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Abstract

During lytic replication of Kaposi’s sarcoma-associated herpesvirus (KSHV), a nuclear viral

long noncoding RNA known as PAN RNA becomes the most abundant polyadenylated tran-

script in the cell. Knockout or knockdown of KSHV PAN RNA results in loss of late lytic viral

gene expression and, consequently, reduction of progeny virion release from the cell. Here,

we demonstrate that knockdown of PAN RNA from the related Rhesus macaque rhadino-

virus (RRV) phenocopies that of KSHV PAN RNA. These two PAN RNA homologs, although

lacking significant nucleotide sequence conservation, can functionally substitute for each

other to rescue phenotypes associated with the absence of PAN RNA expression. Because

PAN RNA is exclusively nuclear, previous studies suggested that it directly interacts with

host and viral chromatin to modulate gene expression. We studied KSHV and RRV PAN

RNA homologs using capture hybridization analysis of RNA targets (CHART) and observed

their association with host chromatin, but the loci differ between PAN RNA homologs.

Accordingly, we find that KSHV PAN RNA is undetectable in chromatin following cell frac-

tionation. Thus, modulation of gene expression at specific chromatin loci appears not to be

the primary, nor the pertinent function of this viral long noncoding RNA. PAN RNA repre-

sents a cautionary tale for the investigation of RNA association with chromatin whereby

cross-linking of DNA spatially adjacent to an abundant nuclear RNA gives the appearance

of specific interactions. Similarly, PAN RNA expression does not affect viral transcription

factor complex expression or activity, which is required for generation of the late lytic viral

mRNAs. Rather, we provide evidence for an alternative model of PAN RNA function

whereby knockdown of KSHV or RRV PAN RNA results in compromised nuclear mRNA

export thereby reducing the cytoplasmic levels of viral mRNAs available for production of

late lytic viral proteins.
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Author summary

Herpesviruses produce noncoding RNAs, some of which are essential to the viral life

cycle. One such noncoding RNA from Kaposi’s sarcoma-associated herpesvirus is the

polyadenylated, nuclear (PAN) RNA, which is required for production and release of

progeny virions from infected cells. In this study, we demonstrate that although lacking

nucleotide sequence conservation, PAN RNAs from two related viruses–when knocked

down–exhibit the same phenotype, loss of late lytic viral gene expression and progeny

virion production. Moreover, they can functionally substitute for each other to rescue this

phenotype. We demonstrate that, in contrast to published literature, the reduction in viral

gene expression upon PAN RNA knockdown is not due to loss of PAN RNA association

with conserved, specific chromatin loci, nor does PAN RNA expression affect the viral

transcription factor complex required for generation of the late lytic viral mRNAs. We

present data suggesting that PAN RNA instead serves as a binding platform to sequester

cellular proteins that are mislocalized to the nucleoplasm. These herpesviral noncoding

RNAs can serve as models for the mechanistic study of human noncoding RNAs.

Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is an opportunistic pathogen of human

immunodeficiency virus (HIV) patients and the etiological agent of several human cancers,

including Kaposi sarcoma and primary effusion lymphoma [1]. The KSHV life cycle includes a

latent phase, when viral gene expression is largely absent and no progeny virions are produced,

and a lytic phase, characterized by robust viral gene expression and virus replication. The most

abundant lytic phase viral RNA is a 1 kb, noncoding, polyadenylated nuclear RNA called PAN

[2–4]; PAN RNA accounts for up to 80% of the polyadenylated RNA present in a lytically

infected cell. A 30-end element called the element for nuclear expression (ENE) is required to

maintain PAN RNA at these elevated levels. Crystallographic analysis of the PAN ENE com-

plexed with an A9 oligonucleotide revealed that the U-rich internal loop of the ENE forms a

triple-stranded interaction with the poly(A) tail of its own transcript [5]. This triple-helical

RNA structure that shields the 30 end [6–8] robustly inhibits nuclear RNA decay of PAN RNA.

Although the ENE has been well studied, we still know little about the function of PAN

RNA. Previous work has demonstrated that loss of PAN RNA, either through genetic knock-

out from the viral genome or antisense depletion of the transcript, results in misregulation of

late lytic viral genes and host immune response genes [2, 9]. The accompanying reduction in

virion release upon KSHV PAN RNA knockdown highlights its essential role during the lytic

phase, but the mechanism underlying the phenotypes associated with loss of PAN RNA is

unknown.

PAN RNA is exclusively nuclear, which prompted efforts to demonstrate that KSHV PAN

RNA associates directly with the human and viral genomes [10, 11]. A potential mechanism

for PAN RNA function emerged from two studies: interaction of KSHV PAN RNA with viral

latency-associated nuclear antigen (LANA) [12] and chromatin isolation by RNA purification

(ChIRP [13]) studies of KSHV-infected human B-cells [10]. In vivo data suggested that PAN

RNA may regulate chromatin states by competitively preventing LANA from associating with

histone H3, an interaction required for regulating and maintaining latency [12]. On the pro-

moter of the KSHV master lytic activator, RTA/ORF50, PAN RNA was shown to interact with

demethylases JMJD3 and UTX [10]. KSHV PAN RNA ChIRP studies extended these conclu-

sions to suggest ubiquitous PAN RNA binding to both the host and KSHV genomes [11].
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Thus, the literature posits that PAN RNA regulates late gene expression by a mechanism

dependent on chromatin association.

Genes encoding PAN RNA homologs map to syntenic regions within gammaherpesvirus

genomes. As is common for many long noncoding RNAs (lncRNAs) [14, 15], PAN RNAs are

poorly conserved at the sequence level, but most contain ENEs homologous to that originally

identified at the 30 end of KSHV PAN RNA [16]. Bioinformatic studies revealed ENEs, thus

indicating the presence of PAN RNAs, in four other γ-herpesviruses: retroperitoneal fibroma-

tosis-associated herpesvirus Macaca nemestrina (RFHVMn), Rhesus macaque rhadinovirus

(RRV), and equine herpesvirus 2 and 5 (EHV-2 and EHV-5) [8]. A fifth PAN RNA homolog

lacking an ENE was identified as a highly abundant noncoding RNA expressed from a syntenic

genomic locus of bovine herpesvirus 4 (BHV-4) [8, 17].

RRV PAN RNA is a ~1.3-kb transcript found in the nuclei of lytic RRV-infected cells. As is

the case for KSHV PAN RNA, the master herpesviral lytic activator ORF50 binds the promoter

and activates expression of RRV PAN RNA [8]. Although RRV PAN RNA appears not to con-

tain the small 50-hairpin motif that binds viral ORF57 in KSHV PAN RNA, the RRV PAN

RNA homolog is highly abundant in RRV-infected cells [8]. Moreover, similar to KSHV, RRV

PAN RNA binds nuclear relocalized cytoplasmic polyA binding protein (PABPC) and is upre-

gulated by the viral SOX protein in lytically infected cells [2, 8].

KSHV and RRV have well-established cell culture models. The BCBL-1 cell line is a clinical

isolate from a body cavity-based lymphoma and is a naturally KSHV-infected human B-lym-

phocyte cell line. A comparable RRV-infected rhesus B-cell line does not exist; all known rhe-

sus B-lymphocyte lines were immortalized using another human herpesvirus, Epstein-Barr

virus (EBV). EBV and KSHV co-infections are known to collude and produce results different

from those with KSHV alone [18] and similar interactions would be expected to occur between

EBV and RRV. Therefore, RRV is studied instead in the human EBV-negative B-cell line,

BJAB, which was de novo infected with RRV [19].

In this study, we demonstrate that knockdown of PAN RNA from the related herpesvirus

RRV phenocopies that of KSHV PAN RNA knockdown. Furthermore, despite lacking nucleo-

tide sequence conservation, expression of either KSHV or RRV PAN RNA can rescue produc-

tion of progeny virions by either KSHV or RRV bacmids lacking the PAN RNA locus. Using

CHART (Capture Hybridization Analysis of RNA Targets) [20], we revisited the hypothesis

that PAN RNA associates with specific chromatin loci to modulate gene expression during the

KSHV lytic phase. Our analysis of PAN RNA from two related viruses, KSHV and RRV, sug-

gests that the primary function of herpesviral PAN RNA is not regulation of gene expression

by interacting with specific sites on chromatin. Instead, we find that PAN RNA expression is

required for efficient mRNA export from the nucleus. These data emphasize the need for unbi-

ased approaches for ascribing functions to ncRNAs.

