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PyRod Enables Rational Homology Model-based Virtual
Screening Against MCHR1
David Schaller[a] and Gerhard Wolber*[a]

Abstract: Several encouraging pre-clinical results highlight
the melanin-concentrating hormone receptor 1 (MCHR1) as
promising target for anti-obesity drug development. Cur-
rently however, experimentally resolved structures of
MCHR1 are not available, which complicates rational drug
design campaigns. In this study, we aimed at developing
accurate, homologymodel-based 3D pharmacophores
against MCHR1. We show that traditional approaches
involving docking of known active small molecules are
hindered by the flexibility of binding pocket residues.

Instead, we derived three-dimensional pharmacophores
from molecular dynamics simulations by employing our
novel open-source software PyRod. In a retrospective
evaluation, the generated 3D pharmacophores were highly
predictive returning up to 35% of active molecules and
showing an early enrichment (EF1) of up to 27.6. Further-
more, PyRod pharmacophores demonstrate higher sensitiv-
ity than ligand-based pharmacophores and deliver struc-
tural insights, which are key to rational lead optimization.
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Obesity and overweight have progressed into major threats
for human health causing four million deaths in 2015.[1]

Beside bariatric surgery that is associated with several
complications,[2] pharmaceutical intervention in combina-
tion with lifestyle intervention proved to be the most
promising treatment option for obesity.[3–5] However, cur-
rently approved anti-obesity agents lack efficacy and show
severe or unpleasant side effects.[6]

The melanin-concentrating hormone receptor 1
(MCHR1) is a well characterized target for potential obesity
treatment. Several rodent models of obesity showed
encouraging results in knock-out experiments or in admin-
istration of MCHR1 antagonists. Unfortunately, these prom-
ising results could not be translated to human obesity
treatment, since all investigated drug candidates either
raised safety concerns or were ineffective in clinical
studies.[7] However, there is evidence that the simultaneous
antagonism of MCHR1 and histamine H3 receptor (H3R)
might result in a synergistic effect that could be beneficial
in obesity treatment.[8] Also, we recently found three ligands
that bind both receptors in the nanomolar activity range
validating this target pair for rational multi-target drug
design campaigns.[9]

Structure-based virtual screening campaigns employing
atomistic models of the macromolecular target can be
advantageous over ligand-based campaigns, since hits
confirmed by in-vitro assays come with a potential binding
hypothesis that can be exploited in subsequent lead
optimization campaigns.[10] Especially multi-target drug
design campaigns benefit from structural data, since lead
molecules need to be optimized against multiple targets.
Although the number of entries in the Protein Data Bank
(PDB) is constantly increasing, many potential drug targets

as well as validated drug targets still lack an experimentally
resolved atomistic model.[11] In such situation, researchers
often employ homology modeling, a method that is
generating an atomistic model of the target of interest
based on a closely related macromolecule.[12] However,
performing structure-based virtual screening using homol-
ogy models increases the chance for modeling artifacts,
since even small modeling errors, such as a wrong side
chain conformation essential for ligand binding, can impair
docking performance.[13,14]

Molecular dynamics (MD) simulation can be used to
address such artifacts and additionally, provide valuable
information about the flexibility and thermodynamic prop-
erties of the system.[15–19] PyRod, a free and open-source
Python software, combines the strength of MD simulations
with structure-based 3D pharmacophore searches by ana-
lyzing the protein environment of water molecules in
protein binding pockets and subsequently generates
pharmacophore features for virtual screening.[20]
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In this study, we aimed at generating highly predictive
structure-based 3D pharmacophore models for virtual
screening against MCHR1. A highly flexible hydrogen bond
network involving three glutamine residues in the binding
pocket of MCHR1 hindered the use of conventional work-
flows employing docking algorithms for pose prediction.
Hence, we applied our software PyRod that analyzes the
protein environment of water molecules in protein binding
pockets throughout an MD simulation for pharmacophore
feature placement. The presented workflow (Figure 1)

yielded 3D pharmacophores that were highly successful in
discriminating actives from decoys in a retrospective virtual
screening campaign. Furthermore, they provide structural
insights for binding to MCHR1 that are not obtainable by
ligand-based pharmacophore modeling.

A sequence search identified crystal structure 4N6H[21] of
the inactive δ opioid receptor to be a suitable template for
homology modeling of MCHR1 with a sequence similarity
of 50.2%. A homology model of MCHR1 in the inactive state
was generated with MOE 2018.[22] The sodium ion com-
plexed by D2.50 was transferred from 4N6H into the MCHR1
homology model, since it was found to be structurally
important for the inactive state of class A GPCRs.[23] A
ramachandran plot analysis in MOE 2018 underlined the
quality of the model with 95% of dihedral angles located in
the core region, 5% in the allowed region and none
outside.

