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Abstract

Multi-arm multi-stage clinical trials in which more than two drugs are simultaneously investigated provide gains over

separate single- or two-arm trials. In this paper we propose a generic Bayesian adaptive decision-theoretic design for

multi-arm multi-stage clinical trials with K (K�2) arms. The basic idea is that after each stage a decision about contin-

uation of the trial and accrual of patients for an additional stage is made on the basis of the expected reduction in loss.

For this purpose, we define a loss function that incorporates the patient accrual costs as well as costs associated with an

incorrect decision at the end of the trial. An attractive feature of our loss function is that its estimation is computa-

tionally undemanding, also when K> 2. We evaluate the frequentist operating characteristics for settings with a binary

outcome and multiple experimental arms. We consider both the situation with and without a control arm. In a sim-

ulation study, we show that our design increases the probability of making a correct decision at the end of the trial as

compared to nonadaptive designs and adaptive two-stage designs.
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1. Introduction

Modern medicine has seen a rapid increase in the number of drugs on the market. The efficacy of a drug is
traditionally evaluated in single-arm or two-arm trials. Trials with more than two arms are increasingly demanded
and are particularly suited when multiple, competing drugs are being developed or combinations of drugs are
being tested.1,2 Also, in the current COVID-19 pandemic there is an urgent need to investigate multiple treatments
simultaneously. The RECOVERY trial, for example, compares efficacy of four candidate treatments for COVID-
19 to a common control arm receiving usual care.3 Trials with more than two arms typically require fewer overall
resources than multiple two-arm trials and facilitate a direct comparison of drugs.4–7 In this paper, we study trials
in which one or a few drugs are selected from a set of candidate drugs. The selected drugs may enter the next trial
phase or may be proposed for approval. During the trial, it is desirable to select or deselect drugs as soon as
possible. Timely decision making is facilitated by incorporating interim evaluations.8–10 We will refer to trials in
which patients are randomized over multiple arms with multiple interim evaluations as multi-arm
multi-stage (MAMS) trials. MAMS typically allow early termination of ineffective arms and early identification
of effective arms.
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Frequentist MAMS trials are characterized by repeated statistical tests of futility and efficacy null hypotheses.
The critical boundaries are set such that the familywise error rate over the whole trial is controlled at a predefined
nominal level.2,8,9,11–13 Experimental arms are compared to the control arm and each experimental arm may be
declared effective or futile at each interim evaluation. Bayesian MAMS use a predefined stopping rule based on
the posterior distribution of a function of the treatment efficacies.14 Bayesian designs often involve response-
adaptive randomization where randomization probabilities change throughout the trial based on newly collected
treatment outcomes.14,15 A response-adaptive design will lead to a higher expected number of patients allocated to
the best arm during the trial in comparison to trials with an equal randomization scheme and may therefore be
attractive for ethical reasons. However, this may come at a price of lower statistical power for showing differences
in efficacy between the arms.16

Stopping rules in Bayesian MAMS trials may be based on direct, simple functions of the treatment efficacies,
but more formal decision-theoretic approaches also exist.17–27 Decision-theoretic approaches quantify the value of
all possible trial outcomes by means of a loss or utility function. The objective of the trial is to minimize the
expected loss of the trial or to maximize the expected utility. A clever choice of the loss function may yield
Bayesian trials with lower expected trial sizes than classical frequentist trials at the same nominal error rate.17

Most Bayesian decision-theoretic designs have been proposed for trials with two arms. If the trial has a predefined
maximum study size, then at each stage the optimal interim decision needs to be assessed by a computationally
expensive dynamic programming approach.17–19,21–23,25,27 Several strategies have been proposed in the literature
to limit the computational burden. Cheng and Shen20 did not fix the maximum trial size before the start of the trial
and propose a one-step backward induction algorithm. They showed that their study design will always result in a
finite trial size. Jiang et al.26 proposed a constrained backward induction algorithm on a reduced lower-
dimensional state space to approximate the optimal stop or continue decision at each stage. Both Cheng and
Shen20 and Jiang et al.26 studied two-arm trials only. Orawo and Christen24 extended to the general situation of
trials with K (K�2) arms and aimed to select the best arm. They proposed a stopping rule for the K-arm trial
based on optimal stopping rules in single-arm trials. After each new observation, the trial is either stopped and the
best arm is selected or an additional patient is added to the arm that showed the best performance so far.

Willan and Kowgier23 and Chen and Willan25 considered multi-stage adaptive designs from a value of infor-
mation perspective.28 They did not fix the maximum total sample size, but fixed the maximum number of stages.
They considered the expected net gain of the trial, which is defined as the difference between the expected value of
sample information and the total costs of the trial. At each stage, they determine an optimal sample size for the
remainder of the trial and the fraction of the sample size that needs to be recruited in the next stage through
maximization of the expected net gain. Their method is computationally demanding and has only been developed
for trials of two stages.

The one-step backward induction algorithm of Cheng and Shen20 also has a link to value of information
considerations. After each interim evaluation, Cheng and Shen compared the cost of continuing the trial for one
more stage with the expected reduction in loss. If the extra costs exceed the expected loss reduction, the trial is
stopped and the arm with the lowest expected loss is selected. Stated differently, if the expected marginal utility (or
loss reduction) of continuing the trial does not exceed the marginal cost of continuing the trial, the trial is stopped.
The approach is generic in the sense that any loss function can be defined and a different loss function can be
defined for the experimental and control arm.