Results

Knockdown of RRV PAN RNA reduces progeny virion release without

altering intracellular viral DNA levels

To determine whether KSHV and RRV PAN RNA homologs perform the same function

during the viral life cycle, we characterized the phenotype associated with knocking down

RRV PAN RNA expression in lytic BJAB RRV cells. Anti-RRV antibodies useful for inves-

tigating the effect of PAN RNA expression on late lytic gene expression are not available

at this time; however, quantitative PCR (qPCR) can assess viral DNA replication and

virion production to confirm the downstream phenotypic changes associated with KSHV

PAN RNA loss [2].

Chromatin association of PAN RNAs
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BJAB RRV cells were transfected with 20-O-methylated and phosphorothioate-substituted

antisense oligonucleotides (ASOs) that target RRV PAN RNA for RNaseH cleavage. 40 h after

lytic induction with trichostatin-A (TSA), total RNA was harvested from a subset of the cells

and analyzed by Northern blot to confirm knockdown of RRV PAN RNA expression (Fig 1A).

Seven days later, the extracellular encapsulated and intracellular DNA were harvested from the

remaining cells. Knockdown of RRV PAN RNA modestly reduced (by 40%) the yield of

DNase-resistant, encapsulated virus released into the media, as assayed by qPCR of viral DNA

(Fig 1B). This phenotype mimics that of a KSHV PAN RNA knockdown [2], but is less severe

(only 2-fold), perhaps attributable to less efficient knockdown of RRV compared to KSHV

PAN RNA. In contrast, qPCR analysis of intracellular DNA confirms that knockdown of RRV

PAN RNA does not affect accumulation of intracellular viral DNA during the lytic phase (Fig

1C). Thus in B-cells, loss of RRV PAN RNA, like that of KSHV, decreases the production of

encapsulated viral DNA without affecting the levels of intracellular viral DNA in B-cells.

KSHV and RRV PAN RNAs are functional homologs

Loss of KSHV and of RRV PAN RNA expression both reduce production of encapsulated

progeny virions, despite lacking nucleotide sequence conservation. Therefore, we asked

whether one PAN RNA homolog could substitute for the other. Initially, we attempted to tran-

siently express either RRV PAN RNA in KSHV-infected BCBL-1 cells or KSHV PAN RNA in

RRV-infected BJAB cells after knockdown of endogenous PAN RNA. However, titrating the

amount of transfected rescue plasmid (from 2 to 15 μg) revealed that the reciprocal PAN RNA

Fig 1. Knockdown of RRV PAN RNA reduces progeny virion release without altering intracellular viral DNA

levels. BJAB RRV cells were induced with 100 nM trichostatin-A (TSA) following electroporation with antisense

oligonucleotides complementary to either GFP mRNA (control KD) or RRV PAN RNA (Oligo 493 and Oligo 539).

(A) Total RNA was processed 40 h after lytic induction. PAN RNA levels were quantified by Northern blot. (B) Seven

days after induction, encapsulated viral DNA released into the media was harvested and quantified by qPCR; values

were normalized to a control plasmid added at the onset of purification. (C) Seven days after induction, intracellular

DNA was harvested from the cells and the level of viral DNA relative to host DNA was determined by qPCR. Data are

the average of three biological replicates and error bars represent standard deviations of the mean.

https://doi.org/10.1371/journal.ppat.1007389.g001
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homolog failed to rescue the loss of released encapsulated virus observed after PAN RNA

knockdown (S1A, S1D, S1F and S1I Fig). Yet, levels of intracellular viral DNA replication were

unchanged (S1E and S1J Fig). In KSHV-infected BCBL-1 cells, we similarly failed to observe

rescue of several late lytic proteins upon transfection of an RRV PAN RNA rescue plasmid

(S1A Fig). Using RT-qPCR, we quantified the expression level of each PAN RNA homolog rel-

ative to the average expression level of five viral transcripts. Surprisingly, neither PAN RNA

was expressed at greater than 1% of the endogenous species-matched PAN RNA in BJAB RRV

or BCBL-1 PAN-knockdown cells (S1B and S1G Fig). We conclude that the expression level of

transiently transfected PAN RNA is insufficient to rescue the knockdown phenotype in BCBL-

1 or BJAB B-cells. Unfortunately, we are unable to confirm this conclusion directly. Unlike the

situation where protein-coding genes containing silent codon mutations are made, it is impos-

sible to reintroduce a target RNA in the presence of ASOs without making point mutations in

the rescue construct, which may have unanticipated functional effects.

Consequently, we performed rescue experiments with PAN RNA knockout bacmids (Fig

2). We attempted to perform bacmid rescues in several physiologically relevant B-cell lines;

however, the low transfection efficiency typical of B-cells in culture prevented expression of

sufficient PAN RNA. As a result, knockout bacmid experiments were performed in HEK293T

cells, as previously reported [21–23]. A bacmid containing a partial deletion of KSHV PAN

RNA (BAC36CRΔPAN) was previously studied and, similar to the results of knockdown

experiments, release of encapsulated virus into the media was diminished [10]. In the KSHV

genome, 31% of the PAN locus overlaps the K7 open reading frame [24] (Fig 3A), making an

exclusive PAN RNA deletion impossible. In contrast, the RRV genome contains no known

overlapping open reading frame, allowing a full RRV PAN RNA deletion [25]. To generate an

RRVΔPAN bacmid, we eliminated 1300 bp from the wild-type RRV bacmid [26] encompass-

ing the entire RRV PAN RNA transcript, 140 bp of upstream promoter sequence and 22 bp of

downstream polyadenylation sequence (S2 Fig). In lieu of the PAN RNA gene, a 1641-bp cas-

sette was inserted that contains a kanamycin/neomycin resistance open reading frame to facili-

tate bacmid selection during recombineering (S2 Fig).

Next, we tested the ability of KSHV versus RRV PAN RNA to rescue the corresponding

PAN RNA deletion bacmids. HEK293T cells were first transiently transfected with KSHV

BAC36CRΔPAN bacmid [10], the KSHV lytic transcriptional activator ORF50/RTA and either

a KSHV PAN RNA rescue plasmid or a vector control. The vector control showed that the lev-

els of encapsulated viral DNA released into the media were reduced (~40%) and less K8.1 late

lytic protein expressed 72 h after lytic induction with 600 μM valproic acid (Fig 2A and 2D).

Both phenotypes were rescued not only by expressing KSHV PAN RNA, but also by expressing

RRV PAN RNA under the control of the KSHV PAN RNA promoter from a rescue plasmid

(Fig 2A and 2D). Using qPCR, we quantified the expression level of each PAN RNA homolog

relative to the average expression level of five viral transcripts (Fig 2B), revealing that KSHV

and RRV PAN RNAs were each robustly expressed at approximately 2-fold the abundance of

PAN RNA in BCBL-1 cells (Figs 2B and S1B). Moreover, in contrast to what is observed in

BCBL-1 cells, the levels of intracellular viral DNA replication were reduced in the vector con-

trol samples lacking PAN RNA (Fig 2E). This is likely due to the reduced expression of early

and late viral mRNAs (Fig 2C), observed previously when the KSHVΔPAN bacmid was intro-

duced into HEK293 cells [10, 11]. Importantly, expression of RRV PAN RNA in the presence

of the KSHV BAC36CRΔPAN bacmid rescued late lytic KSHV protein expression and yielded

a similar number of extracellular progeny virions, compared to rescue with KSHV PAN RNA

(Fig 2C to 2E).

We then performed the converse PAN RNA rescue in the context of the RRVΔPAN

genome. HEK293T cells transiently transfected with RRVΔPAN bacmid were induced into the

Chromatin association of PAN RNAs
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lytic phase by transiently transfecting rORF50/RTA in the presence of 100 nM TSA. The com-

plete knockout of RRV PAN RNA from the bacmid reduced the level of encapsulated virus

released into the medium in the presence of a vector control to about 10% relative to a RRV

PAN RNA expression vector (Fig 2I). Similar to what was observed for KSHV BAC36CRΔ-
PAN, this phenotype was rescued (6- to 10-fold) by expression of either KSHV or RRV PAN

RNA (Fig 2F to 2J). Together the data indicate that KSHV and RRV PAN RNAs, although very

Fig 2. KSHV and RRV PAN RNA are functional homologs. (A) HEK293T cells were transiently transfected with KSHV BAC36CRΔPAN bacmid, kORF50/RTA

plasmid and either an empty vector control or a PAN RNA expression vector. 4 h after transfection, the cells were induced into the lytic phase with 600 μM valproic acid.

