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A B S T R A C T   

The proceeding pandemic of coronavirus disease 2019 is the latest global challenge. Like most other infectious 
diseases, inflammation, oxidative stress, and immune system dysfunctions play a pivotal role in the pathogenesis 
of COVID-19. Furthermore, the quest of finding a potential pharmaceutical therapy for preventing and treating 
COVID-19 is still ongoing. Silymarin, a mixture of flavonolignans extracted from the milk thistle, has exhibited 
numerous therapeutic benefits. We reviewed the beneficial effects of silymarin on oxidative stress, inflammation, 
and the immune system, as primary factors involved in the pathogenesis of COVID-19. We searched PubMed/ 
Medline, Web of Science, Scopus, and Science Direct databases up to April 2022 using the relevant keywords. In 
summary, the current review indicates that silymarin might exert therapeutic effects against COVID-19 by 
improving the antioxidant system, attenuating inflammatory response and respiratory distress, and enhancing 
immune system function. Silymarin can also bind to target proteins of SARS-CoV-2, including main protease, 
spike glycoprotein, and RNA-dependent RNA-polymerase, leading to the inhibition of viral replication. Although 
multiple lines of evidence suggest the possible promising impacts of silymarin in COVID-19, further clinical trials 
are encouraged.   

1. Introduction 

Late in 2019, an unknown coronavirus, later entitled severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in pa-
tients suffering from pneumonia of unknown etiology in Wuhan, China 
[1–3]. The unrevealed nature of SARS-CoV-2 and its rapid respiratory 
transmission brought about a vigorous pandemic in the world [3]. As of 

April 2022, the Coronavirus disease 2019 (COVID-19) has spread 
rapidly throughout the world and infected more than 490 million in-
dividuals, leading to more than six million deaths [4]. According to 
previous studies, patients with COVID-19 may exhibit a broad, unspe-
cific spectrum of signs and symptoms, including fever, sore throat, 
nausea, vomiting, myalgia, and dizziness [5,6]. Although most 
COVID-19 patients recover within weeks, about five percent of patients 
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may experience a severe lethal disease leading to multi-organ damage, 
ARDS, and death [7,8]. In addition, elder individuals or patients with 
various co-morbidities are susceptible to severe COVID-19 [9]. Despite 
vaccine development, people worldwide are dealing with new variants 
of SARS-CoV-2 such as delta, lambda, and omicron [10]. In this regard, 
the quest to find a potential therapeutic drug is still ongoing. 

Though the exact pathophysiology of COVID-19 is not fully under-
stood so far, studies have shown that the clinical course of COVID-19 can 
be classified into three stages: initial viral infection, pulmonary stage, 
and hyper-inflammation stage (Fig. 1) [11,12]. It is assumed that the 
cytokine storm and hypercoagulation of the hyper-inflammation phase 
contribute to disease severity and mortality [13]. In this regard, criti-
cally ill patients with COVID-19 have displayed higher levels of neu-
trophils, pro-inflammatory cytokines, and ROS [14]. The latter, in turn, 
is thought to be associated with endothelial cell dysfunction, impaired 
immune response, and platelet aggregation, which all exacerbate the 
severity of COVID-19 patients [15]. In the present emergent situation, 
drug repositioning from approved and well-known complementary 
medicine for developing possible therapeutic and prophylactic agents 
may be cost-effective [16]. An ideal beneficial approach to manage 
COVID-19 would contain a drug capable of directly targeting the virus 
lifecycle while preventing hypercoagulability and cytokine storm [17]. 
Flavonoid and polyphenol compounds such as luteolin, quercetin, gen-
istein, and silymarin are known as natural ligands of peroxisome 
proliferator-activated receptor-γ, which decreases cytokine levels and 
suppresses the inflammatory pathways. Consequently, they might play a 
protective role against COVID-19-associated complications [18]. In this 
regard, polyphenol and flavonoid compounds’ anti-inflammatory and 
antioxidant activity have been confirmed strongly [19,20]. Silymarin is 
a complex polyphenolic compound derived from the seed of the milk 
thistle plant, and it is known for its anti-inflammatory, antiviral, 
anti-oxidative, and immunomodulatory effects [21–23]. Silymarin was 

reported to inhibit the hepatitis C virus in vivo and in vitro by inhibiting 
hepatitis C virus entry, viral protein expression, RNA synthesis, and 
virus replication. It also inhibits the virus’s cell-to-cell spread [24,25]. 
Silibinin, a combination of two stereoisomers, silibinin B and silibinin A, 
in equimolar ratio, is the main component of this complex extract and is 
the most active constituent of silymarin [26,27]. In particular, silibinin 
decreases viral load in patients with chronic hepatitis C [28]. Silibinin 
can affect viral RNA-dependent RNA polymerase action, preventing 
hepatitis C virus replication [29]. Silibinin has been reported for its 
anti-inflammatory and anti-oxidative activity and protective effects 
against endothelial dysfunction in both in vitro [30] and in vivo [22] 
studies. Nieuwenhuizen et al. concluded that silymarin has a protective 
effect against lung injury due to its ability to decrease the production of 
nitric oxide, the infiltration of inflammatory cells, the activity of mye-
loperoxidase, and its ability to decrease the protein levels of 
pro-inflammatory mediators, catalase, superoxide dismutase, and GSH 
peroxidase [31]. Moreover, silymarin has recently been considered a 
potent inhibitor for angiotensin converting enzyme-2 (ACE-2), pre-
venting its host-cell entry [32]. Therefore, therapeutic agents with 
antiviral, anti-inflammatory, and immunomodulatory activities may 
benefit the treatment of COVID-19. We, therefore, aimed to investigate 
the possible favorable impacts of silymarin in the treatment of COVID-19 
by conducting a comprehensive review of published research. 