In the present study, we generalize the framework introduced by Cheng and Shen to the setting with K (K�2)
arms. Since more than two arms are allowed, a trialist may decide to stop ineffective, futile arm(s) and continue
the trial with only a subset of study arms. In our generalization, we also consider such trial-modifying decisions
that do not apply to the setting with only two arms. The main objective of the trial is to find the best arm among K
experimental arms or, in settings with a control arm, identify all experimental arms that outperform the control
arm. A key evaluation measure in our study design is the probability of making a correct final decision. The
decision to stop or continue the trial is directly based on the expected increase in this probability when continuing
for an additional stage. The repeated interim evaluations can be seen as a series of expected net gain assessments.
The trial continues as long as the expected value of sample information provided by a next stage of patients
exceeds the costs of their accrual. An attractive feature of our method is that the estimation of the expected loss
reduction is computationally undemanding, also in settings with K> 2 arms.

This paper is organized as follows. In the following section, we describe the Bayesian decision-theoretic frame-
work and provide examples of loss functions. Next, we describe two simulation studies in which we evaluate the
operating characteristics of our approach and make a comparison with nonadaptive single-stage and adaptive
two-stage methods. In the simulations, we consider multi-arm trials with and without a control group. The results
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of the simulations are discussed in a later section. Finally, we show an illustration of a possible application of the

methods in a future trial and we conclude with a discussion in the last section.

2. Methods

2.1. Notation

We consider the general setting of a MAMS trial with K (K�2) arms where at the end of each stage ineffective

arms may be dropped from the trial. An arm that is in the trial is called an active arm and a dropped arm is called

an inactive arm. A predetermined number of n1 patients are recruited to the first stage of the trial followed by n

patients in each of the subsequent stages. Allowing n1 to be larger than n prevents early termination based on a

limited number of observed outcomes. The patients that are recruited in a single stage are randomly assigned to

the active arms in equal numbers. We assume patients’ treatment outcomes y to be independent and denote the

likelihood of the treatment outcome of a patient in arm k by f yjhkð Þ, where hk is a scalar. The parameters hk
(k ¼ 1; . . . ;K) are assumed to have independent prior distributions pðhkÞ. The distribution of the treatment out-

comes may depend on other unknown parameters, but we will suppress reference to these parameters for ease of

notation. We let the random variable Yik denote the vector of treatment outcomes for the patients that in stage i

are assigned to arm k. The accumulated data up to stage s is denoted by Ys ¼ fYikj1 � i � s; 1 � k � Kg.

2.2. Loss function and decision rules

Suppose we have a study design where all arms are active until a final decision is made. The predefined set of final

decisions is denoted by D. The loss of each final decision depends on the unknown parameter vector

h ¼ h1; . . . ; hKð Þ. By L h;Q; dð Þ we denote the loss associated with decision d 2 D where Q denotes the loss asso-

ciated with an incorrect decision at the end of the trial. In line with Pratt et al.29 and Cheng and Shen,20 we define

the expected total loss in case of terminating the trial after stage s as

Lstop Ysð Þ ¼ Cs þmind2D E L h;Q; dð ÞjYs½ �;

where Cs are the total costs of running the first s stages of the trial. The expected total loss in case of continuing

the trial for an additional stage is

Lcont Ysð Þ ¼ Csþ1 þ E mind2D E L h;Q; dð ÞjYsþ1½ �jYs½ �;

where the outside expectation is taken with respect to the posterior predictive distribution of Y sþ1ð Þ1; . . . ;Y sþ1ð Þk
given Ys and taking into account the prespecified sample size n for stage sþ 1. The decision to continue is made by

comparing the expected total loss in case of stopping with the expected total loss in case of continuing the trial for

one more stage. In case Lstop � Lcont, the trial is stopped and the final decision d� is made, where

d� ¼ argmind2DE L h;Q; dð ÞjYs½ �

If Lstop > Lcont, then the additional n patients will be accrued and a new decision regarding continuation will be

made at the end of stage sþ 1.
We now consider the possibility of early dropping of ineffective arms and, hence, in case of continuation an

additional decision needs to be made on how to continue the trial. To describe a design with early dropping, we

introduce Msþ1 as the set of different options for stage sþ 1 of the trial. Then the expected total loss in case of

continuation is

Lcont Ysð Þ ¼ Csþ1 þminm2Msþ1
E mind2D E L h;Q; dð ÞjYm

sþ1

� �jYs

� �
(1)

where E L h;Q; dð ÞjYm
sþ1

� �
is the expected loss incurred by the final decision conditional on data Ym

sþ1 accumulated

up to stage sþ 1, where the superscript refers to the choice for m 2 Msþ1. The outside expectation in (1) is again

taken with respect to the posterior predictive distribution of Ym
sþ1ð Þ1; . . . ; Ym

sþ1ð Þk given Ys taking sample size n and
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option m 2 Msþ1 into account. The loss function L h;Q; dð Þ and set of final decisions D are not affected by

decisions in Msþ1 and remain unchanged throughout the trial.