72 h later, a subset of the cells was harvested for Northern blot analysis of PAN RNA levels and for Western blot analysis of viral protein ORF6 (an early protein) and

K8.1 (a late protein). Northern probes complementary to both RRV and KSHV PAN RNA were mixed in the same hybridization reaction. (B) RT-qPCR quantification

of PAN RNA levels relative to that of five viral transcripts (see Materials and Methods). (C) RT-qPCR analysis of the early viral transcript ORF18 and two late viral

transcripts ORF26 and ORF67A relative to RNaseP RNA. (D) Three days after lytic induction, DNase-resistant encapsulated viral DNA levels in the media were assessed

by qPCR and normalized to an external loading control added at the onset of viral DNA isolation. (E) Three days after lytic induction, intracellular DNA was harvested

and the level of intracellular viral DNA relative to host DNA was determined by qPCR. The average signal from two primer pairs specific to the viral genome was

normalized to the average signal from two primer pairs specific to the human genome. (F) HEK293T cells were transiently transfected with RRVΔPAN bacmid,

rORF50/RTA plasmid and either an empty vector control or a PAN RNA expression vector. 4 h after transfection, the cells were induced into the lytic phase with 100

nM TSA. In the same manner as described above, PAN RNA levels (G), viral transcript levels (H), extracellular released viral DNA (I) and intracellular viral DNA (J)

were analyzed. Data are the average of three biological replicates and error bars represent standard deviations of the mean.

https://doi.org/10.1371/journal.ppat.1007389.g002
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different in sequence, can substitute for each other’s function during the lytic phase of herpes-

viral infection.

KSHV and RRV PAN RNA do not associate specifically with host or viral

chromatin

Previous studies using ChIRP suggested that KSHV PAN RNA associates broadly with host

and viral chromatin [10, 11]. We revisited this hypothesis using an alternative chromatin map-

ping technique known as CHART [20] to identify association sites for KSHV and RRV PAN

RNA. Because these two lncRNAs can functionally substitute for one another, we reasoned

that any chromatin interaction sites essential for production and release of progeny viral parti-

cles should be conserved. To reduce the high background common to both CHART and

ChIRP technologies, we applied three strategies: (1) testing both KSHV and RRV PAN RNA

homologs for similar sites of chromatin association; (2) exploring PAN RNA association as a

function of time after inducing the lytic phase; and (3) using two independent capture oligonu-

cleotide sets for each PAN RNA to limit background and selection of non-specific binding

sites.

Expression profiles of PAN RNA during the lytic phase were analyzed after induction of

BJAB RRV cells or KSHV-carrying BCBL-1 cells with 500 nM TSA or 600 μM valproic acid,

respectively; RNA was collected at multiple time points. For the CHART studies, we assessed

PAN RNA-chromatin association when the lncRNAs were at 25%, 75% and 100% of the maxi-

mal expression level. Northern blot analysis of KSHV and RRV PAN RNA revealed that these

values were achieved at 18, 24 and 48 h for KSHV (Fig 3B) and 16, 24 and 36 h for RRV (Fig

3F).

Candidate CHART capture oligonucleotides were designed according to specifications of

the CHART protocol [20] and their ability to bind PAN RNA was determined by RNase H

sensitivity assays. RNase H cleaves the RNA strand of RNA-DNA duplexes and thus a DNA

oligonucleotide capable of hybridizing to PAN RNA produces a cleavage product that can be

detected on a Northern blot. Schematics of the tested CHART PAN RNA oligonucleotides in

Fig 3A and 3E illustrate the oligonucleotide binding sites on each of the two PAN RNAs. RRV

PAN RNA was only moderately accessible (Fig 3G), while KSHV PAN RNA was fully accessi-

ble to antisense oligonucleotide binding and cleavage by RNase H (Fig 3C) at all time points

tested. This may reflect a difference in the complement of proteins bound to each PAN RNA.

The pulldown efficiencies of RNase H-candidate CHART capture oligonucleotides were

determined by incubating biotin-labeled oligonucleotides with streptavidin beads and nuclear

lysate pre-cleared with unbound beads. After stringent high-salt washing, RNAs purified on

the streptavidin beads were analyzed by Northern blot (Fig 3D and 3H). To reduce back-

ground, two sets of pulldown oligonucleotides were chosen based on the criterion that pull-

down efficiency be greater than 10% of the input sample. The exception to the use of two

oligonucleotides was the KT493 oligonucleotide, which binds a repeat sequence in RRV PAN

RNA and alone has an excellent pulldown efficiency (Fig 3E and 3H, KT493). The second oli-

gonucleotide set for RRV PAN RNA consisted of tkv440 and tkv539. The KSHV CHART oli-

gonucleotide set 1 (oligonucleotides E and K) and set 2 (oligonucleotides F and L) each

contained oligonucleotides that target regions near the middle and 30 end of the transcript,

avoiding the ENE stabilization element and not overlapping the K7 transcript (Fig 3A). The

pulldown efficiency was ~19% for oligonucleotide set 1 and ~22% for oligonucleotide set 2

(Fig 3D). PAN RNA is observed as two bands on a Northern blot following the sonication step

of the CHART procedure. The small fraction of PAN RNA isolated from the latent sample was

generated by the 1–3% of cells undergoing spontaneous lytic reactivation.
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Fig 3. Selection of PAN RNA sequences for use in CHART. (A) Schematic of KSHV PAN RNA indicating the location of known RNA elements MRE (Mta-

response element) [57] and ENE (element for nuclear expression) [16], as well as 12 complementary oligonucleotides (A to L) tested for their RNaseH-targeting

activity. The overlapping open reading frame K7 is indicated. (B) BCBL-1 cells were induced with 600 μM valproic acid for the indicated time (latent is 0 h); then

RNA was harvested. RNA levels of KSHV PAN RNA, KSHV ORF71-72 latent transcript and RNaseP RNA were analyzed by Northern blot. Quantification of three

biological replicates normalized to RNase P RNA is shown. (C) Representative RNaseH assays of PAN RNA in BCBL-1 nuclear lysates assessed by Northern blot.

No difference in cleavage pattern was observed for the three time points tested. NS: non-specific oligonucleotide complementary to GFP mRNA. (D) Representative

enrichment of PAN RNA following CHART RNA isolation with two distinct oligonucleotide sets (blue: oligonucleotides E and K, orange: oligonucleotides F and

L). PAN RNA is observed as two bands on a Northern blot following the sonication step of the CHART procedure. Relative to input, approximately 20% of PAN

RNA was isolated at each time point. The small fraction of PAN RNA isolated from the latent sample was generated by the 1–3% of cells undergoing spontaneous

lytic reactivation. (E) Schematic of RRV PAN RNA indicating the location of the ENE, as well as 3 complementary oligonucleotides tested for their RNaseH-

targeting activity. (F) BJAB RRV cells were induced with 500 nM TSA for the indicated time (latent is 0 h); then RNA was harvested. RNA levels of RRV PAN RNA

and RNaseP RNA were analyzed by Northern blot. Quantification of three replicates is shown. (G) Representative RNaseH assays of PAN RNA in BCBL-1 nuclear

lysates assessed by Northern blot. Cleavage products are indicated by •. (H) Representative enrichment of RRV PAN RNA following CHART RNA isolation with

two distinct oligonucleotide sets (blue: oligonucleotides TKV440 and TKV539, orange: oligonucleotide KT493). PAN RNA is observed as two bands on a Northern

blot following the sonication step of the CHART procedure. Quantification of PAN RNA isolated during the CHART procedure is indicated below the Northern

blot. S: supernatant P: pellet.

https://doi.org/10.1371/journal.ppat.1007389.g003
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We evaluated PAN RNA association with chromatin for both KSHV and RRV using two

separate antisense capture oligonucleotide sets and several time points representing different

levels of PAN RNA expression. BCBL-1 cells containing KSHV and BJAB cells containing

RRV were induced into the lytic phase with 600 μM valproic acid or 500 nM TSA, respectively,

for up to 48 h prior to performing CHART enrichment of PAN RNA-associated genomic

DNA. CHART peaks were called for each time point, relative to input, using MACS2 software

(see Materials and Methods). Any genomic locus called as a peak was then assessed for its

enrichment score at the other three time points, regardless of whether the MACS2 software

independently identified it as a peak in the dataset. Sites of chromatin association at each time

point were identified as those genomic DNA loci that associate with PAN RNA in both oligo-

nucleotide sets in at least one of two biological replicates and whose enrichment increased

with respect to latent samples, which are largely devoid of PAN RNA (Fig 3B and 3F). PAN

RNA CHART peaks were then further separated into three categories: those with an enrich-

ment that peaked at 16, 24 or 48 h for KSHV, and at 18, 24 or 36 h for RRV, respectively. We

identified 1034 KSHV and 228 RRV PAN RNA CHART peaks (Fig 4A and S1 Appendix).

Only two peaks overlapped between the two PAN RNAs, chr5:1960322–1961985 and

chr21:10730325–10731108, albeit with different temporal patterns of enrichment (Fig 4A).

Neither of these genomic locations reside within a gene or genomic regulatory feature reported

in the UCSC genome annotation.