The orthosteric pocket residues Q3.36, Q5.42 and Q6.55 are
highly flexible allowing various conformations and interact

with several neighboring residues in a complex hydrogen
bonding network (Figure 2). Such situations complicate

docking studies, since their performance can already be
affected by small changes in side chain conformations.[13,14]

Thus, this homology model was subjected to molecular
dynamics simulations with Desmond 5.1[24] to explore side
chain conformations. The trajectories were analyzed using
PyRod 0.7.2[20] to identify potential hotspots for ligand
binding and to generate 3D pharmacophores for virtual
screening. The simulation time of the 10 replicates was
increased from 10 ns to 30 ns compared to the original
PyRod publication to relax artifacts introduced through
homology modeling.[20] The last 10 ns of each replicate
were analyzed with PyRod granting sufficient sampling of
side chain conformations.[25,26]

The PyRod software describes pharmacophoric binding
pocket characteristics in form of dynamic molecular inter-
action fields (dMIFs) for common pharmacophore features
including hydrogen bonds, ionizable and aromatic inter-
actions as well as hydrophobic contacts. PyRod suggests
favorable regions for hydrogen bonding and charged
interactions close to D3.32 and the sodium ion complexed by
D2.50 (Figure 3A). Additional hotspots for hydrogen bonding
are located next to Q3.36, Q5.42 and Q6.55 supporting our
hypothesis on the potential participation of these residues
for ligand binding. Several hydrophobic residues are
present in the orthosteric binding pocket favoring hydro-
phobic contacts above D3.32, next to the sodium ion and
close to the glutamines 3.36, 5.42 and 6.55 (Figure 3B). Sites
for possible aromatic interactions can be found between

Figure 1.Workflow diagram for generating homology model-based
3D pharmacophores against MCHR1 with PyRod.

Figure 2. Top view into the binding pocket of the MCHR1
homology modeling. The three flexible glutamines can adapt
various conformations.
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residues W6.48 and F2.53 next to the sodium ion and in the
upper part of the binding pocket next to extracellular loop
residues R353 and F256.

PyRod generates a single super-pharmacophore con-
taining all possible interaction points by analyzing dMIFs

for each pharmacophore feature type. However, this 3D
pharmacophore consists of too many features for efficient
virtual screening. Thus, prioritization and selection of
pharmacophore features is mandatory for further process-
ing and was performed by analyzing dMIFs for each
respective pharmacophore feature type manually. Hotspots
for interactions close to the sodium ion were ignored, since,
to our knowledge, no ligands of GPCRs were reported to
replace or interact with this sodium ion. Pharmacophore
features were selected to show a high PyRod score
according to the respective dMIF and to cover the
orthosteric binding pocket. Additionally, pharmacophore
features were included that are located close to extracel-
lular loops, since these regions were found to frequently
contribute to ligand binding.[27] The focused 3D pharmaco-
phore model consists of 15 features (Figure 4A), i. e. two
positive ionizable interaction features and two associated
hydrogen bond donors pointing towards D3.32, four hydro-
gen bonding features close to glutamines 3.36, 5.42 and
6.55, two hydrogen bond acceptors close to the extrac-
ellular loops of MCHR1, four hydrophobic features covering
both pockets next to the three glutamines and above D3.32,
and one aromatic feature next to R353. Notably, PyRod
aggregates feature frequency with geometric criteria in an
aggregating scoring function delivering interaction hot-
spots; therefore, there is no guarantee for the simultaneous
occurrence of features in a single frame.

The focused 3D pharmacophore was subjected to
combinatorial processing with PyRod 0.7.2.[20] Feature
combinations were restricted to 3D pharmacophores with
minimal 3 and maximal 5 spatially independent chemical
features to reduce the combinatorial space. Additionally,
each 3D pharmacophore must contain one positive ioniz-
able feature to further limit combinatorial space and to
focus on ligands carrying a positive charge, which would be
beneficial for potential binding to H3R. This procedure
resulted in 1136 different 3D pharmacophores against
MCHR1. 3D pharmacophores were evaluated with LigandSc-
out 4.2[28] for discrimination of a diverse set of 100 actives
retrieved from the ChEMBL 24 database[29] and 6350
matched decoys from the DUD-E server.[30]