2.3. Examples

Select the best arm from K experimental arms. We define the set of final decisions as D ¼ fd1; d2; . . . ; dKg, where dk
refers to the decision to select arm k. If we assume that higher values of hk indicate higher efficacy and lower loss,

then a possible loss function is

L h;Q; dkð Þ ¼ 0 if hk ¼ maxi:1� i�Khi;
Q otherwise

�
(2)

in which case the expected loss E L h; dkð ÞjYs½ � is equal to the posterior probability that arm k is not the best

performing arm multiplied by the loss Q for an incorrect decision.
If early dropping of ineffective arms is allowed in a setting with K> 2, options for continuing the trial also need

to be defined. One may, for instance, adopt a strategy where at each interim analysis at most one arm is dropped

from the trial. In case of K¼ 3 arms this is done by defining M2 ¼ fm123;m12;m13;m23g, where m123 denotes the

decision to retain all arms in the next stage of the trial and m12, m13 and m23 denote the decisions to drop arm 3, 2,

and 1, respectively. As long as m123 is selected in subsequent stages, all arms are retained in the trial and

Msþ1 :¼ Ms.
Select the unique best arm from K experimental arms in the presence of an equivalence margin. If one wants to

avoid that a best arm needs to be selected in case multiple arms show similar performance, then an equivalence

margin can be incorporated in the loss function. We assume that one wants to select the best arm only if it

outperforms the other arms by a prespecified margin d > 0. If no such arm exists then none of the arms should be

selected. We extend the set of final decisions from the previous example to D ¼ fd1; d1; d2; . . . ; dKg, where d1
refers to the decision that there exists no unique best arm. The loss function L h;Q; dð Þ is

0 if d ¼ dk and hk � hj > d for all j 2 f1; . . . ;Kgnfkg;
0 if d ¼ d1 and maxi:1� i�Khi � hj � d for some j 2 f1; . . . ;Kgnfargmaxi hig;
Q otherwise

8<
:

Select the T best arms from K experimental arms. Especially if K is large, the goal may be to select a predefined

number of T (T<K) most promising experimental arms that warrant further investigation. If, for instance, one

aims to select the two best arms, then the final decisions are D ¼ fdjkj1 � j < k � Kg, where djk refers to the

decision of selecting arm j and k. A possible loss function is

L h;Q; djkð Þ ¼ 0 if hj þ hkð Þ ¼ max1� p< q�K hp þ hq
� �

;
Q otherwise

�

Compare K – 1 experimental arms to a control arm. We assume that h1 refers to the parameter of interest in the

control arm. In the presence of a control arm and multiple experimental arms the aim typically is to identify all the

experimental arms that outperform the control arm. If, for instance, K¼ 3, then we define D ¼ fd1; d2; d3; d23g,
where d1 refers to the decision to declare none of the experimental arms superior to control. Decisions d2 and d3
correspond to declaring only experimental arms 2 and 3 superior to the control arm, respectively. Decision d23
refers to declaring both experimental arms superior to the control arm. We denote by d the prespecified superiority

margin for the difference between experimental treatments and control. If we set the expected loss proportional to

the posterior probability of an incorrect decision, then the loss function is

L h;Q; dð Þ ¼

0 if d ¼ d1; h2 � h1 þ d and h3 � h1 þ d;
0 if d ¼ d2; h2 > h1 þ d and h3 � h1 þ d;
0 if d ¼ d3; h2 � h1 þ d and h3 > h1 þ d;
0 if d ¼ d23; h2 > h1 þ d and h3 > h1 þ d;
Q otherwise

8>>>><
>>>>:

(3)
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3. Simulation studies

We evaluate the frequentist operating characteristics of the Bayesian decision-theoretic designs in trials with

multiple arms and a binary outcome. We consider the setting without and with a control arm. In simulation I,

we consider selection of the best experimental arm from K (K¼ 3, 4, 5) experimental arms using loss function (2).

In simulation II, we compare two experimental arms to a common control arm using loss function (3). In both

simulation studies, we let each Yik (i ¼ 1; 2; . . . ; s and k ¼ 1; 2; . . . ;K) contain independent observations from a

Bernoulli distribution with success probability hk. We assume independent priors pðhkÞ / U 0; 1ð Þ. We assume

Cs ¼ C1 þ ðs� 1ÞC, which corresponds to equal costs for all stages with a possible exception for the initial stage.

We set the simulation size at 5,000 trials per setting. Further details on the design of the simulation studies follow

below. R functions for evaluating the frequentist operating characteristics are provided in a github repository (see

Appendix 1).

Simulation I: Three to five experimental arms

In simulation I, we compare three Bayesian decision-theoretic designs B1, B2, and B3. In all three designs, the

final decision is based on minimization of the posterior expected loss. Design B1 is a MAMS trial with adaptive

stopping and the possibility of early dropping of ineffective arms from the trial. After each stage, it is decided

whether the trial continues with the same arms, a single arm is dropped or the trial is stopped. The trial is stopped

after stage s if

mind2D E L h;Q; dð ÞjYs½ �� (4)

min
m2Msþ1

E mind2D E L h;Q; dð ÞjYm
sþ1

� �jYs

� � � C

where Msþ1 denotes the set of available options for stage sþ 1 of the trial. Design B2 is a MAMS trial with

adaptive stopping in which all K arms are retained until the end of the trial. This trial is stopped after stage s if

mind2D E L h;Q; dð ÞjYs½ � � E mind2D E L h;Q; dð ÞjYsþ1½ �jYs½ � � C (5)