The lack of overlap between binding sites on host chromatin for the two PAN RNA

homologs was not limited by the high-throughput CHART procedure because after isolat-

ing genomic DNA associated with KSHV PAN RNA, putative KSHV CHART peaks, but

not RRV CHART peaks, could be verified as enriched by qPCR (Fig 4B). Published ChIRP

analyses of KSHV PAN RNA identified the viral ORF50 promoter as a specific site of

chromatin interaction. Using CHART analysis, we also–to some extent–isolated this

region; however, the peaks generated by the two KSHV oligonucleotide sets did not over-

lap and qPCR of CHART-isolated DNA showed enrichment only with one capture oligo-

nucleotide set (S3 Fig). This suggests that the KSHV ORF50 promoter is likely a region of

open chromatin that is readily accessible for non-specific binding events–not a specific

site of PAN RNA interaction.

To evaluate whether the same protein factor might bind both PAN RNA homologs, but

recruit the lncRNAs to separate, non-overlapping sites on the genome, we compared the PAN

RNA CHART peaks to 275 ENCODE eCLIP (enhanced crosslinking and immunoprecipita-

tion) datasets and 162 ENCODE ChIP (chromatin immunoprecipitation) datasets. Of the 276

factors represented in these two analyses, none overlapped with greater than 15% of either the

KSHV or RRV CHART peaks (Fig 4C and S2 Appendix). Additionally, no single factor signifi-

cantly overlapped with both PAN RNA CHART datasets.

Finally, we fractionationated lytic BCBL-1 cells and analyzed the distribution of PAN RNA

between the nucleoplasm and chromatin by Northern blot (Fig 4D). Surprisingly, KSHV PAN

RNA could not be detected in the chromatin fraction. Three salts (NaCl, LiCl and NH4Cl)

were used in the same fractionation protocol to minimize the chance that the absence of PAN

RNA signal in the chromatin was due to the fractionation buffer. These salts lie on different

points along the Hofmeister series–a classification that orders ions by their ability to stabilize

and solubilize proteins [27]. The quality of fractionation was verified both by Western blotting

and qRT-PCR (Fig 4D and 4E). Although PAN RNA was undetectable in chromatin, unspliced

transcripts and the ncRNA Kcnq1ot1 were chromatin-enriched as expected (Fig 4E) [28, 29],

indicating that our fractionation protocol is capable of isolating chromatin-associated RNA.

These data suggest that the majority of PAN RNA does not associate with chromatin.

Chromatin association of PAN RNAs
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KSHV PAN RNA does not alter the activity of the viral transcription pre-

initiation complex

Loss of KSHV PAN RNA results in reduced K8.1 and ORF65 late lytic protein expression ([2],

Figs 2 and S1). Transcription of KSHV late lytic genes is facilitated by a viral pre-initiation

complex (vPIC) encoded by the viral genome [30]. This six-component complex includes a

TATA-binding protein ORF24 and five proteins of unknown function (ORF18, ORF30,

ORF31, ORF34, ORF66). Viral genes transcribed by this complex contain a unique TATA

box typified by the consensus sequence TATT [31, 32]. PAN RNA does not associate with

chromatin and is therefore unlikely to be an integral component of the vPIC. However, post-

transcriptional or post-translational modification of vPIC components mediated by PAN

RNA could alter the activity of the transcription factor complex.

To test whether KSHV PAN RNA affects vPIC transcriptional activity, we (1) assessed

whether knockdown of PAN RNA alters the steady-state mRNA level of any vPIC component;

(2) analyzed vPIC-regulated transcript levels upon PAN RNA knockdown; and (3) monitored

the influence of PAN RNA expression on a dual luciferase reporter system that expresses firefly

luciferase from a vPIC-dependent promoter. At 48 h post lytic induction of BCBL-1 cells,

when late lytic transcription is underway, qPCR analyses revealed that the steady-state levels of

neither vPIC component mRNAs nor vPIC-regulated transcripts were significantly altered

upon knockdown of PAN RNA, as compared to control knockdown samples (Fig 5A and 5B).

The approximate fold-change in mRNA levels of viral transcripts upon knockout of the vPIC

component, ORF31, are indicated by a dotted line (Fig 5B) [33]. If PAN RNA cooperates with

the vPIC to facilitate transcription of the indicated target genes, we would expect a change in

the levels of these transcripts to be similar in the absence of PAN RNA to that in the absence of

ORF31.

To directly test whether PAN RNA expression affects the activity of the vPIC, we took

advantage of a luciferase reporter system whose expression is activated only in the presence of

all six viral transcription factors [30]. Upon transient transfection of this vPIC reporter and

constructs encoding the six vPIC components in HEK293T cells, a 5-fold increase in luciferase

activity was observed when the firefly luciferase gene was present downstream of the late lytic

K8.1 promoter, but not downstream of the early ORF57 promoter (Fig 5C). ORF50/RTA

expression is required to transcribe PAN RNA from its endogenous promoter [34]. Control

samples containing an ORF50/RTA or PAN RNA expression plasmid alone did not affect

luciferase levels. When the ORF50/RTA and PAN RNA expression plasmids were both pres-

ent, and therefore PAN RNA was expressed, the extent of luciferase activation by the vPIC

remained unchanged (Fig 5C; RTA+PAN). Although the components of the vPIC complex are

conserved in RRV, a late lytic viral transcription factor complex has not yet been described.

Together, these data suggest that the reduction in late lytic viral gene expression observed

upon PAN RNA knockdown does not occur via the concerted action of this lncRNA and the

vPIC.

PAN RNA is required for efficient nuclear export of transcripts

To determine how loss of PAN RNA results in misregulation of late lytic viral genes, we

induced BCBL-1 TREx cells into the lytic phase for 24 h with 1 μg/mL doxycycline following

knockdown of PAN RNA or, as a control, GFP mRNA. Doxycycline regulates expression of

the inducible gene encoding the lytic activator RTA/ORF50. As observed previously, knock-

down of KSHV PAN RNA using two separate antisense oligonucleotides resulted in a specific

reduction in late lytic viral protein expression (K8.1 and ORF65) (Fig 6A) and in progeny viri-

ons released into the media (Fig 6B), but no change in the intracellular viral genomic DNA

Chromatin association of PAN RNAs
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Fig 4. PAN RNA does not associate with chromatin as assessed by CHART or by cell fractionation. (A) Distribution of PAN RNA CHART peak

loci along all 23 human chromosomes and on the viral chromosome (V). KSHV CHART peaks are closed circles and RRV CHART peaks are open

circles. CHART peaks are plotted for the time point at which the enrichment of that genomic locus was at its maximum. Only two overlapping peaks

were called in KSHV and RRV CHART datasets and are plotted on a separate line. See S1 Appendix for detailed data. (B) qPCR validation of KSHV

PAN RNA binding to genomic loci identified by CHART peak calling. DNA associated with KSHV PAN RNA was isolated from BCBL-1 cells 48 h

after lytic induction using CHART oligonucleotide set 1. See S3 Appendix for qPCR primer and amplicon details. Peaks were identified in only the

KSHV dataset (KSHV PAN CHART, Peaks 1 and 2), only the RRV dataset (RRV PAN CHART, Peaks 4 and 5) or both datasets (Both PAN CHART,

Peak 4). The negative control sites are on the viral genome and lacked any CHART enrichment in either dataset. (C) Overlap of CHART peaks with

ENCODE eCLIP (275 datasets; 104 proteins) and ENCODE CHIP (162 proteins) peaks. Percentages represent the fraction of PAN RNA CHART

peaks that overlap each ENCODE dataset. None of the datasets overlap more than 15% of the PAN RNA CHART peaks. The intensity of blue shading

represents the extent of overlap between the datasets. Detailed data are shown in S2 Appendix. (D) Subcellular fractionation of lytic BCBL-1 cells does

not detect PAN RNA in the chromatin fraction by Northern blot. Western blot for FUS (nucleoplasmic), Histone H4 (chromatin) and GAPDH
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copy number (Fig 6C). However, when we isolated total RNA from the same cells and assessed

mRNA levels by qRT-PCR, we did not observe a significant reduction in the mRNA encoding

late lytic viral proteins upon loss of KSHV PAN RNA expression (Figs 6D and S5). This sug-

gests that the decrease in late lytic protein expression observed upon PAN RNA knockdown is

not the result of changes in transcription or RNA degradation rates. Effects on protein levels,

without a corresponding change in RNA levels could be a consequence of reduced export of

mRNA from the nucleus, reduced protein production, accelerated protein decay or any combi-

nation thereof.