2. Methods 

2.1. Data sources and search strategy 

In the present study, we searched the electronic databases PubMed/ 
Medline (28 studies), Web of Science (53 studies), Scopus(33 studies), 
and Science Direct (37 studies), using the following keywords: “milk 
thistle” [Title/Abstract] or “Silybum marianum L. Gaertn [Title/Abstract] 

Fig. 1. The phases of COVID-19. The COVID-19 can be divided into 3 stadiums: the early infection, the pulmonary and the hyperinflammation stages. In the early 
infection, the viral load (purple line in the blue zone) starts to increase and at some points, it begins to activate the host immune response (red zone). While the 
disease progresses into a more severe state, the proinflammatory cytokines build up and start to form antibody against the virus. When the disease is not promptly 
treated, COVID-19 may fall into the hyperinflammation stage, multiorgan failure and death. 
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” or “silymarin” [MESH], or “ silibinin” [MESH], or “C25H22O10” 
[Title/Abstract] or “silymarin isomers” [Title/Abstract] and “viral dis-
eases” [Title/Abstract] or “virus-related diseases” [Title/Abstract] or 
“inflammation” [Title/Abstract] or “immune system [Title/Abstract]” 
or “oxidative stress” [Title/Abstract] or “COVID-19” [MESH] or “SARS- 
CoV-2” [MESH] or “coronaviruses [Title/Abstract] ”. Relevant peer- 
reviewed studies published in English until April 2022 were included 
in this study. Articles with inadequate data were excluded from the re-
view. The reference of all the obtained articles was also checked to 
identify other relevant publications. The retrieved studies were screened 
using the EndNote software (Thomson Reuters, USA), and duplicate 
reports were removed. The remaining studies were evaluated to identify 
related articles within the scope of this study. Finally, full texts of the 
eligible studies were assessed. 

2.2. Inclusion criteria 

The inclusion criteria were: [1] All in-vitro, animal, and clinical trials 
and [2] Silibinin and Silymarin supplements should be used alone, and 
[3] Articles published in English. 

2.3. Exclusion criteria 

The exclusion criteria were [1] studies investigating the effect of 
silibinin and silymarin on other diseases and [2] articles reported in 
other languages. 

2.4. Data extraction 

Two authors (A.K. and M.V) assessed the full text of selected articles 
and screened them for data extraction. Any study’s extracted data con-
sisted of the authors’ name, the issue, and the main conclusion of the 
study. A third author (M.V) evaluated the accuracy and quality of the 
extracted data. 

3. Results 

One hundred fifty-one articles were identified in the primary search. 
Of these, 69 articles were removed in duplicate checking, and 55 were 
not within the scope of the study. Finally, 27 articles were selected for 
the final assessment and review. The flow chart of selecting obtained 
articles is depicted in Fig. 2. 

3.1. The Pathogenesis of COVID-19 

The pathogenesis of COVID-19 has not been fully identified yet [33]. 
However, there are several hypotheses regarding the pathogenesis of 
COVID-19 [33]. In this regard, it is assumed that SARS-CoV-2 bind to 
angiotensin-converting enzyme 2 (ACE2) receptors of alveolar epithelial 
cells through the surface glycoproteins [34]. After binding, the spike 
proteins of SARS-COV-2 are fragmented via acid-dependent proteolysis 
through TMPRRS2, cathepsin, or furin protease, and viruses enter the 
cytoplasm via endocytosis [35,36]. Then, the genomes of the viruses 
release and translated into target proteins in the cytoplasm. In addition, 
it should be noted that the attachment of SARS-Cov-2 to ACE2 receptors 
elevate the expression of ACE2 receptors at the membrane of alveolar 
cells, facilitating the further entrance of the virus and leading to alveolar 
damage [37,38]. 

Studies have shown that the primary mechanism of COVID-19 is the 
onset of inflammatory cytokine storms [39]. When immune cells are 
exposed to viral infection, many pro-inflammatory factors such as in-
terferons (IFN-α, IFN-γ), interleukins (IL-33, IL-6, IL-1β, IL-12, IL-18), 
tumor necrosis factor-α (TNF-α) and transforming growth factor-beta 
(TGF-β), and chemokine ligands (CXCL9, CCL3, CXCL8, CCL5, CCL2, 
CXCL10) are released into the infected tissue [40]. Qin et al. [41] 
observed a decrease in lymphocytes, an increase in leukocytes and 

neutrophil-lymphocyte-ratio (NLR), and eosinophils, basophils, and 
lower percentages of monocytes, in patients with severe COVID-19. In 
addition, T cells, including helper T cells and regulatory T cells, are 
inhibited in severe cases of COVID-19 patients [41]. 