Design B3 is a single-stage, nonadaptive trial (with fixed trial size) in which patients are allocated to the K arms

in equal numbers.
This simulation study consists of three substudies, which we denote by I.1–3. In simulation I.1, we compare B1

and B2 for settings with K¼ 3 to 5 arms and report the proportion of correct decisions and average trial sizes. We

set the sizes for the initial batch and subsequent batches at 4K, i.e. n1 ¼ n ¼ 12 for K¼ 3, n1 ¼ n ¼ 16 for K¼ 4

and n1 ¼ n ¼ 20 for K¼ 5. Low values were chosen for n1 and n to facilitate timely stopping of the trials in case

large differences exist between response rates. For K¼ 3, we set h ¼ ðh1; h2; h3Þ equal to (0.2, 0.6, 0.7), (0.2, 0.7,

0.8), (0.2, 0.8, 0.9), (0.5, 0.5, 0.6), (0.5, 0.5, 0.7), (0.5, 0.5, 0.8), (0.5, 0.6, 0.7), (0.5, 0.7, 0.8), and (0.5, 0.8, 0.9). We

extend K¼ 3 to K¼ 4 and K¼ 5 by setting h equal to ðh1; h2; h3; h1Þ and ðh1; h2; h3; h1; h2Þ. If we divide both the

left- and right-hand side of (4) and (5) by Q, it follows for loss functions (2) and (3) that the trials of design B1 and

B2 are stopped as soon as the expected increase in the posterior probability of making a correct decision drops

below C/Q. In simulation I.1, we set C/Q equal to 1/500, 1/1000, 1/2500, 1/5000 and 1/10,000.
In simulation I.2, we compare B1 and B2 to nonadaptive B3 in terms of the proportion of correct decisions

after equalizing the average sample size of the three designs. More specifically, we start by setting C/Q for design

B1 equal to 1/2500 and run simulations under B1. Then, for design B2 we determine separately for each setting of

h the value of C/Q for which the average trial size is equal to that observed under design B1. Similarly, for design

B3, we use the trial sizes obtained under design B1. We confine ourselves to K¼ 3 and set batch size and h ¼
ðh1; h2; h3Þ equal to those in simulation I.1. We repeat the simulation comparing the average trial sizes of designs

B2 and B3 with those of B1 after equalizing the proportion of correct decisions.
Finally, in simulation I.3, we study the frequentist operating characteristics of the relative costs C/Q. We set

C/Q equal to 1=100; 1=250; 1=1000, and 1/2500 and simulate under design B2. For each of the simulated trials, we

simulate one extra stage and calculate the increase in the proportion of trials with a correct decision after one

more stage. We only consider K¼ 3 and set batch sizes and h ¼ ðh1; h2; h3Þ equal to those in simulation I.1.
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Simulation II: Two experimental arms and a control arm

In simulation II, we compare design B2 to three frequentist designs F1, F2, and F3. Design F1 is a single-stage,
nonadaptive trial with fixed trial size and equal allocation of patients to arms. The final decision under F1 is based
on the outcome of Dunnett’s multiple comparison hypothesis testing procedure for comparing multiple experi-
mental arms to a control while controlling the familywise type I error rate. Design F2 and F3 are adaptive two-
stage designs using the closed testing procedure of Urach and Posch9 with equal allocation of patients to the active
arms in both stages. Both F2 and F3 include an interim analysis after half of the maximum number of patients
have been enrolled. We use arm-specific stopping rules where in the interim analysis each individual experimental
arm can be declared futile or superior to the control after which accrual is stopped for that arm. Both designs F2
and F3 declare an arm futile when the interim Z test statistic is negative. For concluding superiority, design F2
uses O’Brien Fleming-type boundaries whereas F3 uses Pocock-type boundaries. We set the one-sided type I error
rate at 5%. We assume that arm 1 is the control arm and that arms 2 and 3 are experimental arms. We set h equal
to: (0.5, 0.5, 0.7), (0.5, 0.7, 0.7), (0.5, 0.5, 0.8), (0.5, 0.7, 0.8), and (0.5, 0.8, 0.8). We set margin d in loss function (3)
equal to 0.15. For this margin, the decision that minimizes loss (3) is equal to d3 for h ¼ ð0:5; 0:5; 0:7Þ or
ð0:5; 0:5; 0:8Þ, and equal to d23 for h ¼ ð0:5; 0:7; 0:7Þ; ð0:5; 0:7; 0:8Þ, or ð0:5; 0:8; 0:8Þ. We set the initial and subse-
quent batch sizes under B2 to n1 ¼ 24 and n¼ 12, respectively. The size of 24 for the initial stage was selected
because it was the smallest multiple of 12 for which the familywise type I error rate could be controlled at the
target level. We control the familywise type I error under B2 by tuning of C/Q. This is done by selecting the value
of C/Q for which the control arm is selected in 95% of the trials simulated under B2 when h ¼ 0:5; 0:5; 0:5ð Þ. This
provides a conservative testing procedure as the posterior variance is largest when the success probabilities are
equal to 0.5. For each h ¼ h1; h2; h3ð Þ, we first simulate under B2 and subsequently set trial sizes for F1 equal to
the trial sizes observed under B2. We then simulate trials under F2 and F3 and increase the maximum trial size
until the average trial size equals that observed under B2. We compare the four designs with respect to the
proportion of trials with a correct decision. We repeat the simulation comparing the average trial sizes of designs
F1, F2, and F3 with those of B2 after equalizing the proportion of correct decisions under the hypothesized
response rates h ¼ h1; h2; h3ð Þ. More specifically, we compare the four designs with respect to their average sample
size when the true response rates equal the hypothesized response rates h ¼ h1; h2; h3ð Þ and when the true response
rates equal the null response rates h ¼ ð0:5; 0:5; 0:5Þ.