Altogether, 62 3D pharmacophores were able to retrieve
at least 5% of the MCHR1 active set, which was the criteria
to advance to the computationally more expensive decoy
screening (Figure 4B). The results from actives and decoys
screening were used for calculation of the early enrichment
factor (EF1%). The 3D pharmacophore with the highest true
positive hit rate was able to identify 35% of the actives and
consists of one positive ionizable feature next to D3.32, one
hydrophobic feature above the three glutamines 3.36, 5.42
and 6.55, as well as one hydrogen bond acceptor feature
close to the extracellular loops (Figure 4C, supporting
information Figure S1A). However, this 3D pharmacophore
only achieves considerably weak early enrichment (EF1%=

4.0). In contrast, the 3D pharmacophore with the best
enrichment (EF1%=27.6) also carries an aromatic feature

Figure 3. PyRod analysis of MCHR1 orthosteric binding pocket.
Depicted dMIFs represent favorable regions for (A) hydrogen
bonding (cyan, cutoff=27.8) and positive ionizable interactions
(blue, cutoff=25.3) as well as for (B) hydrophobic (yellow, cutoff=
111.8) and aromatic features (magenta, cutoff=15.3). Cutoffs were
chosen based on the half maximum of the respective feature class.
Transmembrane helices 6 and 7 were set transparent to allow
better visualization.
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next to R353 and additionally has the hydrophobic feature
located above D3.32, but only picks 6% of the active
molecules (Figure 4D, supporting information Figure S1B).
Further analysis of the hit lists revealed that the two
described 3D pharmacophore models only share two active

hits. Thus, they can be considered complementary leading
to improved performance when screened as ensemble.

A more simple alternative approach would be the
generation of 3D pharmacophores from alignments of
known active molecules. Hence, we were interested if
PyRod pharmacophores can achieve a similar performance

Figure 4. 3D pharmacophores and their performance. (A) Focused 3D pharmacophore from PyRod used for combinatorial processing (for
scores of selected pharmacophore features see supporting information Tab S1). (B) Evaluation of 3D pharmacophores against a MCHR1 test
set. The blue and yellow dots represent the performance of PyRod pharmacophores, red dots represent the performance of ligand-based
shared feature pharmacophores generated with LigandScout 4.2. (C, D) 3D pharmacophores identifying the most actives from MCHR1 test
set and showing the highest early enrichment respectively. Exclusion volumes were not depicted for the sake of clarity. Blue star-positive
ionizable, yellow sphere–hydrophobic contact, purple ring-aromatic interaction, red arrow-hydrogen bond acceptor.
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compared to ligand-based pharmacophores. The complete
active set, containing 695 unique MCHR1 ligands, was
clustered with LigandScout 4.2[28] resulting in 19 clusters
comprising of at least 10 molecules. Each of these clusters
was employed to generate a shared-feature pharmaco-
phore. In total, 12 pharmacophores contained the impor-
tant positive ionizable feature and were evaluated for early
enrichment and retrieval of known actives (Figure 4B,
supporting information Figure S1C). All tested ligand-based
shared-feature pharmacophores show very high early
enrichment factors of up to 64.5. However, the ligand-based
pharmacophores are not as sensitive returning at most 6%
of actives from the test set. Furthermore, such 3D
pharmacophores lack any information about the interac-
tions with the receptor, which is essential to rational lead
optimization.

This is the first study applying PyRod on MD simulations
of a homology model. By employing PyRod, we were able
to generate several 3D pharmacophores against MCHR1
that are highly successful in discriminating active MCHR1
ligands from decoys. The 3D pharmacophore generation is
thereby not dependent on error-prone docking studies in
homology models but instead exploits water dynamics
from MD simulations. Hits identified with these structure-
based 3D pharmacophores hold the information of a
binding hypothesis that can be used for subsequent ration-
al lead optimization. Furthermore, we show that PyRod
pharmacophores present an attractive alternative to ligand-
based pharmacophores that heavily dependent on correct
ligand conformations as well as their alignment, and
additionally, lack information essential for further lead
optimization.[31] These characteristics render PyRod pharma-
cophores highly valuable tools for hit identification and
optimization in anti-obesity drug design campaigns against
MCHR1. Also, the presented workflow (Figure 1) can be
easily transferred to other projects that aim at performing
homology model-based virtual screening campaigns.