In addition, critically ill patients with COVID-19 are shown to have 
elevated amounts of oxidative stress (OS) [42]. Oxidative stress, defined 
as the imbalance of oxidative agents and antioxidant defense, initially 
aims to eradicate the invading pathogen [43]. However, if exceeded may 
impair the immune function itself. The excessive oxidative stress in 
COVID-19 patients is assumed to be due to the inhibition of NRF2- 
mediated pathways and NF- κB signaling activation [44]. 

A considerable feature of MERS-CoV and SARS-CoV is the production 
of double-layered membrane vesicles (DMVs) that the processes of 
transcription occur within them [45]. Additionally, autopsy and histo-
pathological investigation of the kidney tissue in patients with 
COVID-19 indicated that SARS-CoV-2 might exist inside the DMVs of the 
host cells [46]. Therefore, they cannot be identified by the host immune 
system [47]. Furthermore, one of the dominant pathogenic properties of 
MERS is its ability to inhibit the host bronchial interferon synthesis [48]. 
Likewise, experimental studies showed that SARS-CoV-2 poorly stimu-
lates the IFN-I response, which is crucial in the combat against viruses 
[49]. 

Moreover, another suggested mechanism for the pathogenesis of 
COVID-19 is the increased neutrophil extracellular traps (NETs), which 
are released by neutrophils in response to invading pathogens [50]. In 
addition, neutrophils may also be responsible for the thrombosis and 
multi-organ damage of COVID-19 through neutrophil reverse trans-
endothelial migration (rTEM) [51]. Studies have shown that a 
pre-existing upper respiratory tract viral infection may susceptible the 
patients to severe bacterial pneumonia and exacerbate the inflammatory 
response [52]. In this regard, the robust immune response to the 
SARS-CoV-2 triggers the release of cytokines and a chemokine cascade 
that results in a hyper-inflammatory state and accumulation of fluid in 
the lungs [53,54]. Overall, it seems that impaired immune response, the 
escape mechanism of SARS-Cov-2, and increased inflammatory cyto-
kines and cytokine storm contributes to the pathogenesis of COVID-19, 
leading to possible ARDS and multi-organ damage [55]. In the current 

Fig. 2. Flow diagram of the literature search and study selection process.  
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review, we proposed to investigate the effects of silymarin, a flavonoid 
derived from the medicinal plant Silybum marianum (L.) Gaertn, on some 
of the important factors involved in the pathogenesis of COVID-19 
including cell-mediated immunity, inflammation, viral attachment to 
the cell surface, cell membrane disruption, inhibition of interferon 
synthesis, and accumulation of fluid in the lungs. 

3.2. Silymarin 

Silybum marianum L. Gaertn, or milk thistle, as one of the common 
herbal remedies, contains various chemical compounds with healing 
properties. The most common prevalent compound of milk thistle is 
silymarin [56]. Silymarin, a vital complex extracted from milk thistle, 
consists of four isomers of flavonolignans, including silybin, isosilybin, 
silydianin, and silychristin. The general empirical formula of silymarin 
is C25H22O10. Silybin is one of the most prevalent and active isomers of 
silymarin, with a concentration of about 60–70 % [57]. Silymarin has 
been indicated to possess various pharmacological functions such as 
hepatoprotective, antioxidant, anti-inflammatory, cardioprotective, and 
antiviral activities [58]. Numerous studies have examined the effects of 
silymarin on liver disease [59]. Additionally, some studies demonstrated 
the therapeutic properties of milk thistle on viral diseases, including 
hepatitis C (HCV) and influenza [60,61]. A brief review of studies 
evaluating the possible antiviral effects of silymarin is presented in  
Table 1. 

3.3. Cell-mediated immunity effects of silymarin 

As mentioned above, cell-mediated immunity is one of the pathways 
contributing to the pathogenesis of COVID-19. Previous studies inves-
tigating the impacts of silymarin on secondary cell-mediated immunity 
in liver damage condition has revealed that silymarin can decrease 
whole circulating T lymphocytes, reduce delayed hypersensitivity, and 
increase the cytotoxicity of killer T lymphocytes sensitization [62]. 
Likewise, experimental studies demonstrated that silymarin might in-
crease the levels of IL-12 in the draining lymph nodes by appending the 
number of antigen-presenting cells (APC). Furthermore, the IL-12 
stimulates the production of IFN-γ, which improves T-cells function, 
exclusively T helper 1 (Th1) [63–65]. Moreover, it has been shown that 
silymarin can inhibit the immune suppression of UVB radiated mice by 
decreasing the elevated levels of IL-10 in both the skin and draining 
lymph nodes [66,67]. Meroni et al. [68] examined the effect of dosages 
of silybin (0.5, 10, and 25 0.5, 10, and 25 μM) on activating human T 
lymphocytes. They observed that silybin significantly reduces the pro-
liferative reaction to the monoclonal anti-CD3 antibody in a 
dose-dependent manner. In addition, they reported an increase in pro-
liferation of either alloantigen or mitogen-stimulated lymphocytes in a 
dose-dependent manner alongside an enhancement of IFN-γ, IL-4, and 
IL-10 secretion [68,69]. 