PAN RNA is predominantly, if not exclusively nuclear. Therefore direct effects on the cyto-

plasmic processes of protein production or decay are unlikely. Nonetheless, we assessed

whether protein decay rates are altered in the absence of PAN RNA expression. After 48 h of

lytic induction, BCBL-1 cells were treated with the translation elongation inhibitor cyclohexi-

mide. At 0, 8, 24 and 30 h of translation inhibition, equivalent numbers of cells were harvested

and analyzed by Western blot for the early viral protein ORF6, late viral proteins K8.1 and

ORF65, as well as the host protein GAPDH (Fig 6G). Little difference in protein decay was

(cytoplasmic) proteins verifies the purity of the three resulting fractions. Three different salts were exchanged in all fractionation buffers: NaCl, LiCl

and NH4Cl. (E) qPCR RNA analysis of the fractionated samples, plotted as the amount of each transcript in the chromatin relative to the nucleoplasm.

Kcnq1ot1 is a control chromatin-associated ncRNA [28, 29]. Data are the average of three biological replicates.

https://doi.org/10.1371/journal.ppat.1007389.g004

Fig 5. Loss of PAN RNA does not affect the activity of the KSHV late lytic transcription factor complex. BCBL-1

cells were electroporated with oligonucleotides antisense either to GFP mRNA (control KD) or to KSHV PAN RNA

and then induced with 600 μM valproic acid for 48 h. RNA was harvested and analyzed by qPCR to determine changes

in viral transcription factor mRNA levels (A) and expression of target genes of the viral late lytic transcription factor

complex (B). The approximate change in mRNA levels upon knockout of the viral transcription factor ORF31 are

shown as a dotted line for reference [33]. Data are the average of three biological replicates. (C) HEK293T cells were

transiently transfected with viral late lytic transcription factor expression plasmids as well as luciferase reporter

plasmids (pGL4). The firefly luciferase ORF was located downstream of the viral ORF57 promoter (pGL4 ORF57) or

the viral K8.1 promoter (pGL4 ORFK8.1). vPIC-ORF24 is a negative control sample that lacks the ORF24 expression

plasmid. RTA is a transcription factor that is required for expression of PAN RNA. Samples were normalized to pGL4

ORFK8.1+vPIC+vector. Data represent the average of three biological replicates, each done in three technical

replicates.

https://doi.org/10.1371/journal.ppat.1007389.g005
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Fig 6. Knockdown of KSHV PAN RNA reduces nuclear export of mRNA transcripts. BCBL-1 TREx cells were electroporated with oligonucleotides antisense either

to GFP mRNA (control KD) or to KSHV PAN RNA, followed by induction into the lytic phase with 1 μg/mL doxycycline. (A) 48 h after induction, cells were harvested
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observed upon knockdown of PAN RNA, as compared to control knockdown samples (Fig

6H). This suggests that PAN RNA is not influencing protein degradation of late lytic viral

proteins.

To evaluate whether PAN RNA affects export of viral mRNA from the nucleus, we fraction-

ated lytically-induced BCBL-1 cells following knockdown of either PAN RNA or, as a control,

GFP mRNA. The quality of fractionation was assessed by Western blot and by qRT-PCR (Fig

6E and 6F) for a cytoplasmic marker (GAPDH protein) and nuclear markers (FUS protein,

unspliced actin RNA, unspliced GAPDH RNA). The fraction of both host and viral mRNAs

decreased in the cytoplasm and increased in the nucleoplasm after knockdown of PAN RNA

(Fig 6F). This was true of both late and early lytic viral transcripts, as well as host GAPDH and

actin mRNAs. Importantly, transcripts that are exported from the nucleus by alternative path-

ways, such as 5S rRNA [35, 36], SRP RNA [37] and HIST2AC mRNA [38], are not affected by

knockdown of PAN RNA. Fractionation of BJAB-RRV cells, despite evidence for a clean frac-

tionation as assessed by Western blot (S6A Fig), was prone to RNA leakage from isolated

nuclei, which complicates analysis of these samples. Nonetheless, a reduction in nuclear

mRNA export of viral mRNAs is also observed in BJAB-RRV cells following knockdown of

RRV PAN RNA (S6B Fig). We conclude that PAN RNA affects nuclear mRNA export during

the lytic phase of viral infection.

Discussion

We have shown that two herpesviral PAN RNA homologs are functionally interchangeable,

despite lacking appreciable nucleotide sequence conservation. Knockdown or knockout of

KSHV PAN RNA was previously shown to result in loss of late lytic protein expression, and

consequently, a reduction in release of new virions into the surrounding media [2, 10]. In this

study, we demonstrate that knockdown or knockout of RRV PAN RNA likewise causes a

reduction in release of encapsulated viral DNA (Figs 1 and 2). Furthermore, by expressing

either RRV or KSHV PAN RNA from the appropriate herpesvirus species-matched PAN RNA

promoter, both PAN RNAs are capable of restoring progeny virion release from HEK293T

cells when co-expressed with either a KSHV or RRV PAN RNA knockout bacmid in

HEK293T cells (Fig 2). RRV PAN RNA is also capable of rescuing the deficiency in late lytic

protein expression observed with the KSHVΔPAN bacmid. In contrast to BCBL-1 and BJAB

cells, the level of intracellular viral DNA produced from a PAN RNA knockout bacmid

expressed in HEK293T cells is reduced. This suggests that in addition to lacking late lytic viral

proteins required for packaging viral DNA, the viral DNA itself is not available for incorpo-

ration into progeny virions. This is likely due to a deficiency in robust lytic induction, as

reported [10]; we also observed reduced expression of early mRNA, as well as late mRNA (Fig

2). Such subtle differences in phenotype associated with the loss of PAN RNA could be attrib-

utable either to cell type differences–a phenomenon that has been observed for other herpes-

viral gene knockouts and viral gene expression analyses [39–41]–or to the residual level of

for Western blot analysis of the early viral protein ORF6, and late viral proteins K8.1 and ORF65. (B) Seven days after induction, encapsulated viral DNA released into

the media was harvested and quantified by qPCR; values were normalized to a control plasmid added at the onset of purification. (C) Seven days after induction,

intracellular DNA was harvested from the cells and the level of viral DNA relative to host DNA was determined by qPCR. (D) 48 h after induction, a subset of the cells

was harvested for RT-qPCR quantification of transcript levels in PAN RNA knockdown cells, relative to those in control knockdown cells. Additional transcript level

quantifications are shown in S6 Fig. (E) 24 h after induction, the purity of cellular subfractions was assessed by Western blot for cytoplasmic (GAPDH) and

nucleoplasmic (FUS) contents. (F) RT-qPCR analysis of fractionated BCBL-1 TREx cells. The fraction of each transcript present in the cytoplasm, relative to the nucleus,

is plotted. (G) Representative Western blot analysis of BCBL-1 TREx cells treated with 100 μg/ml of the translation elongation inhibitor cycloheximide for the indicated

times. (H) Quantification of data represented in panel (G). Degradation of the late viral protein ORF65 is slightly reduced following PAN RNA knockdown. Data are the

average of three biological replicates and error bars represent standard deviations of the mean.

https://doi.org/10.1371/journal.ppat.1007389.g006
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PAN RNA present after knockdown in B-cells, which may be sufficient to promote robust

viral DNA replication.

The herpesviral noncoding PAN RNA is essential to the viral life cycle, but the molecular

mechanism by which this lncRNA acts remains unclear. Seven hypothetical models for PAN

RNA function have been proposed [42–44]. Three of these posit that PAN RNA associates

with chromatin [9–11]. We conclude that the amount of PAN RNA that purportedly associates

with chromatin must be very small because we were unable to detect any KSHV PAN RNA in

the chromatin following fractionation of BCBL-1 cells, despite detecting other known chroma-

tin-associated RNAs (Fig 4A and 4B). Nonetheless, because KSHV and RRV PAN RNA homo-

logs can functionally substitute for each other, we tested whether direct association with

chromatin loci pertinent for producing progeny virions is indeed conserved between these two

herpesviruses. We developed a CHART scheme that involved two different capture oligonucle-

otide sets and three time points during the lytic phase for both herpesviruses (Fig 3). When the

CHART peaks representing sites of PAN RNA chromatin association were compared between

KSHV and RRV, we observed only two host chromatin loci in common between the two

homologs (Fig 4). Neither of these chromatin loci lie within or near annotated genes, chroma-

tin marks or repetitive elements, which makes their relevance questionable. The dearth of

peaks that overlap between the KSHV and RRV PAN RNA CHART datasets was confirmed by

qPCR analyses demonstrating that KSHV PAN RNA does not associate with chromatin loci

identified as RRV CHART peaks (Fig 4B).

We tested whether the two PAN RNA homologs might be localized on separate, non-over-

lapping regions in the genome either by a DNA binding protein or an RNA binding protein

associated with nascent RNA. We compared our PAN RNA CHART peak datasets to all

ENCODE CHIP and eCLIP datasets available at the time of our analysis. Of the 264 proteins

included in this analysis, none exhibited greater than 15% overlap with either of our datasets.