4. Simulation results

Results of simulation I.1 are presented in Figure 1 where each panel corresponds with a setting of h and lines
connect results for the same design under different relative costs C/Q. The proportion of correct decisions is at
least 0.70 for most settings, except for the left panel in the middle row. Average trial sizes do not exceed 250 and
are below 150 for the majority of settings. In the top row panels where the success probabilities differ at least 0.4
between the worst and other arms, average trial sizes are similar under B1 and B2, but proportions of correct
decisions are higher under B1. An explanation for this is that design B1 adapts during the trial by allocating more
patients to the best performing arms, thereby providing more information for identification of the best performing
arm. In the middle row panels where all arms have the same success probability except for the best performing
arm, we see that average trial sizes decrease and proportions of correct decisions increase when the success
probability of the best performing arm increases. If the best arm is clearly superior to the other arms (middle
row, right panel), then the average trial size remains below 100 for most of the settings. The proportion of correct
decisions is slightly higher for B2 than for B1 at similar average trial sizes indicating that early dropping may
negatively influence the performance of the trial when there is no clearly inferior treatment arm. In the bottom
row panels where differences in success probability between the worst and other arms are smaller than in the
upper row panels, we see that B1 and B2 perform similarly in terms of both average trial size and proportion of
correct decisions.

When comparing the three rows, we see that the average trial size under both B1 and B2 depends strongly on
the difference between the best and second-best arm (middle row), but only weakly on the difference between the
worst and other arms (top versus bottom row). We also see that the effect of adding an extra arm on the average
trial size depends on the success probability of the arm that is added. When the success probabilities of the added
arms are equal to that of the worst arm (middle row), the average trial size increases approximately linearly with
the number of arms. However, increases in average trials size were found to be larger when the success probability
of the added arm was closer to that of the best arm as this made it more difficult to select the best arm (top and
bottom row).
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Figure 2 shows the results of simulation I.2 with the average trial size equalized across designs. Designs with
adaptive stopping (designs B1 and B2) outperform the single-stage trial design B3 in terms of the proportion of
correct decisions by 5% to 15%. The added value of early dropping depends on h in accordance with what we
observed in simulation I.1. Table 1 shows average trial sizes after equalizing the proportion of correct decisions.
We see that average trial sizes of B2 are 26% to 33% higher than under B1 when h1 ¼ 0:2. Trial sizes of B3 are
increased by 117% to 157% as compared to B1. For the scenarios with h1 ¼ 0:5, average trial sizes of B2 are
reduced by 2% to 27% when compared to B1. Trial sizes of B3 are increased by 16% to 58% as compared to B1.

Figure 3 shows the results of simulation I.3. For all settings h, the average change in the proportion of trials
with a correct decision is slightly lower or approximately equal to the relative costs C/Q. Therefore, stopping
based on (5) supports the frequentist interpretation of C/Q as a threshold for the average increase in the pro-
portion of trials with a correct decision.

Figure 4 presents the results of simulation II with the average trial size equalized for the four designs. Design
B2 performs best and design F1 (Dunnett’s frequentist procedure) performs worst under all scenarios. Designs F2
and F3 (both Urach and Posch’s frequentist procedure) generally perform better than F1, but worse than B2. The
difference in performance between design B2 and designs F1, F2 and F3 depends on h and is more pronounced
when both experimental arms are superior to the control arm. Under those scenarios, the difference in the
proportion of correct decisions can reach 50% for designs B2 and F1 and 25% for design B2 and designs F2
and F3. Under design B2, the proportion of correct decisions regarding superiority of experimental arm j (j¼ 2, 3)
depends on the difference between hj and the threshold h1 þ d for superiority. Under design F1, the proportion of
correct decisions depends on the type I and type II error probabilities of the individual hypotheses for comparison
of each experimental arm to control. The lower proportion of correct decisions observed for design F1 in settings
where both experimental arms are superior to control are most likely the result of the type II error probabilities
for each of the individual hypotheses being much higher than the type I error probabilities, so that it is more likely
to make a correct decision under h1 ¼ h2 < h3 than under h1 < h2 ¼ h3. Designs F2 and F3 clearly outperform
design F1 when both experimental arms are superior. Table 2 shows average trial sizes after equalizing the
proportion of correct decisions. When the true response rates equal the hypothesized response rates, we find
trial sizes under F1 to be increased by 22% to 120% when compared to B2. Under F2 and F3 average trial sizes
are increased by 14% to 70% and 22% to 45% when compared to B2. Also when new trials are simulated under
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Figure 1. Results of simulation I.1 with K¼ 3, 4, 5 experimental arms. Line segments connect results for the same design and number
of arms for different relative costs C/Q. Black lines are used for design B1 (Bayesian MAMS with dropping) and grey lines for design B2
(Bayesian MAMS without dropping). The numbers at the end of the lines denote the number of arms K.
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the null response rate vector h ¼ 0:5; 0:5; 0:5ð Þ instead of the hypothesized response rate vector h ¼ h1; h2; h3ð Þ, we
find average trial sizes under all three frequentist designs F1, F2, and F3 to be higher than under B2.

