Bcl-2 members are transcriptionally up-regulated 
in cancer cells and are associated with resistance to the 
antitumor drugs DOX, TAX, cisplatin, mitoxantrone, and 
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etoposide. Thus, the down-regulation (as well as inacti-
vation) of anti-apoptotic Bcl-2 proteins can augment 
apoptosis, thereby increasing the efficacy of antitumor 
drugs in resistant cancer cells. For example, it has been 
postulated that the reversal mechanism of β-elemene 
(6  μg/mL) in the ADM-resistant human breast cancer 
cell line MCF-7/ADM may result from a decrease in the 
expression of Bcl-2 [68]. In the parental ovarian cancer 
cell line A2780 and the cisplatin-resistant cell line A2780/
CP70, β-elemene (0.6  μmol/L) significantly enhanced 
cisplatin cytotoxicity in the drug-resistant cell lines (by 
60-fold) [69]. These results suggested that β-elemene acts 
by abrogating the expression of the excision pathway that 
repairs protein cross-complementation group 1 (ERCC1) 
protein. In addition, the level of the X-linked inhibitor 
of apoptosis protein (XIAP) is significantly decreased by 
β-elemene (0.6 μmol/L) [69, 70]. In ovarian carcinoma 
cells resistant to cisplatin, the combination of β-elemene 
and cisplatin can stimulate the activity of caspases-3, -8, 
and -9 as well as the cleavage of caspase-9, whereas the 
expression of Bcl-2 and Bcl-xL was decreased [70]. Thus, 
based on the aforementioned results, β-elemene restores 
the sensitivity of resistant ovarian cancer cells to cisplatin 
by attenuating DNA repair activity and promoting apop-
tosis. Furthermore, β-elemene significantly augments the 
antitumor activity of cisplatin in human bladder cancer 
cells by inducing cell apoptosis via a caspase-depend-
ent mechanism [69, 70]. Wang et  al. [11] reported that 
β-elemene significantly augments cisplatin-induced inhi-
bition of the growth of a NSCLC cell line by inducing cell 
cycle arrest. Similarly, β-elemene significantly increased 
the suppressive effect of cisplatin on the growth and pro-
liferation of NSCLC H460 and A549 cell lines [14]. It was 
postulated that the potentiation of the efficacy of cispl-
atin by β-elemene was due to inducing cell cycle arrest in 
NSCLC cells at the G2/M phase by increasing checkpoint 
kinase 2 (CHK2) expression and reducing Cdc2 activity 
[71]. In addition, the combination of β-elemene and cis-
platin significantly decreased the protein levels of Cyc-
lin B1 and Cdc25C and increased the levels of P21, P27, 
and GADD45 in cancer cells [71]. Furthermore, a meta-
analysis of clinical data suggested that the combination of 
β-elemene and cisplatin was more efficacious than cispl-
atin alone in treating NSCLC and significantly improved 
the quality of life of the patients [22].

Endocrine therapy plays a critical role in the treatment 
of estrogen receptor (ER)-positive breast cancer, and the 
lack of ER expression is associated with a decrease in 
the efficacy of endocrine-based therapy [72]. In MCF7/
TAX cell lines, which do not express ER-α, 10 μg/mL of 
β-elemene restored the sensitivity of MCF7/TAM cell 
lines to TAX. RT-PCR and Western blotting assays indi-
cated that the reversal of TAX resistance by β-elemene 

was mediated by up-regulating the expression of ER-α 
mRNA via the MAPK pathway [73].

The protein nuclear factor-κB (NF-κB) is associated 
with the development of chemo-resistance in various 
cancer cells by inducing the overexpression of anti-apop-
totic proteins [74]. Thus, inhibition of NF-κB-mediated 
responses may be a promising strategy for potentiat-
ing the response to antitumor drugs. The incubation of 
ADM-resistant cells (SGC7901/ADM gastric cancer 
cells) with β-elemene significantly decreased the expres-
sion of NF-κB [75]. In addition, β-elemene significantly 
increased the apoptotic rate of SGC7901/ADM cells by 
inhibiting or attenuating NF-κB activity [75].

β‑Elemene reverses MDR by reducing the stemness of cancer 
cells
Glioblastoma stem-like cells (GSCs) play an important 
role in tumor development, recurrence, and chemo-
resistance [76]. It has been postulated that impairing 
stemness and enhancing differentiation could decrease 
GSC-associated chemo-resistance [76]. Fu et  al. [75] 
reported that β-elemene significantly impaired the 
stemness of GSC spheres, dispersed GSC spheres, and 
reduced the proliferation of GSCs in vitro and in vivo. In 
addition, they also found that β-elemene in GSC spheres 
and xenografts can significantly decrease the expression 
of CD133 and ABCG2 and increase the expression of glial 
fibrillary acidic protein (GFAP). Furthermore, β-elemene 
can also restore the sensitivity of GSCs to temozolomide 
[76]. The β-elemene-mediated potentiation of the effi-
cacy of temozolomide on glioblastoma cells results from 
activation of the glia maturation factor β (GMFβ)/MAPK 
3/6/p38 pathway [77]. In addition, it has been reported 
that the antitumor effect of β-elemene was also medi-
ated by GMFβ-dependent inactivation of the ERK1/2-
Bcl-2/survivin pathway, which suggests that β-elemene 
is a promising chemosensitizer for temozolomide against 
glioblastoma tumors [77].

In addition, the combination of β-elemene and TAX, 
compared with TAX alone, significantly inhibited the 
proliferation of MB-468 cells by decreasing the expres-
sion of Cyclin B1 and increasing the expression of P27 
(kip1) [78]. Furthermore, the combination of β-elemene 
(20 or 50  μg/mL) and etoposide phosphate (VP-16, 
15  μg/mL) increased the likelihood of apoptosis com-
pared with VP-16 alone (16.57 or 21.98 vs. 6.25%) [79]. 
The potentiation of the efficacy of VP-16 by β-elemene 
may be mediated by the increase of Bax, p53, and p21 
and the suppression of Cyclin D1 [79].

Conclusions
β-Elemene plays an important role in overcoming MDR 
via multiple mechanisms. It is possible that the reversal 
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action of β-elemene could result from (1) a blockade of 
the efflux function of P-gp, (2) a decrease in the pro-
tein levels of P-gp, (3) an induction of apoptosis or cell 
cycle arrest, or (4) a decrease in NF-κB signaling activ-
ity. Finally, it may be of interest to determine if β-elemene 
alters the expression and/or efflux activity of other ABC 
transporters. Currently, the in  vitro and in  vivo data 
obtained for β-elemene suggest that it may be useful in 
treating certain MDR cancers. However, controlled clini-
cal trials will be required to determine if β-elemene will 
significantly increase the efficacy of various chemothera-
peutic drugs in reversing MDR in cancer patients.
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