Furthermore, silymarin improved macrophage activation, nitric 
oxide (NO) and macrophage phagocytosis, lysozyme contents, and im-
mune indices of spleen and thymus in immunosuppressive mice, leading 
to the amelioration of non-specific immune functions and also protec-
tion against infectious agents [70,71]. The mechanisms of actions of 
silymarin on the immune system are presented in Fig. 3. The role of 
cell-mediated immunity against SARS-CoV-2 infection is still unknown 
[72]. Nevertheless, immunity cells, including B cells, CD8+ T cells, 
CD4+ T cells, total lymphocytes, and natural killer cells, exhibited a 
significant correlation with inflammatory status in patients with 
COVID-19. On this subject, post-treatment reduced B cells, and CD8 + T 
cells and elevated CD4 + /CD8 + ratio were considered unresponsive to 
treatment in the COVID-19 patients [73]. Besides, patients with severe 
SARS-CoV-2 infection exhibited a considerable reduction in the 
expression of IFN-γ, which is stimulated through CD4 + T cells [74]. 
Furthermore, Lovelace et al. [75] observed that silymarin considerably 
decreases the pro-inflammatory cytokines and modulates the immune 

response by inhibiting the expression of T cell stimulation in HIV 
patients. 

3.4. Anti-inflammatory and antioxidant activity of silymarin 

Oxidative stress and inflammation play critical roles in the patho-
genesis of infectious diseases, including COVID-19. A current study by 
Chiappetta et al. [76] found that higher basal levels of inflammatory 
cytokines, including CRP (C-reactive protein) and IL-6, contribute to the 
impaired immune response. This, in turn, results in prolonged 
pro-inflammatory responses and impaired control of viral replication in 
obese patients with COVID-19. In addition, a recent meta-analysis on the 
role of immune-inflammatory factors in COVID-19 cases indicated that 
critically ill patients tend to exhibit elevated inflammatory markers, 
including IL-6, CRP, and ESR (erythrocyte sedimentation rate) 
compared to non-severe patients [77]. Another recent systematic review 
on the association of oxidative stress and SARS-CoV-2 infection sug-
gested that oxidative stress is the main factor determining the severity of 
COVID-19 [78]. In this regard, neutrophils, macrophages, and 
immune-inflammatory cells, responsible for producing the majority of 
oxidants in the lung tissue, are increased in patients with COVID-19 [79, 
80]. However, further studies are encouraged to identify the impact of 
chronic inflammation and oxidative stress in the pathogenesis of 
SARS-CoV-2 infection [76]. 

Studies on the anti-inflammatory effects of silymarin have revealed 
that it can down-regulate the release of cytokines (TNF-α and IL-1) and 
adhesion molecules (E-selectin) by inhibition of nuclear factor-kappa B 
(NF-κB) signaling, NO, and 5–lipoxygenase cascade [59]. Silymarin in-
hibits mitogen-activated protein kinase (MAPK) activation by sup-
pressing TNF-α, and c-Jun N-terminal kinase (JNK) action cascades 
TNF-α-induced cytotoxicity and caspase activation. Furthermore, sily-
marin suppresses the binding of NF-κB on DNA through the attenuation 
of the IkB phosphorylation, which leads to the translocation of NF-κB to 
the nucleus without binding to the DNA [81–83]. 

In a study by Li et al. [84], they indicated that silymarin decrease 
smoke-induced airway inflammation by suppressing the activity of 
extracellular signal-regulated kinase/p38 mitogen-activated protein ki-
nase (ERK/p38 MAPK) pathway and autophagy in human bronchial 
epithelial cells. Furthermore, silymarin inhibits apoptosis and gene 
expression of toll-like receptor 8 (TLR8) in the Ramos cancer cell line 
[85]. Additionally, silymarin decreases the conversion of poly-
unsaturated fatty acid to leukotrienes via inhibiting the lipoxygenase 
enzyme [86]. Mechanisms of action of silymarin on inflammation are 
presented in Fig. 4. 

Oxidative stress usually occurs after an inflammatory condition. In 
this regard, the destruction of cells after exposure to infectious agents 
leads to extensive tissue damage. Many studies confirmed the antioxi-
dant effects of silymarin on liver diseases. The mechanisms of actions of 
silymarin on oxidative stress include suppression of reactive oxygen 
species (ROS)-producing enzymes, ability to scavenge free radicals, 
chelation potency for both copper and iron, and increased synthesis of 
protective molecules such as sirtuins, thioredoxin, and heat shock pro-
teins that protect against stressful stimuli [87]. Also, silymarin activates 
superoxide dismutase (SOD) and non-enzymatic pathways through 
nuclear-related factor 2 (Nrf2) activation. In this regard, it has been 
reported that it significantly increases the expression of SOD in patients 
with nonalcoholic steatohepatitis [88]. Moreover, studies have shown 
that the administration of silymarin decreases oxidative stress in pa-
tients with β-thalassemia [89,90]. In this regard, in an in vitro study by 
Hanafy and El-Kemary [22], they demonstrated that silymarin improves 
the histopathology profile of lung tissue in COVID-19 and reduces the 
release of nitric oxide, pro-inflammatory cytokine, superoxide dismut-
ase, catalase, and GSH peroxidase. 

