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SUMMARY

The study unravels the clinical significance of TAK1 in HCC
and sorafenib resistance. We identified a novel E3 ubiquitin

ligase, FBXW2, targeting TAK1 for degradation, and MTDH
contributes to TAK1 up-regulation through binding to
FBXW2 mRNA and accelerates its degradation.

BACKGROUND & AIMS: Identifying novel and actionable tar-
gets in hepatocellular carcinoma (HCC) remains an unmet
medical need. TAK1 was originally identified as a transforming
growth factor-g-activated kinase and was further proved to
phosphorylate and activate numerous downstream targets and
promote cancer progression. However, the role of TAK1 in
developed HCC progression and targeted therapy resistance is
poorly understood.

METHODS: The expression of TAK1 or MTDH in HCC cell lines,
tumor tissues, and sorafenib-resistant models was analyzed by
in silico analysis, quantitative real-time polymerase chain re-
action, Western blotting, and immunohistochemistry. In vivo
and in vitro experiments were introduced to examine the

function of TAK1 or MTDH in HCC and sorafenib resistance
using small interfering RNA and pharmacologic inhibitors in
combination with or without sorafenib. Co-
immunoprecipitation and RNA immunoprecipitation were car-
ried out to determine the binding between TAK1 and FBXW?2 or
between MTDH and FBXW2 mRNA. Protein half-life and in vitro
ubiquitination experiment was performed to validate whether
FBXW?2 regulates TAK1 degradation.

RESULTS: Our findings unraveled the clinical significance of
TAK1 in promoting HCC and sorafenib resistance. We identified
a novel E3 ubiquitin ligase, FBXW2, targeting TAK1 for K48-
linked polyubiquitylation and subsequent degradation. We
also found that MTDH contributes to TAK1 up-regulation in
HCC and sorafenib resistance through binding to FBXW2 mRNA
and accelerates its degradation. Moreover, combination of
TAK1 inhibitor and sorafenib suppressed the growth of
sorafenib-resistant HCCLM3 xenograft in mouse models.

CONCLUSIONS: These results revealed novel mechanism un-
derlying TAK1 protein degradation and highlighted the thera-
peutic value of targeting TAK1 in suppressing HCC and
overcoming sorafenib resistance. (Cell Mol Gastroenterol Hep-
atol 2021;12:1121-1143; https://doi.org/10.1016/
Jjjemgh.2021.04.016)
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L iver cancer is among the most commonly diagnosed
cancers and the leading cause of cancer deaths. He-
patocellular carcinoma (HCC) comprises 75%-85% of liver
cancer cases.” HCC is of great tumor heterogeneity, which is
the major cause of tumor progression and treatment failures
and could be the result of diverse mutations that have been
identified by studies through multiomics approaches.” Sor-
afenib is the first targeted drug but provides limited
improvement in patient survival because of the low fre-
quency of sorafenib-targeting mutations and the early
occurrence of secondary drug resistance in HCC patients.’ As
we previously reviewed, the underlying mechanisms of sor-
afenib resistance involve various cellular processes, complex
regulatory signaling network, genetic and epigenetic regu-
lations, and tumor microenvironment.* On the basis of these
researches, numerous drugs including small molecule ago-
nists or inhibitors, epigenetic, metabolic, or microenviron-
mental modulators, stemness inhibitors, oxidative stress
inducers, and even nucleic acid therapies were being
explored in combination with sorafenib to improve HCC pa-
tient outcomes.”® However, none of them had been applied
in clinical use. Hence, identifying targets especially those
with multiple signals convergence or divergence to overcome
sorafenib resistance is of great clinical significance.

Transforming growth factor-@-activated kinase 1 (TAK1,
also known as MAP3K7) can be activated by a diverse set of
intracellular and extracellular stressors and is known to
regulate nuclear factor kappa B (NF-xB), transforming
growth factor-8, and mitogen-activated protein Kkinase
signaling pathways. Accumulating studies demonstrated
that TAK1 mediates pro-survival activities, tumor progres-
sion, and chemoresistance in cancers.” However, as a hub of
cellular homeostasis, the activity of TAK1 is context-
dependent and cancer type-dependent, which is mainly
attributed to the dual effect of TAK1-mediated NF-«B and
transforming growth factor-g signaling in cancers.” The role
of TAK1 in liver is diverse. Early studies presented that
TAK1 deletion in hepatocytes caused severe cell death,
compensatory proliferation, hepatic inflammation, liver
fibrosis, and early-onset of hepatocarcinogenesis.”'° How-
ever, TAK1 deletion is rarely found in HCC patients ac-
cording to The Cancer Genome Atlas (TCGA) database.
Moreover, recent studies also proved that TAK1 was asso-
ciated with poor survival of HCC patients and promoted
hepatic steatosis, epithelial-mesenchymal transition (EMT)
phenotypes, drug resistance, and cancer metastasis."’
These studies indicated that TAK1 might exert pro-
survival function in transformed malignant hepatocytes. In
this context, the role of TAK1 in HCC progression and
therapy resistance requires further elucidation.