Experimental Section

A template search using the GPCRdb[32] and subsequent
analysis in MOE 2018[22] revealed the high resolution
crystallographic structure 4N6H[21] of the δ opioid receptor
as suitable template for generating a homology model of
MCHR1. The amino acid sequence of human MCHR1
(Q99705) was retrieved from Uniprot[33] and aligned to the
crystallographic structure 4N6H in MOE 2018 according to
the proposed alignment from GPCRdb (supporting informa-
tion Figure S2). The aligned sequences show a sequence
identity of 29.4% and a sequence similarity of 50.2%.

Employing this alignment, a homology model of human
MCHR1 was generated based on 10 main chain models
with 10 side chain samples per main chain model at 300 K
in MOE 2018. Automatic model refinement was disabled.
The structurally important sodium ion and 5 water mole-

cules were transferred from the template structure 4N6H.
The side chain conformation of S195 was refined to allow
correct complexation of the sodium ion (supporting
information Figure S3). Atom clashes were sequentially
minimized with OPLS-AA force field[34] implemented in MOE
2018. Protonation was performed using the Protonate3D
tool in MOE 2018.

The homology model of MCHR1 was subjected to
molecular dynamics simulation. Chain breaks were capped
with NME and ACE in MOE 2018.[22] The receptor was
oriented using the PPM server[35] for subsequent membrane
placement in a POPC bilayer using Maestro 11.3[36] and
solvation in a orthorhombic box of TIP4P water with 10 Å
padding containing 0.15 M NaCl. In total, 10 replica of 30 ns
MD simulations were performed using Desmond 5.1.[24]

Frames were saved every 10 ps resulting in 3000 frames per
simulation. The pbc wrap functionality implemented in
VMD 1.9.3[37] was employed to center the receptor in the
periodic boundary box and the RMSD Trajectory Tool to
align the trajectory on the heavy atoms of the protein
backbone of the first frame.

The test grid component of PyRod 0.7.2[20] was used to
identify appropriate parameters for grid placement. The
identified parameters result in cubic grids with an edge
length of 30 Å spanning the orthosteric binding pocket of
MCHR1 (supporting information Figure S4). The last 10 ns of
each simulation were analyzed using the trajectory pharma-
cophore combo of PyRod 0.7.2 with default parameters
resulting in the generation of dynamic molecular interac-
tion fields describing pharmacophoric binding pocket
characteristics as well as a super pharmacophore describing
potential interaction sites with the receptor.

The CHEMBL 24 database[29] was used to retrieve activity
data for MCHR1 (CHEMBL344). Ligands were filtered for
molecular weight (�700), confidence score (�9), standard
relation (=), standard value (�10) standard units (nM) and
standard type (Ki, Kd, IC50 or EC50). RDKit

[38] nodes imple-
mented in KNIME 3.7.1[39] were used to remove molecules
with unspecified stereo centers and to remove duplicates,
whereas binding data was preferred over functional data
and more recent data points were preferred over older. This
procedure resulted in 695 unique ligands of MCHR1.

MOE 2018[22] was used to identify the dominant
protonation state at pH 7 and Corina 3.00[40] to generate a
low-energy 3D conformation. The RDKit diversity picker was
employed in KNIME 3.7.1 to pick 100 diverse active ligands
(for a distribution of activity values see supporting
information Figure S5). The DUD-E server[30] was used to
generate decoys for the selected diverse ligands. In total,
6350 decoys were retrieved from DUD-E server, protonated
at pH 7 in MOE 2018 and an initial conformation was
generated with Corina 3.00. By employing iCon imple-
mented in idbgen from LigandScout 4.2[28] 25 conforma-
tions were generated for each of the molecules in the active
and decoy sets for later 3D pharmacophore evaluation.
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LigandScout 4.2 was employed to visualize and analyze
the previously generated dMIFs guiding the selection of
pharmacophore features from the super pharmacophore
for combinatorial library generation with PyRod 0.7.2.[20]

Fifteen features were selected and combined to 1136
different 3D pharmacophores. The combinatorial space was
limited by restricting 3D pharmacophores to contain 3–5
independent features, 1–3 hydrogen bonds, 0–1 aromatic
interaction and exactly 1 ionizable interaction. Each 3D
pharmacophore was evaluated with LigandScout 4.2 for
discrimination of actives from decoys which were generated
as already described.

Ligand-based shared-feature pharmacophores were
generated in LigandScout 4.2. All 695 unique MCHR1
ligands were clustered and clusters comprising of at least
10 molecules were subjected to shared-feature pharmaco-
phore generation. 3D pharmacophores containing a pos-
itive ionizable feature were evaluated for early enrichment
factor and retrieval of actives as already described.
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