V. Musazadeh et al.                                                                                                                                                                                                                            



Biomedicine & Pharmacotherapy 154 (2022) 113593

5

Table 1 
Summary of studies evaluating antiviral effect of silymarin.  

Articles Type of study Reference Samples Study design Main results 

Viral- 
related 
articles 

In vitro Polyak et al. [1] HCV-infected Huh7 
and Huh7.5.1 cells 

Administration of 
silymarin: 10, 20, 40, 
100 µg/ml 

Inhibition of expression of TNFα and NF-kB; 
prevention of infection by JFH-1 virus; 
displaying prophylactic and therapeutic effects 
against HCV infection  

In vitro Wagoner et al. [2] HCV-infected Huh7 
and HepG2 cells 

Administration of 
silymarin: 0–120 µM 

Inhibition of virus entry, RNA and protein 
expression, and infectious virus production; 
prevention of cell-to-cell spread of virus; 
inhibition of JFH-1 genotype 2a NS5B- 
dependent RNA polymerase activity  

In vitro Song et al. [3] Influenza A virus- 
infected MDCK cell 

Administration of 
silymarin: 0–100 µg/ml 

Exhibition of anti-influenza A virus activity of 
98 %; inhibition of viral mRNA synthesis  

In vitro McClure et al. [4] HIV-infected TZM-bl 
cells 

Administration of silibinin: 
0–324 µM 

Inhibition of HIV-1 replication; reduction of 
actively proliferating CD19+, CD4+, and CD8+
cells; attenuation of cellular functions involved 
in T-cell activation, proliferation, and HIV-1 
infection  

In vitro 
In vivo 

Dai et al. [5] BALB/c mice, MDCK, 
A549, and Vero cells 

An assay based on the 
inhibition of the formation 
of the Atg12-Atg5/Atg16 
heterotrimer 

Reduction of influenza A virus replication; 
reduction of mortality in infected mice  

In vitro Lani et al. [6] CHIKV-infected Vero 
cells 

Administration of 
silymarin: 0–200 µg/ml 

Antiviral activity against CHIKV; reduction of 
CHIKV replication efficiency; down-regulating 
production of viral proteins involved in 
replication  

In vitro Hanafy, El-Kemary [7] Mice Administration of 
silymarin: 96 ± 0.3 μg/ml 

his pathological profile was significantly 
remodulated by 
encapsulated silymarin. In mean well, IL-6 and 
CRP were 
significantly reduced in oleic acid model as well 
after treatment. 
Additionally, encapsulated silymarin exhibited 
antiviral 
activity against COVID19 by using plague 
reduction assay  

In vitro Morishima, Shuhart, Wang, Paschal, 
Apodaca, Liu, Sloan, Graf, Oberlies, 
Lee [8] 

Freshly isolated 
peripheral blood 
mononuclear cells 
(PBMC) and T cells 
from HCV-infected 

silymarin (MK001), 5 and 
40 µM /ml 

silymarin (MK001), dose dependently inhibited 
the proliferation and secretion of TNF-α, IFN- 
gamma, and IL-2 by PBMC stimulated with anti- 
CD3. In addition, MK001 inhibited proliferation 
by CD4+ T cells 
to HCV, Candida, and tetanus protein antigens 
and by HLA-A2/HCV 1406–1415-specific CD8 T 
cells to allogeneic stimulation. MK001 inhibited 
T-cell TNF-α and IFN-gamma cytokine secretion 
to tetanus and Candida protein antigens. 
Finally, MK001 inhibited nuclear factor-kB 
transcriptional activation after T-cell receptor- 
mediated stimulation of Jurkat T cells, 
consistent with its ability to inhibit Jurkat T-cell 
proliferation and secretion of IL-2.  

In vitro Camini, da Silva, da Silva Caetano, 
Almeida, Ferraz, Vitoreti, de Mello 
Silva, de Queiroz Silva, de Magalhães, 
de Brito Magalhães [9] 

MAYV-infected 
HepG2 

silymarin (MK001), 3.125 
and 100 µM /ml 

silymarin could reduce MAYV-induced 
oxidative cell damage. Briefly, silymarin 
exhibited potent antiviral activity against 
MAYV and reduced MAYV-induced ROS 
formation and levels of malondialdehyde 
(MDA) and carbonyl protein, which are 
biomarkers of oxidative stress.  

In vitro Lovelace, Maurice, Miller, Slichter, 
Harrington, Magaret, Prlic, De Rosa, 
Polyak [10] 

Monocyte and MAIT 
cell 

Silymarin, 80 μM silymarin treatment suppressed the expression 
of T cell activation and exhaustion markers on 
CD4+ and CD8+ T cells from chronically- 
infected, HIV-positive subjects. silymarin also 
showed a trend towards modifying CD4+ T cell 
memory subsets from HIV+ subjects. In the 
HIV-negative setting, silymarin treatment 
showed trends towards suppressing pro- 
inflammatory cytokines from non-activated and 
pathogen-associated molecular pattern (PAMP)- 
activated primary human monocytes, and non- 
activated and cytokine- and T cell receptor 
(TCR)-activated mucosal-associated invariant T 
(MAIT) cells.  