TAK1 activity is regulated by its binding partners TAB1
and TAB2/TAB3 and relies on post-translational modifica-
tions including ubiquitination and phosphorylation.'*
Several E3 ligases, deubiquitinating enzymes, and phos-
phatases had been previously identified mediating K63-
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linked polyubiquitylation or deubiquitylation and dephos-
phorylation of TAK1, leading to TAK1 activation or
inactivation.””'*'® However, the E3 candidates targeting
TAK1 for K48-linked polyubiquitylation and degradation are
largely unknown. MTDH has already been proved to be a
master regulator in several crucial aspects of tumor pro-
gression, including transformation, evasion of apoptosis,
invasion, metastasis, and chemoresistance. TAK1 has a large
overlap with MTDH in terms of downstream pathways and
biological functions.'”*® However, whether MTDH and
TAK1 regulate with each other remains unknown, and their
roles in sorafenib resistance have not been well-studied.

Here we demonstrated that both MTDH and TAK1
contribute to HCC progression and sorafenib resistance,
with the combination of the in vitro and in vivo studies and
clinical data analysis from HCC patients. We identified
FBXW?2 as a novel E3 ubiquitin ligase targeting TAK1 for
K48-linked polyubiquitination and degradation, and MTDH
functions as an upstream effector of TAK1 at post-
translational level through binding to FBXW2 mRNA and
promoting its degradation. Our results highlighted the key
roles and the molecular mechanisms of MTDH/TAK1 axis in
HCC and sorafenib resistance, thus providing novel targets
for clinical intervention.

Results
TAK1 Expression Is Up-Regulated in Developed
HCC

We first analyzed the mutation status and expression of
TAK1 in silico using TCGA database, Gene Expression
Omnibus (GEO) dataset (GSE14520), and our own dataset
(Sir Run-Run Shaw Hospital [SRRSH]). We observed that
TAK1 deletion is rarely found in HCC patients (6/366), not
to mention missense mutation (3/366) with unknown
function in TCGA dataset (Figure 14). But mRNA expression
of TAK1 was significantly elevated in human HCC tissues as
compared with non-tumorous livers (Figure 1B). Moreover,
analysis of GSE6764 dataset revealed that TAK1 expression
was already up-regulated in very early HCC and tended to
increase with HCC progression (Figure 1C). We also
observed ranging TAK1 protein level among different HCC

2Authors share co-first authorship.
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Figure 1. TAK1 expression in HCC. (A) MAP3K7 (encoding TAK1 protein) mutation status in TCGA database; (B) mRNA
expression of TAK1 in human HCC tissues as compared with non-tumorous livers from TCGA, GSE14520, and SRRSH
datasets. (C) MRNA expression of TAK1 in different stages of HCC from GSE6764 dataset. (D) Protein level of TAK1 among
different HCC cell lines compared with normal liver cell lines (L02 and Chang). (E) Kaplan-Meier survival curves of patients with
low or high TAK1 mRNA expression based on TCGA and SRRSH datasets. Significance was determined using Kaplan-Meier
analysis. Survival analysis was performed using log-rank test. (F) Gene sets associated with TAK1 expression using TCGA

data and GSEA analysis.

cell lines, almost all of which exhibited higher TAK1
expression than that in normal liver cells (Figure 1D). Sur-
vival analysis of TCGA dataset showed that TAK1 expression
was negatively correlated with overall survival (0S) and
disease-free survival (DFS) of HCC patients (Figure 1E).
Moreover, SRRSH dataset analysis revealed similar results
(Figure 1E). To address the role of TAK1 in HCC patients, we
carried out gene set enrichment analysis (GSEA) using TCGA
data and revealed that high TAK1 expression was positively
correlated with a series of up-regulated gene sets in HCC

and was negatively correlated with those down-regulated in
HCC (Figure 1F). Taken together, these data suggested that
although artificial TAK1 deletion leads to HCC initially, TAK1
functions as a tumor promoter in developed HCC and is a
potential prognostic marker of HCC patients.