The protein that showed the greatest overlap (14.3%) with the KSHV PAN RNA dataset, but

was nearly absent from that of RRV, was FOXK1. The binding site for a different forkhead pro-

tein, FOXD3, was enriched in PAN RNA ChIRP peaks [11]. Forkhead transcription factors are

the key effectors of many essential signaling pathways [45] and bind the DNA consensus

sequence GTAAACA, but flanking sequences or cofactors appear to influence binding of the

different family members [46]. However, the correlation of KSHV PAN RNA with forkhead

protein binding sites does not appear to be conserved for RRV PAN RNA.

Previous work studying PAN RNA association with chromatin used a technique similar to

CHART, known as ChIRP [13]. The ChIRP scheme used would identify any PAN RNA chro-

matin association sites, but genuine sites might be obscured by the high number of non-spe-

cific and off-target background peaks. The raw KSHV PAN RNA ChIRP data [11] are not

available for direct comparison with the CHART data presented here, but from the published

PAN RNA ChIRP gene list, we do not observe any overlap in chromatin loci between the two

datasets. This lack of reproducibility reinforces our conclusion that PAN RNA does not associ-

ate with specific sites on host or viral chromatin. The KSHV ORF50 promoter was validated as

a site of PAN RNA chromatin association as evidenced by the ability of the demethylases

JMJD3 and UTX to interact with the ORF50 promoter only when PAN RNA is expressed [10];

however, we hypothesize that this result is a false positive. The ChIRP study reported that

expression of ORF50 is severely reduced in the absence of PAN RNA [10]. The lack of associa-

tion between PAN RNA-associated factors JMJD3 and UTX and the ORF50 promoter

observed on the KSHVΔPAN bacmid could be attributable to reduced ORF50 expression, and

hence the extent of open chromatin at this locus. The chromatin sites observed in both the

ChIRP and CHART data likely represent non-specific enrichment of open chromatin regions

that readily interact with the highly abundant nuclear PAN RNA. This is supported by the
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poor overlap of PAN RNA CHART peaks between datasets; for each time point, approximately

1% or fewer of the CHART peaks were called in all four datasets (S4 Appendix). At this point

we cannot rule out the possibility that PAN RNA globally reorganizes the nucleus through

molecular crowding, resulting in occasional, transient, non-specific DNA interactions. It is

well established that herpesviruses reorganize the host nucleus and concentrate viral DNA into

replication compartments [47]. Together, our results suggest that association of PAN RNA

with specific host or viral chromatin loci is neither the primary nor pertinent function of this

lncRNA during the viral life cycle.

Campbell and colleagues found that the knockdown of PAN RNA leads to the recruitment

of LANA protein at viral promoters, an activity normally associated with latency, suggesting a

role for PAN RNA in latent-lytic transitions and chromatin association [12]. However, our

study indicates that PAN RNA does not associate with the viral chromatin above background

levels. We interpret the effect of PAN RNA on LANA, despite in vitro binding studies, to be

due to inhibition of virion production. The unpackaged state of newly synthesized viral

genomes in the absence of PAN RNA may lead to increased accessibility for LANA binding.

Although PAN RNA is considered exclusively nuclear, ribosome footprint profiling

detected ribosome-protected regions of KSHV PAN RNA within three open reading frames

(ORFs) at the 50 end of the transcript, which overlaps with K7 [48]. Due to the extreme abun-

dance of PAN RNA, if less than 1% of the PAN RNA transcripts escape the nucleus and are

translated, a non-trivial amount of PAN protein could be produced [42]. Comparison of the

sequence of KSHV and RRV PAN RNAs indicate that the ORFs are not conserved in nucleo-

tide sequence, peptide sequence or peptide length (S4A and S4B Fig). KSHV PAN ORF1.1

contains a putative signal peptide, which might permit the peptide to traverse the secretory

pathway [48]. A peptide of different length and sequence could be expressed from RRV PAN

RNA (nts 682–786) that likewise contains a putative signal peptide (S4C Fig). The coding

potential of PAN RNA homologs remains a topic for further study.

We suggest that the absence of PAN RNA during the viral lytic phase perturbs efficient

nuclear export of mRNAs. A modest reduction in nuclear export of several viral and host

mRNAs was observed when either KSHV or RRV PAN RNA was eliminated indicating that

this is a conserved phenotype of PAN RNAs. Despite the change in the nuclear-cytoplasmic

distribution of early viral transcripts, and host GAPDH and actin mRNA, we did not observe a

change in corresponding protein levels. A reduction in mRNA export likely has a more pro-

nounced effect on diminishing the level of late lytic viral proteins due to the absence of late

lytic transcription and translation prior to PAN RNA expression. In contrast, expression of

host transcripts and early viral transcripts may generate a protein population that remains

unchanged for the duration of the PAN RNA knockdown experiments. Consistent with this

hypothesis, the half-life of GAPDH has been estimated to be ~38 h–significantly longer than

the time frame of our assays [49]. Whether PAN RNA directly interfaces with mRNA nuclear

export machinery and why late lytic protein expression, specifically, is affected remains a topic

of future research.

We hypothesize that PAN RNA’s function is to associate with RNA binding proteins, such

as PABPC [50], that are relocalized from the cytoplasm to the nucleus during viral infection.

In the absence of PAN RNA, such as in the case of a knockout or knockdown, an abundance

of unsequestered RNA binding proteins mislocalized in the nucleus could interfere with

nuclear mRNA export, viral replication and gene expression. A study of PAN RNA secondary

structure in the cell indicates that some regions of KSHV PAN RNA are protected from chemi-

cal probing and may be sites of protein interaction [44].

PAN RNA represents a cautionary tale for the investigation of RNA association with chro-

matin, whereby sequence reads of DNA cross-linked to an abundant RNA give the appearance
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of specific interactions. Rather than the latest technological advances, well-controlled, unbi-

ased approaches should be applied to determine the true biological role of the ncRNA under

investigation. Protein-RNA co-purification studies may also be subject to false positive interac-

tions. This has been especially true of PAN RNA, which–by virtue of its abundance and diffuse

nuclear distribution–can transiently and non-specifically associate with many factors.

Molecular tools available for the study of lncRNAs such as PAN RNA are still under devel-

opment. Most lncRNAs are of low abundance and lack obvious nucleotide sequence conserva-

tion that aids in identification of essential sequence elements. Here, we have exploited the use

of a ncRNA from a related virus to provide a genetically-tractable model system. Viruses thus

offer a unique advantage over host ncRNAs for interrogating questions in RNA biology. PAN

RNAs may be multifunctional and fulfill different roles at each stage of the lytic phase. Moving

forward, carefully designed and innovative approaches are needed to expand insights into the

multifaceted functions of gammaherpesviral PAN RNAs.

Materials and methods

Cell culture, inductions and antibodies

Body cavity based lymphoma-1 (BCBL-1) [51], BCBL-1 TREx-RTA (gift from Jae Jung, USC)

and BJAB RRV cells [19] were maintained in RPMI supplemented with 1% L-glutamine and

20% FBS. Human embryonic kidney 293T (HEK293T) cells (ATCC CRL-3216) were main-

tained in DMEM supplemented with 1% L-glutamine and 10% FBS. BCBL-1 cells were

induced with 600 μM valproic acid, BCBL-1 TREx-RTA were induced with 1.5 μg/mL doxycy-

cline, BJAB RRV cells were induced with 100 or 500 nM TSA, where indicated. For transfec-

tion of BCBL-1 and BCBL-1 TREx-RTA cells, 10 million cells were pelleted and washed once

with media lacking serum. Either 2 nmoles of RNaseH targeting oligonucleotide or 15 μg of

plasmid DNA were electroporated into 10 million cells in a 0.4 cm cuvette at 975 μF/210 mV.

HEK293T cells were transfected with Mirus TransIT-293 reagent according to the manufac-

turer’s directions. Antibodies used are 1:1000 anti-FUS (Proteintech Group, 11570-1-AP),

1:1000 anti-Histone H4 (Upstate Cell Signaling Solutions, 07–108), 1:2000 anti-GAPDH

(Sigma G8795), 1:500 anti-KSHV K8.1 (Advanced Biochemicals Incorporated) and 1:1000

anti-KSHV ORF6 (gift from G. Hayward at The Johns Hopkins University). Cells were treated

with 100 μg/mL cycloheximide for the indicated times.

Cloning and plasmids

The RRV wild-type bacmid was a kind gift from the Desrosiers lab (University of Miami) [26].

