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Introduction

Currently, in the field of cardiopulmonary bypass surgery, 
the foreign surfaces of extracorporeal circulation circuit 
devices, such as polyvinyl chloride tubes, hard-shell reser-
voirs, and oxygen membranes, are coated with a biocom-
patible polymer coating agent (BPCA) to reduce 
thrombogenicity.1–3 BPCA is composed of a hydrophobic 
backbone that adheres to circuit surfaces and a hydrophilic 
blood-contacting layer. The hydrophilic layer swells upon 
contact with blood, creating a water-filled boundary layer 
that maintains protein conformation and prevents surface 
activation.4 Without this coating, the blood is exposed to 
the circuit surface, activating the coagulation cascade. 

Although most devices in the cardiopulmonary bypass cir-
cuit are coated with BPCA, the hemofilter, which is used 
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for blood concentration or blood filtration, is not coated 
with BPCA.

Hemofilters are made of more than 10,000 hollow fib-
ers consisting of a polymer membrane. The polymer mem-
brane has side pores through which molecules can pass. 
The pore size is important for proper filtration perfor-
mance; only molecules smaller than the pore can pass, 
maintaining the concentrations of molecules larger than 
the pore. For example, one type of hemofilter, the high-
flux membrane, is widely used in hemofiltration; this filter 
has <0.01 and ⩾0.6 sieving coefficients for albumin and 
beta-2-microglobulin, respectively.5 Thus, albumin can 
only minimally pass, but beta-2-microglobulin can more 
readily pass through the membrane pores. Considering the 
principle of filtration, BPCA coating might be unsuitable 
in hemofilters because of the potential for the coating 
agent to expand on the membrane surface, narrowing the 
pore diameter.

If a BPCA-coated hemofilter could be used, favorable 
effects could be expected in terms of anticoagulation of the 
extracorporeal circulation, not only in cardiopulmonary 
bypass surgeries but also in hemodialysis treatment. In a 
patient undergoing hemodialysis, the blood is exposed to 
the hemofilter three times a week for 4–5 h per session;6,7 
therefore, antithrombotic properties are required.

To clarify the features of BPCA-coated hemofilters, we 
previously performed experiments to confirm that the 
BPCA coating did not disturb functions of diffusion and 
filtration and found that there is no malfunction of filtration 
and diffusion in BPCA-coated hemofilters.8,9 Therefore, 
further investigation of BPCA-coated hemofilters to evalu-
ate the antithrombotic effects is justified.

In this study, we aim to examine the anticoagulation 
effects of BPCA-coated hemofilters in contact with whole 
human blood using in vitro experiments.

Methods

In vitro experiments were performed to compare circuit 
pressures and blood coagulation markers in blood exposed 
to BPCA-coated and non-coated hemofilters at similar 
exposure durations.

Materials

The BPCA product (SEC-1™; Toyobo, Osaka, Japan) used 
in this study was a copolymer composed of hydrophobic 
alkyl acrylate, hydrophilic polyethylene glycol acrylate, and 
water-repellent silicone methacrylate. The coating proce-
dure involved spreading the BPCA layer using a solvent.

Eight columns consisting of polyethersulfone mem-
brane (Hemocrystal; MERA, Tokyo, Japan), which had the 
same lot number, were employed as hemofilters in this 
study. Hemocrystals had 1.1 m2 membranes and are con-
sidered high-flux membranes; the sieving coefficients of 
beta-2-microglobulin and albumin were 0.6 and ⩽0.01, 
respectively.10

An experimental circuit was configured consisting of a 
soft bag reservoir, polyvinyl chloride tubes, chambers, and 
a hemofilter and was installed with a roller pump, an infu-
sion pump, and two digital manometers, which can meas-
ure pressure up to 500 mmHg (Figure 1). Four experimental 
circuits coated with BPCA on the foreign surfaces of the 
circuit configurations including the hemofilter (PC1,2,3,4) 

Figure 1.  Experimental circuit. Human blood was collected in a soft bag reservoir, vibrated on the vibrator, and circulated with a 
roller pump. Two chambers were configured at the inlet and outlet pathways of the hemofilter to measure each pathway’s pressure. 
A line for protamine administration was positioned at the pathway before the inlet chamber, and protamine was administered by 
infusion pump. A sampling port was positioned at the pathway before the roller pump.
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were prepared, and four experimental circuits coated with 
BPCA on the foreign surfaces of the circuit configurations 
excluding the hemofilter (NC1,2,3,4) were also prepared. 
Those devices were coated with BPCA using the solvent 
infiltration method.