5. Practical example

Physical exercise programs have been shown to be effective in improving quality of life and physical functioning in

patients with cancer.30 Recently, it has been suggested that physical exercise programs during chemotherapy may

also improve response to chemotherapy.31 We designed a Bayesian decision-theoretic MAMS trial to compare

two different physical exercise programs (resistance and aerobic exercise) to usual care in breast cancer patients

receiving neoadjuvant chemotherapy. The primary outcome was tumor response defined as absence of invasive or

noninvasive residual tumor after chemotherapy. The response rate under usual care was known to be around 0.20.

A new exercise program for future patients and usual care were regarded equipoised when the exercise program

improved tumor response rate by 0.10. An improvement of at least 0.15 was expected and was considered
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Figure 2. Results of simulation I.2 with K¼ 3 experimental arms with the average trial size equalized across designs. Matching of the
designs in terms of the average trial size was done separately for each setting of h ¼ h1; h2; h3ð Þ. Average trial sizes are given in the
upper region. Design B1: Bayesian decision-theoretic MAMS trial with early dropping and adaptive stopping; Design B2: Bayesian
decision-theoretic MAMS trial without early dropping but with adaptive stopping; Design B3: Single-stage trial with fixed predefined
trial size.

Table 1. Results of simulation I.2 with K¼ 3 experimental arms with the proportion of correct decisions
equalized across designs. Matching of the designs in terms of the proportion of correct decisions was done
separately for each setting of h ¼ h1; h2; h3ð Þ. Design B1: Bayesian decision-theoretic MAMS trial with early
dropping and adaptive stopping; Design B2: Bayesian decision-theoretic MAMS trial without early dropping
but with adaptive stopping; Design B3: Single-stage trial with fixed predefined trial size.

Response rate vector Proportion of

correct decisions

Average trial size

h1; h2; h3ð Þ B1 B2 B3

0:2; 0:6; 0:7ð Þ 0.87 72.0 90.6 156

0:2; 0:7; 0:8ð Þ 0.90 70.1 92.9 180

0:2; 0:8; 0:9ð Þ 0.94 69.8 88.2 162

0:5; 0:5; 0:6ð Þ 0.68 81.9 72.3 96

0:5; 0:5; 0:7ð Þ 0.89 60.8 53.2 84

0:5; 0:5; 0:8ð Þ 0.95 44.2 32.3 54

0:5; 0:6; 0:7ð Þ 0.78 72.4 61.4 84

0:5; 0:7; 0:8ð Þ 0.83 68.5 67.7 108

0:5; 0:8; 0:9ð Þ 0.87 65.6 57.5 99
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clinically relevant. In order to avoid exposing too many patients to ineffective exercise programs during the

already burdensome chemotherapy, it was considered important that experimental arms could be dropped

from the trial early if proven futile. A maximum number of 400 patients could be accrued to the trial.
We used loss function (3) with margin d set at 0.10. Although the trial would be fully analyzed using Bayesian

methods, adequate frequentist properties were desired. We defined the null scenario as h ¼ 0:20; 0:20; 0:20ð Þ and
the alternative scenario as h ¼ 0:20; 0:20; 0:35ð Þ. It was desired that in 95% of trials under the null scenario neither

of the experimental arms was declared superior to control, corresponding to a frequentist one-sided familywise

type I error rate of 5%. Additionally, under the alternative scenario, 80% of trials should declare arm 3 superior

to the control (either alone or in combination with arm 2), corresponding to a type II error rate of 20%. It was
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Figure 3. Results of simulation I.3 with K¼ 3 experimental arms. The change in proportion of trials with a correct decision when
trials continue for a single additional stage after a decision to stop has been taken.
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predefined trial size using Dunnett’s test; Design F2 and F3: Two-stage trials with fixed predefined maximum trial size using Urach and
Posch method with O’Brien Fleming and Pocock-type boundaries, respectively.
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decided to set the batch size n at 36. The relative loss C/Q and the size n1 of the initial stage were considered design

parameters that could be tuned in order for the Bayesian decision-theoretic MAMS trial to have the desired

frequentist properties.
The procedure used for tuning the design parameters is described in Appendix 1. Parameter values selected for

the Bayesian decision-theoretic MAMS design were n1 ¼ 144 and C/Q¼ 0.0015. Under the null scenario, neither

experimental arm was declared superior to the control arm in 95.1% of trials. Average and median trial size under

the null scenario were 206 and 180 and 90th and 95th percentiles were 324 and 360. Under the alternative scenario,

arm 3 was declared superior to the control arm in 79.8% of the trials. Average and median trial size under the

alternative scenario were 259 and 252 and 90th and 95th percentiles of trial sizes were both 396. We also evaluated

the proportion of correct decisions for the selected Bayesian decision-theoretic MAMS design under a second

alternative scenario h ¼ ð0:20; 0:35; 0:35Þ where both experimental arms were superior to control. Under this

second alternative scenario, both experimental arms were declared superior to control in 69.9% of the trials

and at least one experimental arm was declared superior in 90.5% of the trials. Average and median trial size

under this second alternative scenario were 263 and 252 and 90th and 95th percentiles were both 396.
We compared the proportion of correct decisions for the selected Bayesian decision-theoretic MAMS design to

frequentist single-stage trials using Dunnett’s procedure and the adaptive two-stage procedure of Urach and