This bacmid was used by Genebridges to construct the RRVΔPAN bacmid, which was con-

firmed by direct sequencing and enzymatic digestion (S2B Fig). Luciferase reporters and vPIC

transcription factor expression plasmids were previously described [30]. KSHV PAN RNA

and RRV PAN RNA fragments were assembled downstream of the KSHV PAN promoter

using Gibson PCR assembly and cloned into the BamHI and SpeI sites of p4030-16TR [52].

KSHV PAN RNA was cloned downstream of the RRV PAN promoter using Gibson PCR

assembly into pCDEF4-RRV PAN RNA [8].

RNaseH assays

Endogenous RNaseH cleavage was assayed as described [53]. Briefly, 1–5 x 107 cells were

resuspended in 100 μL/107 cells of Sucrose Buffer I (0.32 M sucrose, 3 mM CaCl2, 2 mM

MgAc2, 0.1 mM EDTA, 10 mM Tris-HCl pH 8.0, 1 mM DTT, 0.5 mM PMSF and 0.5% (v/v)

NP-40). After centrifuging the lysate at 500 x g for 5 min at 4˚C, the supernatant was removed.
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Nuclei were washed in 1 mL Sucrose Buffer I lacking NP-40. After removing the supernatant,

the nuclei pellet was resuspended in 20 μL/107 cells of Low Salt RNA Buffer (20 mM HEPES,

pH 7.9, 25% glycerol, 1.5 mM MgCl2, 0.02 M KCl, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM

PMSF). 1/5 volume of High Salt RNA Buffer (20 mM HEPES, pH 7.9, 25% glycerol, 1.5 mM

MgCl2, 0.8 M KCl, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, 1% NP-40) was added five

times. The nuclear extract was then incubated at 4˚C on a rotary platform for 20 min and

diluted 1:2.5 with RNA Nuclear Diluent (25 mM HEPES pH 7.6, 25% glycerol, 0.1 mM EDTA,

0.5 mM DTT, 0.5 mM PMSF). 10 μL 100 μM DNA oligonucleotides were added to 90 μL of

nuclear extract and incubated for 30 min at 37˚C. Reactions were stopped by adding 0.5 mL

TRIzol and purified according to the manufacturer’s protocol. Samples were run on a 1.2%

formaldehyde agarose for a northern blot analysis.

CHART assay

CHART was carried out as described [20]. CHART capture oligonucleotides were designed

according to instructions in [20]. The pulldown oligonucleotides consisted of OLIGO SEQ-30

end-TEG and were ordered from IDT. Sequencing libraries were constructed by the Yale Cen-

ter for Genomic Analysis (YCGA) and Yale Stem Cell Genomics Core using Illumina CHIP-

Seq Sample Prep Kit. Sequencing was performed on Illumina HISeq 2500 or 2000 instruments.

Each CHART time point was prepared in two biological replicates. CHART-seq data were

deposited in the Gene Expression Omnibus (GEO) under the accession number GSE121268.

Bioinformatic analyses

50-bp deep sequencing reads were mapped using Bowtie2 default settings to the custom indi-

ces containing both the appropriate viral genome (RRV accession #AF210726; KSHV acces-

sion #GQ994935) and the human genome. Reads that mapped to multiple genomic loci were

removed using samtools (samtools view input.bam | grep AS:i:0 | grep -v XS:i:0). MACS2

(https://pypi.python.org/pypi/MACS2) [54] was used to call peaks and determine the fold

enrichment for each dataset. For each time point, peaks were required to be (1) called by the

MACS2 software in at least one biological replicate for both CHART capture oligonucleotide

datasets, (2) have an enrichment score at least 1.5-fold greater than the latent sample, and (3)

be absent from the no-oligo control pulldown. For each peak that met these criteria, the aver-

age MACS2 enrichment score at that locus was determined for both biological replicates for

each of the three lytic phase time points. Each CHART peak was categorized by the time point

at which this average enrichment score was highest. CHART peaks from KSHV and RRV were

designated as overlapping if the peak regions called by MACS2 overlapped by at least 100 bp.

ENCODE [55] CHIP and CLIP datasets were downloaded from www.encodeproject.org and

compared to the KSHV and RRV peak genomic loci using the BEDTools suite intersect sub-

command [56].

Cell fractionation

Fractionation was performed on ice with pre-chilled buffers using either 36 h-induced KSHV-

infected BCBL-1 cells or 43 h-induced BJAB-RRV cells. The washed and pelleted cells were

resuspended in 100 μL of RLB buffer (10 mM Tris pH 7.5, 140 mM NaCl, 1.5 mM MgCl2, 10

mM beta-glycerophosphate, 0.5% Nonidet P-40). Digitonin (Sigma, D-1407) was added to a

final concentration of 25 μg/mL while wheat germ agglutinin (Sigma, L9640) was added to a

final concentration of 1 μg/mL (BCBL-1) or 1 mg/mL (BJAB-RRV) and the cells were incu-

bated on ice for 5 min to allow cell permeation. For lysis, the cells were carefully layered over

300 μL of RLB buffer containing sucrose (10 mM Tris pH 7.5, 140 mM NaCl, 1.5 mM MgCl2,
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24% (wt/vol) sucrose, 10 mM beta-glycerophosphate, 0.5% NP-40) and then centrifuged at

13,000 x g for 10 min at 4˚C. After centrifugation, supernatants were transferred into a fresh

microcentrifuge tube and designated as cytoplasmic fractions. The nuclear pellets were washed

three times in 100 μL of RLB buffer and spun down at 400 x g for 4 min at 4˚C; the first of

which contained digitonin at a final concentration of 25 μg/mL. The pelleted nuclei were

resuspended in 30 μL of NUN1 buffer (20 mM Tris pH 7.9, 75 mM NaCl, 0.5 mM EDTA,

0.125 mM PMSF, 50% glycerol, 10 mM beta-glycerophosphate, 0.1 mg/ml tRNA, 1x protease

inhibitor) and incubated on ice for 5 min. The nuclei were then lysed by adding 300 μL of

NUN2 buffer (20 mM Hepes pH 7.6, 7.5 mM MgCl2, 0.2 mM EDTA, 0.1 mg/ml tRNA, 0.3 M

NaCl, 1 M urea, 10 mM beta-glycerophosphate, 1% Nonidet P-40, 1 mM DTT, 1x protease

inhibitor). After incubation on ice for 15 min with occasional vortexing and centrifugation at

15,000 x g for 15 min at 4˚C, the supernatants were transferred to fresh microcentrifuge tubes

as the nucleoplasmic fractions. The chromatin-associated pellets were washed three times with

50 μL of NUN2 buffer, spun at 15,000 x g for 4 min at 4˚C, and 100 μL of chromatin buffer (50

mM HEPES pH 7.4, 100 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40, 1 mM

DTT, 10 mM beta-glycerophosphate, 1x protease inhibitor) added. The chromatin-associated

pellet was then sonicated at 4˚C for 10 cycles of 30 sec on, 30 sec off, using a Diagenode Bior-

uptor Pico sonication device. Input samples were sonicated using the same conditions. NaCl

was replaced with LiCl or NH4Cl in all buffers for indicated fractionations. One half of each

fraction was prepared for RNA and protein analysis. RNA was extracted with TRIzol per the

manufacturer’s instructions. The purity of the resulting fractions was assessed by qPCR and

Western blot.

vPIC luciferase assay

9 x 104 HEK293T cells were seeded per well in a 12-well plate. Transfections were conducted

using Mirus TransIT-293 transfection reagent with OPTI-MEM media 24 h post plating.

pGL4.16 constructs (pGL4.16 ORF57 and pGL4.16 K8.1; [30]) and a Renilla control vector

were used at a 1:1 molar ratio (300 ng /sample). Total DNA was kept constant in each sample

by adding pBluescript SK+. Viral transcription factor plasmids were transfected in equimolar

amounts. Dual luciferase assays were conducted 24 h post transfection with the Dual-Lucifer-

ase Reporter Assay System (Promega, #E1910). The reagents were prepared according to the

manufacturer’s instructions and measurements were conducted with a GloMax-Multi Detec-

tion System (Promega). Luciferase measurements were recorded as the ratio of firefly to

Renilla luciferase activity and normalized to sample 7 (pGL4.16 K8.1 vPIC). Data presented

were from four independent experiments, each using mean values of technical triplicate

samples.

RT-qPCR analysis

RNA was purified with TRIzol and treated with RQ1 DNase (Promega) according to the man-

ufacturer’s protocols. 1 μg of RNA was used to generate cDNA with random hexamer primers

and Superscript III (Invitrogen) using the recommended protocol. cDNA was diluted 3-fold

and 0.75 μL was analyzed in a 15-μL qPCR reaction using FastStart Essential DNA Green Mas-

ter (Roche) SYBR reagent on a Roche Lightcycler 96. RNA levels were normalized to RNaseP

RNA levels, which do not change during lytic induction. To determine the extent of PAN

RNA overexpression in HEK293T cells relative to BCBL-1 cells, PAN RNA levels were normal-

ized to the average CT value of five viral transcripts (ORF18, ORF26, ORF4, ORF62 and

ORF67A), which accounts for variances in viral genome copy number and induction efficiency

between samples. For samples obtained from the same cell line, the fold-change in PAN RNA
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levels calculated using RNaseP RNA was comparable to the calculation using the five viral

transcripts.