In vitro Meroni, Barcellini, Borghi, Vismara, 
Ferraro, Ciani, Zanussi [11] 

Lymphocyte 
Blastogenesis 

Silybin,0.5, 10, and 25 μM silybin on activating human T lymphocytes and 
observed that silybin significantly reduce the 
proliferative reaction to the monoclonal anti- 
CD3 antibody in a dose-dependent manner 

(continued on next page) 
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Table 1 (continued ) 

Articles Type of study Reference Samples Study design Main results  

In vitro Hawke, Schrieber, Soule, Wen, Smith, 
Reddy, Wahed, Belle, Afdhal, 
Navarro, Berman, Liu, Doo, Fried  
[12] 

32 patients with 
chronic HCV infection 

Silymarin, 140, 280, 560, or 
700 mg 

clinically meaningful reductions from baseline 
serum transaminases or HCV RNA titer were 
observed.  

Case report Payer et al., 201013 A case of an HIV-HCV 
coinfected patient 

Administration of silibinin: 
20 mg/kg/day for 14 days 
intravenously 

Inhibition of HIV replication; a decrease in HCV 
RNA and HIV RNA  

Clinical trial Yakoot et al. [14] 66 patients with 
chronic HCV infection 

Administration of 
silymarin: 140 mg 3 times 
daily for 6 months 

No virological response in the 96.6 % of 
silymarin treated group  

Clinical trial Biermer et al. [15] 20 patients with 
chronic HCV 

Administration of silibinin: 
1400 mg daily, infusion on 
2 consecutive days 

Complete viral suppression in 13 of 20 patients; 
remaining HCV RNA negative during the 
subsequent follow up period  

Clinical trial Adeyemo et al. [16] 32 patients with 
chronic HCV 

Administration of 
silymarin: 420 mg 3 times 
daily and 700 mg 3 times 
daily for 20 weeks 

No alteration in serum ALT and HCV RNA titers; 
suppression of C. albicans-induced T-cell IFNγ 
and phytohemagglutinin-induced T-cell 
proliferation; modest non-specific 
immunomodulatory effects in vivo by silymarin 
administration 

COVID-19 
related 
article       

Molecular 
docking 
analysis 

Latha et al. [17] Phytochemicals from 
the medicinal plants 

Docking analysis Better binding affinity to the target proteins of 
SARS-COV-2 than the synthetic repurposed 
drugs for treatment of COVID-19  

Molecular 
docking 
analysis 

Saraswat, Singh, Patel [18] Phytochemicals from 
the medicinal plants 

Docking analysis The docking results showed successful binding 
to the active site or near a crucial site. The 
present computational approach was found 
helpful to predict the best possible inhibitor of 
protease and may result in an effective 
therapeutic agent against COVID-19.  

In vitro Speciale, Muscarà, Molonia, Cimino, 
Saija, Giofrè [19] 

HUVECs 5,10 and 25 µg/ml silibinin reduced TNF-α-induced gene 
expression of the proinflammatory genes IL-6 
and MCP-1, as well as of PAI-1, a critical factor 
in coagulopathy and thrombosis, and of ET-1, a 
peptide involved in hemostatic 
vasoconstriction. Then, due to endothelium 
anti-inflammatory and anticoagulant properties 
of silibinin and its capability to interact with 
SARS-CoV-2 main target proteins demonstrated 
herein, silibinin could be a strong candidate for 
COVID-19 management from a multitarget 
perspective. 

molecular 
docking 
experiments 

Phytochemicals from 
the medicinal plants 

Docking analysis  

molecular 
docking 
experiments 

Patel, Goswami, Sivakumar, Pandya  
[20] 

Phytochemicals from 
the medicinal plants 

molecular docking and 
molecular dynamics (MD) 
simulations 

silymarin lead to possessing the ability to 
interact and mask the amino acids of RBD, 
making them unavailable to form associations 
with ACE2. Such a molecule is termed as ‘fusion 
inhibitor’. We hypothesized to identify fusion 
inhibitors from the NPACT library of anticancer 
phytochemicals.  

molecular 
docking 
experiments 

Patel, Kumar, Pandya, Rawal [21] CoV-2 hemagglutinin- 
acetylesterase (HE) 
glycoprotein as 

Docking analysis Silymarin, as potential hemagglutinin- 
acetylesterase (HE) glycoprotein inhibitors with 
better binding energy.  