TAK1 Suppression Inhibits Clonogenicity,
Proliferation, and Oncogenic Signaling in HCC

To better address the function of TAK1 in HCC, we car-
ried out experiments to determine the functional impact of
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Figure 2. Function of TAK1 in HCC. (A) Proportion of annexin V-stained apoptotic cells analyzed by flow cytometry in Huh7 or
HCCLMS cells transfected with TAK1 siRNA or OXO treatment, a TAK1 inhibitor. Three biological repeats per group. (B) Cell
cycle analysis and representative results of HCCLMS cells using flow cytometry on OXO treatment. Three biological repeats
per group. (C) Colony formation of HCCLMS cells treated with different concentration of OXO. Colony numbers were measured

by Image J software. Three biological repeats per group. (D)

Colony formation of different HCC cell lines on OXO treatment

with different concentrations. (E) Real-time (RT) gPCR quantification of Bcl-2 and GADD453 mRNA in HCCLMS cells treated
with OXO or not. (F and G) Western blotting analysis of TAK1 downstream proteins levels on genetic knockdown or phar-

macologic inhibition of TAK1 in Huh7 and HCCLMS3 cells.

TAK1 in Huh7 and HCCLM3 cell lines. Genetic knockdown of
TAK1 by specific small interfering RNA (siRNA) and phar-
macologic inhibition of phospho-TAK1 by 5z-7-oxozeaenol
(0X0)" both strongly induced apoptosis in these 2 cell
lines, with increased annexin V-stained apoptotic cells and
accumulated floating cell fragments (Figure 24,
Figure 34-C). In addition, TAK1 suppression also caused cell
cycle arrest in G1 phase and inhibited clonogenicity of HCC

cells (Figure 2B and C). Moreover, TAK1 suppression
inhibited cell proliferation in most HCC cell lines
(Figure 2D). TAK1 was known to boost NF-«B phosphory-
lation and its transcriptional activity,'> which mediates the
transcription of numerous pro-survival and anti-apoptosis
signals in HCC.?° Therefore, we tested the mRNA expres-
sion of NF-«B targets through quantitative polymerase chain
reaction (qPCR), and the results showed lower expression of
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Figure 3. Supplementary data for TAK1 inhibition in HCC cell lines. (A) Western blotting analysis of phosphorylated TAK1

protein at ser439 site in HCCLM3 cells on treatment of OXO.

(B) Representative images of HCCLMS3 treated with OXO of

increasing concentrations. (C) Representative results of flow cytometry analysis of HCCLM3 and Huh7 cells treated with OXO
or not. (D) Western blotting analysis of cyclin D1 and cyclin B1 in HCCLM3 on OXO treatment. (E) Western blotting analysis of
total TAK1 downstream proteins in HCCLM3 and Huh7 on OXO or NG-25 treatment.

Bcl-2, an anti-apoptosis regulator, and higher expression of
GADD45B, a DNA damage inducer, on OXO treatment
(Figure 2E). TAK1 activates multiple oncogenic signals,
which were known to be critical players in HCC tumori-
genesis. Indeed, OXO treatment or TAK1 knockdown
significantly reduced the protein expression of phosphory-
lated ERK, phosphorylated AKT, phosphorylated mTOR,
phosphorylated Rb, and cyclin D1 but not cyclin B1,
whereas total protein levels of above genes were not altered
(Figure 2F and G, Figure 3D and E). Altogether, TAK1 sup-
pression induced cell cycle arrest and cell apoptosis in HCC
cells and inhibited clonogenicity, proliferation, and onco-
genic signaling in vitro, indicating TAK1 as a potential target
for developed HCC.

TAK1 Expression Can Be Reduced by Targeted
Drugs and Is Retained in Sorafenib-Resistant Cell
Lines

To unravel the role of TAK1 in sorafenib resistance, we
established stable sorafenib-resistant (SR) models of normal
HCC cell lines (Huh7, SK-hep-1, HepG2, and HCCLM3),
following the instructions in previous study.>*" The SR was
determined by the half maximal inhibitory concentration
(IC50) shift toward a higher concentration in all the resis-
tant cell lines compared with their parental cell lines
(Figure 4A4, Figure 54). The colony formation assays also

showed that SR cells are more proliferative under sorafenib
treatment (Figure 5B).