Analysis of intracellular viral DNA levels

Seven days after lytic phase induction, 3 million cells were pelleted, washed with PBS and

resuspended in genomic DNA isolation buffer (100 mM NaCl, 10 mM Tris-Cl pH 8, 25 mM

EDTA, 0.5% SDS) with 0.1 mg/mL proteinase K. The solution was incubated overnight at

40˚C, phenol extracted, ethanol precipitated and diluted to 30 ng/μL prior to analysis by qPCR.

The average signal from two primer pairs specific to the viral genome was normalized to the

average signal from two primer pairs specific to the human genome.

Analysis of supernatant viral levels

Seven days after lytic phase induction, 1.5 mL of supernatant was collected, passed through a

0.45 micron filter and incubated with 20 units/mL DNase One (New England Biolabs) for 1 h

at 37˚C. Proteinase K lysis buffer (0.75% SDS, 0.1 M NaCl; 50 mM Tris, pH 7.5; 10 mM EDTA,

0.1 mg/mL proteinase K) was added to a final volume of 2 mL and then incubated at 40˚C for 1

h. 1 ng/mL of a control plasmid (psiCHECK-2) was added to each sample as a normalization

control for loss of DNA during subsequent phenol chloroform extraction and ethanol extrac-

tion. DNA was resuspended in 15 μL of ddH2O (resulting in 100-fold concentration) and ana-

lyzed by qPCR. The average signal from two primer pairs specific to the viral genome was

normalized to the signal from the control plasmid.

Supporting information

S1 Appendix. PAN RNA CHART peak coordinates.

(XLSX)

S2 Appendix. Comparison of ENCODE and CHART datasets.

(XLSX)

S3 Appendix. Oligonucleotide sequences.

(XLSX)

S4 Appendix. Reproducibility of PAN RNA CHART peak calling between replicates.

(XLSX)

S1 Fig. Attempted rescue of PAN RNA knockdown in BCBL-1 and BJAB RRV cells. (A)

BCBL-1 TREx cells were electroporated with oligonucleotides antisense either to GFP mRNA

(control KD) or to KSHV PAN RNA, as well as increasing amounts of plasmid encoding RRV

PAN RNA under the control of the KSHV PAN RNA promoter. The total DNA concentra-

tions were kept constant by adding empty pBluescript vector. Following electroporation, cells

were induced into the lytic phase with 1.5 μg/mL doxycycline. 48 h after induction, a subset of

the cells was harvested for Northern blot analysis of PAN RNA levels and for Western blot

analysis of late lytic proteins K8.1 and ORF65 and early protein ORF6. (B) RT-qPCR quantifi-

cation of PAN RNA levels relative to the average of five viral transcripts (ORF18, ORF26,

ORF4, ORF62 and ORF67A). RRV PAN represents data from KSHV PAN RNA KD with

15 μg RRV PAN RNA expression vector. (C) RT-qPCR analysis of the early viral transcript

ORF18 and two late viral transcripts ORF26 and ORF67A. (D) Seven days after lytic induction,

DNase-resistant encapsulated viral DNA levels in the media were assessed by qPCR and nor-

malized to an external loading control added at the onset of viral DNA isolation. (E) Seven

days after lytic induction, intracellular DNA was harvested and the level of intracellular viral
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DNA relative to host DNA was determined by qPCR. The average signal from two primer

pairs specific to the viral genome was normalized to the average signal from two primer pairs

specific to the human genome. (F) BJAB RRV cells were electroporated with oligonucleotides

antisense either to GFP mRNA (control KD) or to RRV PAN RNA, as well as increasing

amounts of plasmid encoding KSHV PAN RNA under the control of the RRV PAN RNA pro-

moter. The total DNA concentration was kept constant by adding empty pBluescript vector.

Following electroporation, cells were induced into the lytic phase with 100 nM TSA. 40 h after

induction, a subset of the cells was harvested for Northern blot analysis of PAN RNA levels

and for Western blot analysis of late lytic protein expression. In the same manner as described

above, PAN RNAs levels (G), viral transcript levels (H), extracellular released viral DNA (I)

and intracellular viral DNA (J) were analyzed. Data are the average of at least two biological

replicates; error bars represent standard deviations of the mean.

(TIF)

S2 Fig. Characterization of RRVΔPAN bacmid. (A) Sequence of the DNA cassette inserted

at the RRV PAN RNA locus. The entire PAN RNA sequence was deleted, including 140 bps

upstream and 22 bp downstream that are necessary to express RRV PAN RNA [8]. A 1641-bp

cassette was inserted between nucleotides 22394 and 23693 of the RRV genome reference

sequence (accession number AF210726). Lower case: wild-type RRV bacmid sequence. Upper

case: inserted DNA sequence including the PGK promoter (purple), kanamycin/neomycin

resistance open reading frame (grey) and two FRT sites (green). (B) Ethidium bromide stained

agarose gel of the RRV bacmid digested with indicated restriction enzymes. These analyses

and sequencing revealed no apparent rearrangements between the wild-type (WT) and ΔPAN

RRV bacmids.

(TIF)

S3 Fig. PAN RNA CHART analysis fails to reproduce enrichment of the KSHV ORF50

promoter determined by ChIRP. (A) qPCR of DNA isolated by KSHV PAN RNA CHART

oligonucleotide set 1 (see Fig 3A and 3D) using published primers for the KSHV ORF50 pro-

moter region [10]. (B) Genome browser view of the KSHV genome displaying KSHV CHART

data from the region of the ORF50 promoter. qPCR primers overlapping the previously

reported ChIRP enriched region [10] are shown in yellow. Set 1 (blue) and Set 2 (green) repre-

sent the KSHV PAN RNA CHART capture oligonucleotide sets. Mock denotes the sequencing

data from a control CHART enrichment lacking a capture oligonucleotide. Sites of enriched

DNA from the two KSHV CHART oligonucleotide sets do not overlap.

(TIF)

S4 Fig. KSHV PAN RNA short open reading frames are not conserved in RRV PAN RNA.

(A) Sequence alignment of a portion of the KSHV and RRV PAN loci. Candidate KSHV open

reading frames identified by ribosome footprint profiling [48] are indicated (ORF1.1, ORF1.2

and ORF1.3). Two putative overlapping RRV open reading frames are indicated (ORF1 and

ORF3). (B) Translation of indicated open reading frames. The peptide sequences are not con-

served between viruses. (C) Peptide sequence of an open reading frame identified at residues

682–786 of RRV PAN RNA. This sequence is predicted to contain a secretory signal peptide

by the SignalP 4.1 prediction program (www.cbs.dtu.dk/services/SignalP/). C-score predicts

cleavage site, S-score predicts signal peptide location, Y-score is a combined cleavage site score

that accounts for the location of the signal peptide.

(TIF)

S5 Fig. Knockdown of PAN RNA in BCBL-1 cells does not affect steady-state transcript

levels. BCBL-1 TREx cells were electroporated with oligonucleotides antisense either to GFP
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mRNA (control KD) or to KSHV PAN RNA and then induced into the lytic phase with 1 μg/

mL doxycycline. 48 h after induction, a subset of the cells was harvested for RT-qPCR quantifi-

cation of transcript levels in PAN RNA knockdown cells, relative to those in control knock-

down cells. The levels of KSHV ORF11 mRNA, and host unspliced GAPDH and unspliced

actin transcripts increased upon PAN RNA knockdown.

(TIF)

S6 Fig. Knockdown of RRV PAN RNA modestly reduces nuclear export of viral mRNA

transcripts. BJAB RRV cells were induced with 100 nM trichostatin-A (TSA) following elec-

troporation with antisense oligonucleotides complementary to either GFP mRNA (control

KD) or RRV PAN RNA (Oligo 493). After 40 h of lytic induction, cytoplasmic and nuclear

fractions were isolated. (A) Western blot analysis assesses the purity of the cytoplasmic

(GAPDH) and nuclear (FUS) fractions. (B) RT-qPCR analysis of fractionated BJAB-RRV cells.

The fraction of each transcript present in the cytoplasm, relative to the nucleus is plotted.

Despite extensive optimization of conditions, nuclei isolated from BJAB-RRV cells were prone

to RNA leakage, which obscures the results of this analysis. Unspliced actin did not yield a sig-

nal above background samples lacking reverse transcription.

(TIF)
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