In vitro Aguilar‑Lemarroy, López‑Uribe, 
Sánchez‑Corona, Jave‑suárez [22] 

HaCaT, DOK, A549, 
H1299 and Lenti-X 
293 T cells 

transcrip¬tion quantitative 
PCR 
Use of viral particles 
containing SARS CoV 2 
ORF3a and bioinformatics 

silymarin significantly decrease the level of 
ACE2 expression a In addition, silymarin 
treatment markedly decreased IL-6, TNF-α 
RPL18, RPL32 interleukin‑18 mRNA levels. The 
combination of phytonutrients in silymarin may 
help to boost the immune system and could 
reduce the effects of COVID‑19.  

molecular 
docking 
experiments 

Gorla, Rao, Kulandaivelu, Alavala, 
Panda [23] 

Phytochemicals from 
the medicinal plants 

Molecular Docking Studies 
(482.44 g/mol) 

silymarin bind significantly at the active sites of 
RBD-S and PD-ACE-2 with a MolDock score.  

molecular 
docking 
experiments 

Srivastava, Tripathi, Unni, Hussain, 
Haque, Dasgupta, Singh, Mishra [24] 

Phytochemicals from 
the medicinal plants 

Molecular Docking Studies -Silybin, with their possible potential 
effectiveness in the treatment of COVID-19, 
reflect future possibilities in viral protease 
inhibition by the use of flavonoids 
-Silybin B demonstrated better binding and 
ADME properties compared with the currently 
endeavored drugs like Hydroxychloroquine and 
Lopinavir.  

molecular 
docking 
approach 

Kumar, Kashyap, Chowdhury, Kumar, 
Panwar, Kumar [25] 

Phytochemicals from 
the medicinal plants 

Docking analysis The present study demonstrated the binding 
potential of silymarin with Nsp15 and is capable 
of inhibiting viral replication, 

In vitro Vero and Vero E6 cell 
lines 

6.25, 12.5, 25, 50, 100, and 
200 μg/m 

(continued on next page) 
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3.5. Antiviral effects of silymarin and its possible mechanisms of action 
against COVID-19 

Silymarin has been suggested to have multiple biological functions 
against various viruses [91,92]. The antiviral effects of silymarin from in 
vitro, in vivo, clinical trial, case-control, and bioinformatic studies are 
reviewed in this section [91]. These studies assessed the Janus kinase 
(JAK)-signal transducer and activation of transcription (STAT) signaling 
pathway, polymerase activity, protein synthesis, entrance, and trans-
mission of viruses [93]. Also, the expression of interferons, 
anti-inflammatory and antioxidant effects of silymarin were evaluated. 
IFN-γ is one of the cytokines released from infected cells and affects 
adjacent cells, making them vulnerable to virus invasion [94]. Patho-
logical studies revealed that SARS-CoV-2 inhibits interferons synthesis 
[95,96]. Silymarin regulates the levels of IFN-γ through the stimulation 
of T-cells, particularly Th1 type cells [97,98]. Antiviral effects of sily-
marin have been evaluated in viruses including HCV, influenza A virus, 
mayaro virus (MAYV), chikungunya virus (CHIKV), and human immu-
nodeficiency virus (HIV). In all mentioned viruses, silymarin has 
exhibited antiviral activity by preventing the virus from entering the 
host cells, genomic content replication, and the expression of viral 
protein genes [99]. In a study, Lani et al. [100] assessed the effects of 
silymarin components on CHIKV genome replication. They demon-
strated an antiviral activity of silymarin against CHIKV by attenuation of 
genome replication (93.4 %) and protein expression (more than 99 %). 
An in vitro study regarding the antiviral effect of silymarin on MAYV 
demonstrated that silymarin inhibits MAYV replication and decreases 
MAYV-induced oxidative stress [101]. 

Similar to influenza virus, SARS-CoV-2 is a single strand RNA virus. 
Recent studies suggested that some drugs which are administered for the 
treatment of influenza may also be effective in treating COVID-19 
symptoms [102]. According to a study, administration of silymarin at 
the dosages of 100 µg exhibited 98 % antiviral activity against the 
influenza A virus by inhibiting viral mRNA synthesis [60]. Furthermore, 
in another study, Dai et al. [103] reported that silybin reduces the 
replication of influenza A. In addition, in another study on the antiviral 
effects of silibinin, the authors demonstrated that silibinin inhibits the 
replication of HIV-1 in TZM-bl cells. Additionally, cellular functions 
involved in proliferation, T-cell activation, and HIV-1 infection are 
attenuated by the administration of the intravenous formulation of sil-
ibinin [104]. 

Several in vivo and in vitro studies examining the effects of silymarin 
on HCV revealed that silymarin attenuates the replication and survival 
of HCV by preventing viral entry to the cells and activating the JAK- 
STAT antiviral signaling pathway [92,93]. Also, silymarin inhibits 
HCV’s RNA-dependent RNA polymerase activity and decreases its 
function [105]. Torres et al. [106] indicated that silymarin adminis-
tration decreases the load of the hepatitis C virus. There are limited 
human studies regarding the impacts of silymarin on hepatitis C. The 