Both primary and second drug resistance are mainly
attributed to tumor heterogeneity.”* In many tumor entities
including HCC, therapy-induced evolving is achieved
through epithelial-to-mesenchymal transition (EMT) and
cancer stemness acquisition.”*> *> Therefore, we first char-
acterized the mesenchymal state and stemness features in
SR cell line models. As expected, we observed profound
morphologic changes in SR cells transforming into spindle-
like shape under an electron microscope (Figure 5B), indi-
cating that SR cells were undergoing EMT process, which
was one of the well-known underlying mechanisms of SR.*°
The EMT status in SR cells was further characterized by loss
of ZO1 and gain of mesenchymal markers such as N-cad-
herin, although the expression of another epithelial marker
E-cadherin was not consistently changed among 4 SR cell
lines (Figure 4C). Unlike other studies,”’ the SR cells we
build tend to cluster together rather than being separated
from each other, especially under sorafenib treatment, and
this might be attributed to the retention of E-cadherin to
maintain cell-to-cell contacts (Figure 4D). These features
might also be explained by the existence of intermediate
EMT states and multifunction of E-cadherin according to
recent advances in research.’”*® EMT-related transcrip-
tional factors are key regulators of EMT process and could
also promote HCC progression.”” We further checked the
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expression of EMT- related transcriptional factors in SR cells
compared with their parental cells on sorafenib treatment
or not. The immunoblotting results showed that not all

EMT-related transcriptional factors were changed accord-
ingly, further indicating the heterogeneity at transcriptional
level (Figure 4E). Because that gain of stemness improves
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drug tolerance of normal tumor cells,* we examined the
stem features of SR cells by CD90 staining, a stemness
marker. Expectedly, CD90 positive SR cells were enriched in
the center of normal SR cell clusters (Figure 4F), suggesting
that some of SR cells acquired stemness traits and became
the origin of sorafenib resistance. Oncogenic pathway acti-
vation and intracellular signaling compensation on drug
treatment are important layers of HCC progression and
sorafenib resistance.? Indeed, we revealed higher cyclin D1,
p-AKT, FAK, p-mTOR, p105/p50, GSK-36, and (-catenin
expression in SR cells, indicating activation of MAPK, PI3K/
AKT, NF-«kB, and Wnt pathways in sorafenib resistance
(Figure 4C, E, and G).

Next we detected the TAK1 expression in SR cells
compared with the parental cells and observed significantly
higher protein level of TAK1 in 4 SR cells (Figure 5C).
Interestingly, on sorafenib treatment, the protein level of
TAK1 decreases as the concentration increases in the
parental HCC cells but decreases more slowly in SR cells
(Figure 5D). Such TAK1 protein decreases could also be
observed on regorafenib or lenvatinib treatment
(Figure 4H). These suggested TAK1 is a direct or indirect
target of targeted drugs. Sorafenib as well as other tyrosine
kinase inhibitors are well-known to inhibit Ras/MEK/ERK
and PI3K/Akt/mTOR pathways. In this context, we treated
HCC cells with increasing concentration of AKT inhibitor,
MK-2206. We found that AKT inhibitor decreased total
protein of TAK1 as well, suggesting that sorafenib might
regulate TAK1 level through AKT pathway (Figure 41). We
also believed that there are other factors involved. More
importantly, the regulatory mechanism of TAK1 expression
in SR cells on long-term sorafenib treatment might be totally
different from short-term inhibitory effect on TAK1
expression.

Targeting TAK1 Overcomes Sorafenib
Resistance in vitro and in vivo

High expression of TAK1 in SR cells also prompted us to
explore whether targeting TAK1 pharmacologically or via
genetic knockdown reverses sorafenib resistance of SR cells.
Indeed, combination of sorafenib and OXO strongly inhibi-
ted its clonogenicity and proliferation compared with sor-
afenib or OXO treatment alone in SR cell models (Figure 5E).
Flow cytometry assays showed that OXO or TAK1 knock-
down in combination with sorafenib largely increased

Cellular and Molecular Gastroenterology and Hepatology Vol. 12, No. 3

proportion of apoptotic HCC cells and re-sensitized SR cells
to sorafenib-induced apoptosis, whereas both sorafenib and
0XO alone induced apoptosis in parental cells (Figure 5F,
Figure 64 and B). Particularly, we used an in vivo SR cells
xenograft and tumor model to evaluate the combined anti-
cancer effect of sorafenib and OXO by inoculating subcuta-
neously the HCCLM3-SR cells into the flank sides of nude
mice, followed by treatment with vehicle control, 0XO, or
sorafenib alone or in combination. When nontoxic concen-
trations were used (Figure 6D), sorafenib or OXO alone did
not suppress the tumor growth in vivo; however, significant
suppression was observed in combination group in terms of
tumor volumes, tumor weights, and Ki67-staining, as well as
downstream oncogenic proteins (Figure 5G and H,
Figure 6D-F). Because liver microenvironment has a crucial
impact on sorafenib resistance, we also adopted in vivo
orthotopic model, and consistent results were observed
(Figure 5I and J, Figure 6G and H). Thus, TAK1 inhibitors
sensitized HCC SR cells to sorafenib as tested in both in vitro
cell culture and in vivo xenograft models.