To evaluate the anticoagulation effects precisely, whole 
human blood was used. We recruited healthy volunteers, 
who each provided 200 mL of whole blood. A healthy vol-
unteer was defined as having a hemoglobin (HGB) con-
centration >13.5 g/dL, with no medical events within the 
prior 1 month, no transfusion history, and no current dis-
ease diagnosis. The ethic committees of the National 
Hospital Organization Kure Medical Center approved this 
study protocol, and written informed consent was obtained 
from each volunteer.

Procedures

For blood collection, a soft bag reservoir was prepared and 
3000 units of unfractionated heparin were added to the res-
ervoir. The blood was added to the soft bag reservoir using 
a 17-gauge needle, and the reservoir was continually shaken 
thoroughly in the vibrator during the test. Upon collecting 
200 mL of blood, the soft bag reservoir was disconnected 
from the needle and was connected to the experimental cir-
cuit, which was primed with saline. The hemofilter was 
filled with primed saline, filling both the inside and the out-
side of the membrane. The blood was recirculated at 
300 mL/min with a roller pump to mix the blood with pre-
primed saline in the circuit. After 3 min, 15 mg/min of pro-
tamine was administered to the circuit to reverse the 
heparinization. When 50 mg of total protamine was admin-
istered, administration was stopped. After 3 min, 6 mL of 
blood was sampled at the sampling port to evaluate base-
line coagulation markers. Subsequently, the blood recircu-
lation rate was changed from 300 to 100 mL/min, and the 
blood was continually recirculated for 240 min. The pres-
sures at the inlet and outlet chambers were measured every 
5 min. An amount of 6 mL of blood was sampled every 
40 min to measure coagulation markers.

To compare BPCA-coated versus non-coated hemofil-
ters, similar experiments were performed with four circuits 
using a BPCA-coated hemofilter and four circuits using a 
non-coated hemofilter. All experiments were performed in 
a room maintained at a temperature of 38°C.

The sampled blood was used to measure HGB, pro-
thrombin time of international normalized ratio (PT-INR), 
antithrombin activity (ATA), and thrombin–antithrombin 
complex (TAT). HGB was measured using a hematology 
analyzer (KX-21; Sysmex, Hyogo, Japan). For PT-INR, the 
transmitted light detection method (HemosIL RecombiPlas 
Tin; Instrumentation Laboratory Company, Bedford, MA, 
USA) was used. For ATA, the synthetic substrate method 
(HemosIL Antithrombin; Instrumentation Laboratory 
Company) was used. For TAT, the chemiluminescent 

enzyme immunoassay (STACIA CLEIA TAT; LSI 
Medience Corp., Tokyo, Japan) was used; the upper limit of 
detection for this assay was 120 ng/mL.

Statistical analysis

Continuous variables were compared using Student’s t-test 
performed using MS Excel software (Microsoft Corp., 
Redmond, WA, USA). The significance level was set at 
α = 0.05.

Results

The measured pressures at the inlet chambers in BPCA-
coated and non-coated hemofilters were plotted and joined, 
as shown in Figure 2. The mean time (n = 4) when the pres-
sure rose sharply, defined as the point when pressure 
increased >50 mmHg in 5 min, was longer in BPCA-coated 
than in non-coated hemofilters (66 ± 11 min vs 25 ± 9 min, 
p < 0.01). All measured pressure values at the outlet cham-
bers in each experiment were <60 mmHg.

Table 1 reports the coagulation markers measured 
every 40 min in each experiment. The ATA and TAT val-
ues according to recirculated duration are shown in 
Figures 3 and 4, respectively. The ATA mean value (n = 4) 
at 200 and 240 min of recirculation was significantly 
higher in the experiments with BPCA-coated compared 
with non-coated hemofilters (43.3 ± 2.87 vs 33.3 ± 5.74, 
p = 0.04; 42.8 ± 3.59 vs 31.0 ± 5.35, p = 0.01), whereas 

Figure 2.  Pressures at the inlet chamber correlated with 
blood recirculation duration. Red dotted lines indicate pressure 
transition every 5 min at the inlet chamber in the experiments 
with biocompatible polymer (BPCA)-coated hemofilters; black 
solid lines indicate the values with non-coated hemofilters. 
The horizontal axis indicates the recirculated duration, and 
the vertical axis indicates the measured pressure values 
(mmHg). Because the digital manometer cannot measure values 
>500 mmHg, values >500 mmHg were plotted at a value of 
500 mmHg. NCn: experimental number for the non-coated 
hemofilter; PCn: experimental number for the BPCA-coated 
hemofilter.
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the values at other time points were not significantly dif-
ferent. The TAT values in experiments with the BPCA-
coated hemofilters were over the limit of detection at 
80 min of recirculation; with the non-coated hemofilters, 
TAT values were over the limit of detection at 40 min.