Posch. The average trial size was equalized across designs using the same procedure as in simulation II. After

equalizing the average trial size, the two-stage procedure of Urach and Posch declared arm 3 superior to the

control arm under h ¼ 0:20; 0:20; 0:35ð Þ in 65.1% and 65.0% of the trials using O’Brien Fleming and Pocock-type

boundaries, respectively. The single-stage design using Dunnett’s procedure declared arm 3 superior to the control

arm in 60.3% of the trials. Under the second alternative scenario h ¼ ð0:20; 0:35; 0:35Þ, the two-stage procedure of
Urach and Posch declared both experimental arms superior to the control arm in 58.5% and 60.5% of the trials

using O’Brien Fleming and Pocock-type boundaries. At least one experimental arm was declared superior in

80.6% and 81.5% of the trials, respectively. Using a single-stage design with Dunnett’s procedure, 45.1% of the

trials declared both experimental arms superior and 75.5% declared at least one arm superior. The lower pro-

portions of correct decisions under the frequentist procedures observed under both alternative scenarios are in

accordance with the results of simulation II and underline the power of the adaptive stopping procedure and

decision-theoretic approach.

6. Discussion

We generalized the Bayesian adaptive decision-theoretic design for two-arm clinical trials proposed by Cheng and

Shen20 to the setting of MAMS trials with K (K�2) arms. We evaluated the frequentist operating characteristics

Table 2. Results of simulation II with two experimental arms and a control arm with the proportion of correct decisions equalized
across designs. Matching of the designs in terms of the proportion of correct decisions was done separately for each hypothesized
response rate vector. Average trial sizes were determined when simulating new trial data under the hypothesized response rate
vector h ¼ h1; h2; h3ð Þ and the null response rate vector h ¼ ð0:5; 0:5; 0:5Þ. Design B2: Bayesian decision-theoretic MAMS with
adaptive stopping; Design F1: Single-stage trial with fixed predefined trial size using Dunnett’s test; Design F2 and F3: Two-stage trials
with fixed predefined maximum trial size using Urach and Posch method with O’Brien Fleming and Pocock-type boundaries,
respectively.

Hypothesized response

rate vector

True response

rate vector

Proportion of

correct decisions

Average

trial size

B2 F1 F2 F3

0:5; 0:5; 0:7ð Þ 0:5; 0:5; 0:7ð Þ 0.52 120.2 147 137.5 150.9

0:5; 0:5; 0:5ð Þ 0.95 84.4 147 120.9 139.4

0:5; 0:7; 0:7ð Þ (0.5, 0.7, 0.7) 0.63 131.7 249 192.5 190.7

0:5; 0:5; 0:5ð Þ 0.95 84.4 249 158.9 180.6

0:5; 0:5; 0:8ð Þ 0:5; 0:5; 0:8ð Þ 0.83 103.8 129 127.7 126.4

0:5; 0:5; 0:5ð Þ 0.95 84.4 129 111.9 124.7

0:5; 0:7; 0:8ð Þ 0:5; 0:7; 0:8ð Þ 0.71 120.2 219 159.4 148.9

0:5; 0:5; 0:5ð Þ 0.95 84.4 219 134.6 153.5

0:5; 0:8; 0:8ð Þ 0:5; 0:8; 0:8ð Þ 0.94 89.8 198 152.7 129.6

0:5; 0:5; 0:5ð Þ 0.95 84.4 198 135.2 153.3
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of the method for trials with up to five arms and a binary outcome variable and made a comparison with
nonadaptive single-stage trials and frequentist adaptive two-stage trials.

We found that our Bayesian adaptive designs correctly identified the best arm more often than single-stage
clinical trials with same total sample size, both in the setting with and without a control arm. In the setting with a
control arm, we found our Bayesian adaptive designs to outperform frequentist single- and two-stage procedures,
with largest differences in the proportion of correct decisions occurring when both experimental arms were
superior to the control arm. In the setting with only experimental arms, we found that adaptive dropping of
arms further increased the proportion of correct decisions only when at least one of the arms was clearly inferior.
In those settings it is beneficial to drop the inferior arms early such that more data can be collected in the other
arms. However, when arms were similarly effective, the proportion of correction decisions sometimes decreased
when allowing for early dropping. This is related to the unfortunate decision early in the trial to drop the best arm
and can be prevented by accruing a larger number of patients in the first stage.

An attractive feature of our decision-theoretic framework is that it uses the expected reduction in loss as the
single quantity to inform stopping of the trial. This is in contrast to standard frequentist and Bayesian MAMS
designs that generally require monitoring of two separate quantities. In those designs early stopping for efficacy is
guided by a frequentist test statistic or a quantile of the posterior treatment efficacy, whereas early stopping for
futility is based on conditional power or posterior predictive probability of success at the end of the trial. In our
simulations, we observed that adaptive stopping in our designs occurred both for reasons of efficacy and futility.
In our simulation studies, we considered symmetric loss functions where all incorrect decisions result in the same
loss. Our framework, however, also permits incorporation of more elaborate loss functions where the losses are
different for false-positive and false-negative findings and vary across the experimental arms.