results of these studies suggested that silymarin does not have any sig-
nificant effect on the replication rate of HCV. In contrast, it improves the 
antioxidant levels and immune system function in infected individuals 
[107–109]. In a study, administration of silymarin (140 mg 3 times a 
day for six months) in 66 patients with chronic HCV infection exhibited 
no virological response in the 96.6 % of silymarin treated group [107]. 
In addition, a recent study demonstrated that silymarin might be a 
potent inhibitor of the hemagglutinin esterase (HE) glycoprotein re-
ceptor [110]. The HE acts as a receptor-destroying enzyme in the 
binding of SARS-CoV-2 to the ACE receptors. Besides, studies indicated 
that silymarin might inhibit the host-cell entrance of SARS-Cov-2 by 
inhibiting ACE-2 receptors [30]. Zhang et al. [111] suggested that a 
timely anti-inflammation therapy, including glucocorticoids, JAK in-
hibitors, and IL-6 antagonists, in COVID-19 patients may have the most 
beneficial effects. Due to silymarin’s anti-inflammatory, antioxidant, 
antiviral, and immunomodulatory impacts, silymarin may be a prom-
ising treatment option against COVID-19 [100,112]. A bioinformatics 
study about the possible mechanisms of actions of silymarin on 
COVID-19 demonstrated that silymarin had a high binding affinity to 
target proteins of SARS-CoV-2, including spike glycoprotein, main pro-
tease, and RNA-dependent RNA-polymerase compared to current drugs 
administering in the treatment of COVID-19. The docking results exhibit 
that silymarin can bind to SARS-CoV-2 main protease, spike glycopro-
tein, and RNA-dependent RNA-polymerase with docking energy of 
− 11.928 kcal/mol, − 10.572 kcal/mol, and − 11.499 kcal/mol, respec-
tively [113]. Recent studies have found that substances with 
RNA-dependent RNA polymerase inhibitory activity can be used as a 
possible beneficial drug in the treatment of COVID-19 [114]. Speciale 
and colleagues [28] conducted an in silico and in vitro study to investi-
gate the impact of Silibinin administration on COVID-19. They demon-
strated that the silibinin could interact with spike proteins of 
SARS-CoV-2 and inhibit the entrance of the virus. In addition, they 
observed that silibinin considerably decreases the expression of TNF-α 
and inflammatory cytokines such as genes MCP-1, IL-6, and PAI-1 [28]. 
The latter is an indicator of endothelial dysfunction, which contributes 
to the thrombotic events of COVID-19 [115]. However, one of the lim-
itations of such studies was the lack of clinical trials or very few human 
studies which are encouraged to investigate in detail the mechanism of 
action of this compound on molecular pathways. 

4. Conclusion 

Despite vaccine development, it is necessary to identify a potential 
therapeutic drug to reduce the complications of COVID-19. In this re-
gard, the results of the current study indicate that silymarin as a poly-
phenolic flavonoid might exert therapeutic effects against COVID-19 
through the improvement of the antioxidant system, attenuation of the 
inflammatory response, and respiratory distress, and enhancement of 
immune system function. Moreover, silymarin can bind to target 

Table 1 (continued ) 

Articles Type of study Reference Samples Study design Main results 

Loutfy, Abdel-Salam, Moatasim, 
Gomaa, Fattah, Emam, Ali, 
ElShehaby, Ragab, El-Din [26] 

Silymarin against SARS-CoV-2 was through 
interference with viral attachment by blocking 
ACE2 receptor. 

Clinical trials Aryan, Farahani, Chamanara, Elyasi, 
Jaafari, Haddad, Sani, Ardalan, 
Mosaed [27] 

silymarin 70 mg The present study demonstrated there were not 
significant differences between the two groups 
in terms of symptoms resolution time, 
laboratory parameters (Serum creatinine level, 
C-reactive protein, Lymphocyte count, Atrial O2 

saturation, Length of need for supplement of O2 

AST), and hospitalization duration. However, 
the alanine aminotransferase level decreased 
significantly in the treatment group, compared 
to the placebo group. 

ALT, alanine transaminase; CHIKV, chikungunya virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; IFN-α, interferon-alpha; MAYV, mayaro virus; 
MDCK, madin-darby canine kidney; NF-kB, nuclear factor kappa B; TNF-α, tumor necrosis factor-alpha; Vero cells, african green monkey kidney cells. 
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Fig. 3. Anti-inflammatory and anti-oxidative stress effects of silymarin. Sallymarin increases the transcriptional activity of Nrf2. Regulation of the expression of 
antioxidant genes is critical for controlling oxidative stress and maintaining physiological homeostasis. Of the various regulatory pathways, the Keap1-Cul3-Rbx1, 
Antioxidants axis is the most important regulator of Nrf2 activity. Sallymarin also reduces the expression of the TLR-4 pathway, which leads to a decrease in NF-KB 
activity and the production of inflammatory mediators. Silymarin also modulates the immune response, leading to the production of NETS by noutrophil and 
reducing the overproduction of inflammatory and oxidative factors by immune responses. Anti-inflammatory effects of silymarin. TLR, Toll-like receptor; NF-κB, 
nuclear factor kappa B; IkB, inhibitor of kappa B; PUSFA, polyunsaturated fatty acids; TNF-α, tumor necrosis factor-alpha; IFNs, interferons; IL, interleukin. 
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proteins of SARS-CoV-2, including main protease, spike glycoprotein, 
and RNA-dependent RNA-polymerase, leading to the inhibition of viral 
replication. Furthermore, further clinical trials and human studies are 
encouraged considering the effects of silymarin in COVID-19 patients. 
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