Discussion

Many reports have been published regarding the biocom-
patibility of BPCA-coated medical equipment.11–13 The 
results of this study confirm the beneficial effect, in terms 
of anticoagulation, of the BPCA-coated hemofilter.

The pressure measurements suggest that the time 
required before the initiation of coagulation is significantly 
later in the circuits with BPCA-coated hemofilters com-
pared with non-coated hemofilters. Because surfaces that 
contacted blood in each experimental circuit were all coated 
with BPCA, with the exception of the hemofilter, the only 
difference in the two experimental groups was the presence 

Table 1.  Measured values in each circulated duration.

Experiment Measurement Circulated duration (min)

0 40 80 120 160 200 240

PC1 HGB (g/dL) 9.8 9.9 10.1 10.2 10.3 10 9.9
PT-INR 1.94 2.09 2.18 N/A N/A N/A N/A
ATA (%) 52 50 49 45 41 43 41
TAT (ng/mL) 1.2 14.4 >120 >120 >120 >120 >120

PC2 HGB 8.6 9.3 8.7 8.7 8.7 8.7 8.7
PT-INR 1.83 1.78 N/A N/A N/A N/A N/A
ATA 55 56 47 45 46 47 48
TAT 1.4 24.8 >120 >120 >120 >120 >120

PC3 HGB 7.8 8.3 7.3 7.4 7.5 7.5 7.6
PT-INR 2.11 2.03 N/A N/A N/A N/A N/A
ATA 50 54 44 40 39 40 40
TAT <1.0 8.1 >120 >120 >120 >120 >120

PC4 HGB 8.2 8.4 7.7 7.8 7.9 7.9 7.8
PT-INR 2.24 2.44 N/A N/A N/A N/A N/A
ATA 50 47 38 35 37 43 42
TAT <1.0 9.2 >120 >120 >120 >120 >120

NC1 HGB 8.4 8.3 8.3 8.3 8.2 8.2 8.3
PT-INR 2.15 N/A N/A N/A N/A N/A N/A
ATA 42 38 37 33 33 34 34
TAT 1.1 >120 >120 >120 >120 >120 >120

NC2 HGB 9 8.6 8.6 8.6 8.5 8.6 8.6
PT-INR 1.99 N/A N/A N/A N/A N/A N/A
ATA 47 33 26 25 23 25 23
TAT 82.5 >120 >120 >120 >120 >120 >120

NC3 HGB 8.3 8.5 8.3 8.2 8.2 8.2 8.2
PT-INR 1.85 N/A N/A N/A N/A N/A N/A
ATA 52 50 41 35 37 36 34
TAT 1.5 >120 >120 >120 >120 >120 >120

NC4 HGB 7.2 6.9 7.3 7.2 7.2 7.1 7.1
PT-INR 2.30 N/A N/A N/A N/A N/A N/A
ATA 42 41 38 39 36 38 33
TAT <1.0 >120 >120 >120 >120 >120 >120

PCn: number of experiments with polymer-coated hemofilter; NCn: number of experiments with non-coated hemofilter; HGB: hemoglobin; PT-INR: 
prothrombin time of international normalized ratio; ATA: antithrombin activity; TAT: thrombin–antithrombin complex; N/A: not applicable.

Figure 3.  Measured values of antithrombin activity (ATA) 
every 40 min of blood recirculation. Red dotted lines indicate 
ATA transition every 40 min of recirculation in the experiments 
with biocompatible polymer–coated hemofilters; black 
solid lines indicate those with non-coated hemofilters. The 
horizontal axis indicates recirculated duration, and the vertical 
axis indicates ATA (%).
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or absence of BPCA coating on the hemofilters. Thus, 
Figure 2 clearly shows the coagulation-resistant properties 
of the BPCA-coated hemofilter. Furthermore, TAT transi-
tion, shown in Figure 4, shows that the coagulation trend 
was similar to the pressure transition. TAT, an equimolar 
complex formed by thrombin and antithrombin, resulting in 
thrombin inactivation,14,15 is well recognized as a sensitive 
parameter of activated coagulation in circulating blood.16,17 
TAT transition results also suggest that BPCA coating can 
reduce the activation of the coagulation cascade. 
Interestingly, at 40 min of recirculation in BPCA-coated 
hemofilters, TAT values increased, but the pressure transi-
tion remained plateaued. This finding suggests that TAT 
accelerates before generating the coagulation cascade, con-
firming the general theory that TAT is a sensitive parameter 
of coagulation activation.