In the simulation study, we found that even for trials with five arms an acceptable proportion of correct
decisions could be achieved while average trial sizes remained below 200 patients. Although we did not put a
cap on the sample size in our simulations, all simulated trials ended after a finite number of stages. This is in
accordance with a theoretical result derived by Cheng and Shen20 that states that for two-arm trials termination is
achieved at finite study size with a probability of one. This means that even when the treatment efficacies are equal
in the different arms, the study terminates at finite study size. In that situation, the proportion of correct decisions
over replicated trials will be one over the number of arms when the different arms have equal priors. An additional
simulation (not presented) showed that even when differences in efficacies tended to zero, expected total trial sizes
for our designs remained quite stable. Nevertheless, one may consider putting a cap on the maximum number of
stages in order to rule out very large studies and restrict total costs and duration of the trial. We illustrated the use
of the cap in a practical example. Note also that both with and without specification of a cap, our procedures did
not become computationally challenging, even not for settings with five arms. The computation time of our
methods is determined by the number of times that an expected change in loss needs to be evaluated and therefore
increases linearly with the number of stages, whereas the computation time of a backward induction procedure
increases exponentially with the number of stages.19,24

Clinical trials involving human subjects are usually classified as phase I to IV trials. The four phases correspond
to safety assessment, identification of effective drugs, confirmation of a drug’s efficacy and post-approval
research. Our methods can improve efficiency of phase II trials by facilitating screening of multiple experimental
drugs in a single trial. Another application is in phase IV trials in which multiple, approved drugs are compared
and interest is in selecting a single drug that minimizes the expected loss in future patients. Bayesian approaches
are not widely used in the setting of phase III trials because current guidelines for such trials require stringent
control of the type I error. However, it has recently been recommended to shift the focus in phase III trials
towards error rates that are more insightful than the familywise error rate, for instance, through use of decision-
theoretic approaches that incorporate losses for incorrect decisions where the incurred losses depend on the
seriousness of the incorrect decision.32 Based on this, we think that our approach for comparing two experimental
arms to a control arm, where parameters are tuned such that the type I error is controlled, is a sensible and feasible
alternative to larger nonadaptive phase III trials.

Although the methods presented are very general, we made some specific decisions regarding the settings of our
simulation studies. Firstly, we considered the primary outcome to be dichotomous. The framework can however
also be applied to continuous outcomes. Secondly, we assumed that the outcomes of all included patients are
available when the decision to continue or stop the trial is made. This is a common assumption in adaptive trials
literature with early outcomes like disease progression or recurrent disease. It must be noted that our approach
can still be applied when there is a delay between the time of inclusion of the patient and the time of outcome
acquisition, but the benefit of using an adaptive design instead of a nonadaptive design becomes smaller when the
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delay increases. In such settings, the posterior predictive distributions are based on the data observed up to time of

the interim analysis. Finally, we used uninformative, uniform priors for the success probabilities in all simulations.

The Bayesian approach facilitates the incorporation of historical data by means of an informative prior distri-

bution, such as for instance a power prior.33,34 Especially in settings where an already widely studied standard

treatment serves as a control, efficiency may be increased by incorporation of information obtained in earlier

studies.
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Appendix 1

A.1. Design of Bayesian decision-theoretic MAMS trials in R

R functions for evaluating the frequentist operating characteristics of Bayesian decision-theoretic MAMS trials

can be found on https://github.com/PeterMVanDeVen/Decision-Theoretic-MAMS-trials. The R functions can be

used in the design phase to compare the proportion of correct decisions for different values of h and different

choices for the design parameters. Here we describe the procedure used to tune the size of the initial stage n1 and

the relative costs C/Q of the practical example. The procedure consisted of the following steps:

• We restricted our search to values for n1 that were multiples of the batch size n¼ 36 used in subsequent stages,

implying a maximum number of 396 patients to be included.
• We first checked whether both the type I and type II error rate for a single-stage design with maximum trial size

were below the target levels of 5% and 20%. If the type I error rate is above the target level, then the maximum

trial size or the margin d should be increased. If type II error rate is above the target level, then the maximum

trial size should be increased, difference between response rates under the alternative scenario should be

increased or the margin d should be decreased. At the maximum trial size of 396, we observed type I and

type II error rates of 3.3% and 18.9%, respectively.
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• We simulated trials with early dropping but with a fixed total trial size of 396 under the null scenario
h ¼ 0:20; 0:20; 0:20ð Þ. We subsequently set n1 at the batch size 36 and its multiples 72, 108,. . . until the type
I error rate was below the target level of 5%. At n1 ¼ 144, the type I error rate was 4.7%.

• We simulated trials with early dropping but with a fixed total trial size of 396 and an initial stage of size n1 ¼
144 under the alternative scenario h ¼ 0:20; 0:20; 0:35ð Þ and checked whether the type II error rate was below
the target level of 20%. At n1 ¼ 144, the type II error rate was 17.0%.

• To incorporate adaptive stopping, we reevaluated the simulated trials with n1¼144 using a fine grid of values
for C/Q. This did not require additional simulations as the expected increases in the posterior probability of a
correct decision for all subsequent stages until the maximum sample size had already been stored. We selected
the maximum value of C/Q for which both the type I and type II error rate were below the target levels, which
was C=Q ¼ 0:0015.

• Frequentist operating characteristics of the design with n1 ¼ 144 and C=Q ¼ 0:0015 were validated in an
independent simulation of 5,000 trials. Type I and type II error rate were 4.9% and 20.1%, respectively.
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