FBXW2 E3 Ubiquitin Ligase Targets TAK1 for
Ubiquitination and Degradation

To uncover the regulatory mechanism of TAK1 expres-
sion in SR cells, we first detected mRNA level of TAK1 and
observed no consistently significant changes between SR
cell lines and their parental cells (Figure 74). Furthermore,
chlorhexidine (CHX) assay indicated that the TAK1 protein
degradation was retarded in SR cells (Figure 7B). K48-
linked polyubiquitination and degradation of TAK1 are
largely unknown. F-box proteins are components of
SKP1-cullin 1-F-box protein E3 ligase complexes and have
pivotal roles in multiple cellular activities.** However, none
of F-box proteins have been proved to mediate TAK1
degradation. Following this lead, we first ectopically
expressed a variety of F-box proteins including FBWX2
followed by immunoprecipitation (IP) pull-down and found
in vitro interaction between FBXW2 and TAK1, although
FBXW?2 is not the only F-box protein that could bind to
TAK1 but has the highest IP affinity of TAK1 (Figure 7C). F-
box proteins bind short, defined degradation motifs in
substrates.”” Regarding FBXW2 of which the substrates
remain largely unknown, the consensus degron sequences
defined as TSXXXS were required for its binding to sub-
strates such as SKP2.?” Indeed, we also identified such motif

Figure 5. (See previous page). TAK1 expression and function in sorafenib resistance. (A) Relative cell viability of Huh7-SR
and HCCLMS3-SR cells on sorafenib treatment with increasing dosage compared with their parental cells. Relative cell viability
was measured by cell counting kit 8 (CCK8) reagent and normalized to 0 uml/L. (B) Morphologic changes of Hepg2-SR and
HCCLMS3-SR cells compared with their parental cells. (C) Western blotting analysis of TAK1 protein level in 4 SR cells
compared with their parental cells. (D) Western blotting analysis of TAK1 protein level in HCCLM3-SR cells compared with their
parental cells in response to sorafenib treatment. (E) Colony formation assay was performed in HCCLM3-SR cells treated with
sorafenib alone or in combination with OXO. Colony numbers were measured by Image J software. Three biological repeats
per group. (F) Proportion of annexin V-stained apoptotic cells analyzed by flow cytometry in HCCLM3-SR or its parental cells
treated with sorafenib alone or in combination with OXO. Three biological repeats per group. (G) Gross view of tumors from
xenograft model treated with sorafenib alone or in combination with OXO. (H) Total volume or weight of tumor burden in mice
treated with sorafenib alone or in combination with OXO from xenograft model. (/) Gross view of tumors attached with liver from
orthotopic model treated with sorafenib alone or in combination with OXO. (J) Total volume or weight of tumor burden in mice
treated with sorafenib alone or in combination with OXO from orthotopic model.
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Figure 6. Supplementary data for TAK1 inhibition in combination with sorafenib in vivo. (A) Representative results of
apoptosis analysis in HCCLM3-SR and its parental cells treated with sorafenib and OXO alone or in combination. (B) Pro-
portion of annexin V-stained apoptotic cells analyzed by flow cytometry, and (C) cell cycle analysis and representative results
of HCCLMB3-SR cells transfected with TAK1 siRNA or scramble control. Three biological repeats per group. (D) Body weights
of mice and total volume tumor burden in mice treated sorafenib alone or in combination with OXO in indicated time period. (E)
Representative images of Ki67 staining in tumors from 4 groups. (F) Western blotting analysis of downstream proteins in
tumors from mice treated with sorafenib and OXO alone or in combination. (G) Gross view of mice and tumors from orthotopic
model. (H) Representative images of Ki67 staining of tumors from orthotopic model.
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Figure 7. FBXW2 E3 ubiquitin ligase targets TAK1 for ubiquitination. (A) RT-qPCR quantification of TAK1 mRNA expression
in 4 SR cells compared with their parental cells. (B) CHX assay was performed in HCCLM3-SR cells and their parental cells for
indicated time periods, and TAK1 protein was measured by Western blotting analysis. (C) Immunoblotting analysis of HA and
Flag-TAK1 in HA tag pull-down derived from HEK293T cells transfected with indicated constructs. (D) Evolutionary conser-
vation of FBXW2 degron motif on TAK1. (E) HEK293 cells were transfected with indicated plasmids, followed by IP with anti-
Flag or anti-Myc (F) Western blotting analysis of FBXW2 expression in HCCLM3-SR and its parental cells. (H) Half-life of TAK1
protein in HCCLMBS cells transfected with Myc-FBXW2 or vector plasmid as control. (/) Immunoblotting analysis of Myc-Ub in
Flag tag pull-down and input derived from HEK293T cells transfected with indicated constructs. (J) Immunofluorescence
analysis of TAK1 and Myc-FBXW?2 location in Huh7 cells. Green, TAK1; red, Myc-FBXW?2; blue, DAPI.
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of CUL1 and SKP1 in Flag tag pull-down and input derived from HEK293T cells transfected with indicated constructs.

in TAK1, which is evolutionarily conserved (Figure 7D),
suggesting TAK1 is a potential substrate of FBXW2. The
binding of FBXW2 and TAK1 was then specifically
confirmed by IP pull-down of Flag-TAK1 or Myc-FBXW?2
(Figure 7E).