The results of pressure analysis and TAT show trends 
in the anticoagulation effects of BPCA-coated hemofil-
ters during the early phase of recirculation, but these 
results do not clarify the effects during long-term recircu-
lation. However, the results of ATA might reflect the anti-
coagulation properties of BPCA-coated hemofilters 
during long-term recirculation. Antithrombin is an impor-
tant physiological anticoagulant that can inhibit a wide 
range of coagulation factors, including thrombin and oth-
ers.18 Therefore, thrombin generation results in antithrom-
bin consumption, leading to decrement in ATA.19 In this 
study, a significant decrement in ATA was shown over a 
longer time period with the non-coated hemofilters than 
with the BPCA-coated hemofilters, indicating that the 
BPCA coating can inhibit antithrombin consumption 
slowly and continually; however, this positive effect can-
not be demonstrated during short-term exposure.

Considering the cardiopulmonary bypass circuit, the 
BPCA-coated hemofilter is valuable. Because a hemofil-
ter is mainly used for concentration of blood, due to its 
filtration functions, blood circulates into a hemofilter 
over a prolonged duration during extracorporeal circula-
tion.20 Furthermore, a hemofilter is used for various per-
fusion techniques such as modified ultrafiltration,21 
dilutional ultrafiltration,22 zero-balance ultrafiltration,23 
or any other hemopurification method.24,25 These tech-
niques also require blood circulation into a hemofilter for 
prolonged duration. Considering that the BPCA-coated 
hemofilter reduces antithrombin consumption, it could 
produce beneficial effects during the post-extracorporeal 
circulation phase. Postoperative ATA has been reported 
to be associated with major adverse cardiac events, 
regardless of preoperative ATA.26 Furthermore, post-
extracorporeal circulation ATA inversely correlates with 
the need for transfusion or the development of acute renal 
failure.27 Therefore, the BPCA-coated hemofilter, which 
can preserve ATA, could lead to reduced mortality in car-
diopulmonary bypass surgeries. Furthermore, there are 
many reports concerning the favorable effects of BPCAs 
on the reduction of cell adhesion, hemolysis, protein 
adhesion, and inflammatory markers.11–13,28,29 Another 
advantage of the BPCA-coated hemofilter is its biocom-
patibility, which could help improve the prognosis of 
patients undergoing extracorporeal circulation.

Regarding hemodialysis, the BPCA-coated hemofilter 
is also valuable, in particular, for successful treatment of 
patients with acute kidney injury. Acute kidney injury is a 
systemic inflammatory condition, and its inflammatory 
response can trigger the activation of both the intrinsic and 
extrinsic coagulation cascades,30 inducing thromboembo-
lism in the extracorporeal circuit regardless of hepariniza-
tion.31,32 Therefore, preservation of antithrombin levels 
might enhance the longevity of the extracorporeal circuit 
in patients requiring continuous renal replacement ther-
apy.32,33 Furthermore, as many centers practice anticoagu-
lant-free hemodialysis for patients at high risk of bleeding, 
heparin-coated hemofilters have recently been introduced 
into clinical practice.34,35 However, reduction in thrombo-
genicity has been uncertain.36,37 The pressure graph in this 
study also suggests that it would be difficult to perform 
anticoagulant-free hemodialysis with the BPCA-coated 
hemofilter. However, because the antithrombotic advan-
tages of this filter were clearly confirmed in this study, 
continuing investigation is warranted.

A similar examination of BPCA-coated membranes has 
been published,38 but it was performed using a minimized 
filter and bovine blood. In this study, experiments were 
performed with human blood and used a hemofilter con-
sisting of an aggregate of membranes, thus mimicking the 
clinical setting, which is an important point. However, a 
major limitation of this study is that only eight experi-
ments were performed; therefore, future studies with a 

Figure 4.  Measured values of the thrombin–antithrombin 
complex (TAT) every 40 min of blood recirculation. Red dotted 
lines indicate TAT transition every 40 min of recirculation 
in the experiments with biocompatible polymer–coated 
hemofilters; black solid lines indicate those with non-coated 
hemofilters. The horizontal axis indicates recirculated duration, 
and the vertical axis, which is reproduced to a logarithmic axis, 
indicates TAT (ng/mL). Because the upper limit of detection for 
TAT was 120 ng/mL, values >120 ng/mL were plotted at a value 
of 120 ng/mL.
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higher number of experiments are required to confirm our 
findings.

Conclusion

The results of this study show that the BPCA-coated hemo-
filter can delay circuit thrombogenicity and inhibit antithrom-
bin consumption compared with the non-coated hemofilter. 
This preliminary study suggests that a BPCA-coated hemo-
filter is superior in terms of antithrombotic properties.
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