Notably, it was found that FBXW2 protein expression
was down-regulated in SR cells compared with parental
HCC cells, indicating that it might be responsible for
retarded degradation of TAK1 in SR cells (Figure 7F). Hence,
we assessed the effect of FBXW2 on TAK1 level. Indeed,
FBXW?2 knockdown increased the levels of total TAK1 pro-
tein, whereas FBXW2 overexpression reduced them, which
could be reversed by MG132 or MLN4924, a NEDDS8-
activating enzyme inhibitor that inhibits the neddylation of
the Cullin subunits of Cullin RING E3 ligases (Figure 7,
Figure 84 and B). These data together with the existence of
SKP1 and CUL1 protein in TAK1 immunoprecipitants
(Figure 8C) suggested that FBXW2 regulated TAK1 protein
level through SKP1-CUL1-FBXW2 complex. Indeed, FBXW2
promoted TAK1 K48-linked polyubiquitylation and short-
ened its protein half-life (Figure 7H and I). Immunofluo-
rescence analysis suggested that TAK1 and FBXW2 were co-
localized in cytoplasm (Figure 7]). Taken together, we
identified FBXW2 as a new E3 ubiquitin ligase targeting
TAK1 for K48-linked polyubiquitylation and degradation.

MTDH Regulates TAK1 at Protein Level Through
Promoting FBXW2 mRNA Degradation

The upstream regulators of TAK1 remain largely un-
known, whereas its downstream effectors have been widely
explored. As a master regulator of cell death, TAK1 is well-
known to regulate NK-xB pathway. Tumor necrosis factor-
alpha (TNF-a)/NF-kB pathway plays important role in the
development of inflammation-driven HCC including viral
hepatitis-related and nonalcoholic steatohepatitis (NASH)-
or nonalcoholic fatty liver disease (NAFLD)-related HCC.**
Recent study also indicated that TNF-o might serve as a
predictor of sorafenib response in HCC patients.*” Following
this clue, it is quite possible that TAK1 upstream regulators
might also regulate NF-«B signaling and contribute to drug
resistance. We reviewed relative articles in PubMed and
found that MTDH functions similarly with TAK1 in tumor

progression and therapy resistance, activates common
downstream pathways, and responds to similar intracellular
or extracellular stimuli.””'” Moreover, GSEA analysis of
defined gene sets revealed that MTDH was highly involved
in RNA degradation and ubiquitin-mediated proteolysis
(Figure 9A4). In line with this, several researches had implied
that MTDH acted as an RNA-binding protein.*°% Also
illustrated was the decreased mRNAs that could bind to
MTDH including a large amount of E2 and E3 ubiquitin li-
gases such as FBXW2 on a dual PI3K/mTOR inhibitor
treatment.”® This indicates that MTDH could accelerate the
degradation of these mRNAs in response to drug stimuli.
However, the role of MTDH in RNA stability or translation is
not known. These findings suggested that MTDH might
regulate TAK1 expression through inhibiting FBXW2 medi-
ated TAK1 degradation. We first treated HCC cells with TNF-
«. Results showed that TNF-«a treatment increased MTDH
and TAK1 protein expression but decreased FBXW2 protein
level in a time course and in a dose-dependent manner
(Figure 9B).

We then altered the MTDH levels to examine its effect on
TAK1 level. MTDH knockdown significantly reduced TAK1
protein expression, whereas the mRNA levels of TAK1 were
not consistent among 4 HCC cell lines (Figure 9C and D,
Figure 104 and B), indicating that post-translational regu-
lations were involved. Indeed, further mechanistic dissec-
tion demonstrated that MTDH knockdown could accelerate
the protein degradation of TAK1 (Figure 9E). We thus
detected the mRNA expression of those E2 and E3 ligases on
MTDH knockdown and found that the decrease of MTDH
expression increased their mRNA level (Figure 100).
Regarding FBXW2, MTDH knockdown also increased its
protein level in HCC cells (Figure 9F).

Altogether, we hypothesized that MTDH regulates K48-
linked polyubiquitination and degradation of TAK1
through down-regulating its E3 ubiquitin ligase FBXW2. We
first used RNA-IP (RIP) and revealed much higher MTDH-
bound FBXW2 mRNA compared with immunoglobulin G,
suggesting the specific association of FBXW2 mRNA and
MTDH (Figure 9G). Immunofluorescence and fluorescence
in situ hybridization assay for MTDH protein and FBXW2
mRNA also showed that FBXW2 mRNA overlapped with
those MTDH localized at cytoplasm (Figure 9H). Moreover,
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Figure 9. MTDH functions as an upstream regulator of TAK1. (A) KEGG pathways significantly enriched in HCC patients
with high expression of MTDH using TCGA data. (B) Western blotting analysis of TAK1, MTDH, and FBXW2 expression in
HCCLMS cells in response to TNF-« treatment. (C and D) RT-qPCR quantification and Western blotting analysis of TAK1 and
MTDH expression in SR cells transfected with MTDH siRNA or scramble control. (E) Half-life of TAK1 protein in HCCLM3 cells
transfected with MTDH siRNA or scramble control. (F) RT-gPCR quantification and Western blotting analysis of MTDH and
FBXW?2 protein expression in HCCLM3 cells transfected with MTDH siRNA or scramble control. (G) RIP and RT-gPCR analysis
of FBXW2 mRNA binding to MTDH protein compared with immunoglobulin G. (H) Immunofluorescence analysis of MTDH and
FBXW2 mRNA location in HCCLM3 cells. Green, MTDH; red, FBXW2 mRNA,; blue, DAPI. (/) Immunoblotting analysis of TAK1
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we found that MTDH overexpression partially reduced mediated TAK1 degradation could be mitigated by MTDH.
TAK1 protein level and reduced K48-polyubiquitylation on  In summary, MTDH regulates TAK1 protein level through
FBXW2 transfection (Figure 9I), suggesting FBXW2- binding to and subsequently degrading FBXW2 mRNA.
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Figure 10. Supplementary data for regulation of TAK1 by MTDH. (A) RT-gPCR analysis and Western blotting analysis of
MTDH expression in HCCLMS3 cells on MTDH knockdown using 3 siRNAs. (B) RT-gPCR quantification of TAK1 and MTDH
expression in SK-hep-1 and HepG2 cells transfected with MTDH siRNA or scramble control. (C) RT-gPCR quantification of E3
mRNAs expression in HCCLM3-SR cells transfected with MTDH siRNA or scramble control. (D) KEGG pathways significantly
enriched in HCC patients with high expression of MTDH using TCGA data. (E) Western blotting analysis of MTDH and NF-«xB
pathway proteins in HCCLMB3-SR and its parental cells; Western blotting analysis of MTDH and AKT pathway proteins in
HCCLMS3-SR and HepG2-SRs on MTDH knockdown. (F) Cell viability of HCCLMS3 with stable expression MTDH treated with
lenvatinib or regorafenib. (G) Relative cell viability and proportion of apoptotic cells in HCCLM3 cells transfected with MTDH
siRNA or scramble control in combination with sorafenib or DMSQO. Three biological repeats per group.

TAK1 Mediates MTDH-Induced Sorafenib
Resistance

To further demonstrate the relationship between
MTDH and TAK1, we then aimed to elucidate the function
of MTDH in HCC and sorafenib resistance, and whether
TAK1 mediates these functions. MTDH has been regarded
as a driver oncogene in HCC.>? Although MTDH has been
widely proved to be involved in chemotherapeutics resis-
tance,'” its role in targeted therapy sensitivity remains
unknown. We first used knockdown MTDH by 3 specific
siRNAs and found that MTDH knockdown inhibited pro-
liferation of HCC cells, and the third siRNA performed best
according to the decrease in cell viability (Figure 11A4).

Knockdown of MTDH also induced apoptosis and cell cycle
arrest in G1 phase of HCC cells (Figure 11B and C). GSEA
using TCGA data revealed that MTDH expression was
closely related to the regulation of transcription factor
activity, cell cycle, apoptosis, mTOR pathways, and TGF-3
pathway (Table 1, Figure 10D), as indicated by previous
studies.'® Indeed, MTDH suppression reduced classic
oncogenic signaling such as p-AKT, p-mTOR, and NF-«B in
HCC (Figure 10E). We then detected the expression of
MTDH in our SR cell models and observed significantly
higher protein and mRNA levels of MTDH in SR cells,
especially under sorafenib treatment, consistent with the
expression alteration of both TAK1 and p-TAK1
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Figure 11. Role of MTDH in HCC and sorafenib resistance. (A) Relative cell viability measured by CCK8, (B) cell cycle
analysis and representative results, and (C) proportion of annexin V-stained apoptotic cells analyzed by flow cytometry of
HCCLMS cells transfected with MTDH siRNA or scramble control. Three biological repeats per group. (D and E) RT-qPCR
analysis of MTDH mRNA level and Western blotting analysis of MTDH, TAK1, and p-TAK1 protein level in 4 SR cells
compared with their parental cells on sorafenib treatment or not. (F) Relative cell viability of HCCLM3 with stable expression
MTDH or not treated with increasing dosage of sorafenib. (G and H) Relative cell viability and proportion of apoptotic cells in
HCCLMS3 or Huh7 cells transfected with MTDH siRNA or scramble control in combination with sorafenib or DMSO. Three
biological repeats per group. (/) Relative cell viability of HCCLM3 with stable expression MTDH or not treated with sorafenib
and OXO alone or in combination for 48 hours. (J) Relative cell viability of HCCLMS3 with stable expression MTDH or not treated
with OXO or NG25 alone or in combination sorafenib of increasing dosage or for indicated time periods. Three biological
repeats per group.
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Table 1.KEGG gene sets enriched in MTDH -high HCC patients in TCGA dataset

Name Size ES NES NOM P value FDR q value
KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 41 0.646 1.774 <.001 0.005
KEGG_RNA_DEGRADATION 57 0.626 1.769 <.001 0.003
KEGG_UBIQUITIN_MEDIATED_PROTEOLYSIS 133 0.579 1.724 <.001 0.004
KEGG_SPLICEOSOME 124 0.572 1.687 <.001 0.005
KEGG_BASAL_TRANSCRIPTION_FACTORS 35 0.606 1.637 .001 0.010
KEGG_NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 61 0.551 1.571 <.001 0.028
KEGG_CELL_CYCLE 124 0.518 1.536 <.001 0.043
KEGG_ADHERENS_JUNCTION 73 0.534 1.531 <.001 0.041
KEGG_EPITHELIAL_CELL_SIGNALING_IN_ 67 0.530 1.520 <.001 0.042

HELICOBACTER_PYLORI_INFECTION
KEGG_HOMOLOGOUS_RECOMBINATION 28 0.569 1.516 .009 0.040
KEGG_CHRONIC_MYELOID_LEUKEMIA 73 0.511 1.476 <.001 0.064
KEGG_INOSITOL_PHOSPHATE_METABOLISM 54 0.519 1.467 .005 0.067
KEGG_MTOR_SIGNALING_PATHWAY 52 0.518 1.460 .002 0.067
KEGG_PATHOGENIC_ESCHERICHIA_COLI_INFECTION 55 0.506 1.440 .004 0.082
KEGG_APOPTOSIS 86 0.485 1.415 .001 0.093
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 126 0.476 1.412 <.001 0.091
KEGG_ENDOCYTOSIS 178 0.469 1.412 <.001 0.087
KEGG_PANCREATIC_CANCER 70 0.493 1.409 .002 0.087
KEGG_SMALL_CELL_LUNG_CANCER 84 0.484 1.407 .002 0.084
KEGG_ACUTE_MYELOID_LEUKEMIA 57 0.491 1.403 .009 0.077
KEGG_RENAL_CELL_CARCINOMA 70 0.482 1.394 .005 0.081
KEGG_OOCYTE_MEIOSIS 111 0.468 1.393 .002 0.079
KEGG_TGF_BETA_SIGNALING_PATHWAY 85 0.476 1.380 .004 0.089

ES, enrichment score; FDR, false discovery rate; NES, normalized enrichment score; NOM, nominal.

(Figure 11D and E). To verify the role of MTDH in
targeted-therapy resistance, we carried out functional ex-
periments to assess the relationship between MTDH and
the IC50 of several targeted drugs including sorafenib,
regorafenib, and lenvatinib. The results showed that IC50
of these 3 drugs, especially sorafenib, was higher in HCC
cells that stably expressed MTDH (Figure 10F, Figure 11F).
We then combined MTDH knockdown and sorafenib
treatment in SR cells to further evaluate the function of
MTDH in sorafenib resistance. Results showed that MTDH
knockdown enhanced sensitivity of SR cells to sorafenib-
induced apoptosis and inhibitory of proliferation
(Figure 10G, Figure 11G and H). Sorafenib or MTDH
knockdown alone also induced apoptosis in SR cells,
although the proportion of apoptotic cells remains low.
This may be due to the heterogeneity of SR cells and the
essential function of MTDH in HCC cell proliferation.

Next we aimed to explore whether TAK1 is involved in
MTDH-mediated sorafenib resistance. Consistent with pre-
vious findings, HCC cells with ectopically expressed MTDH
became more resistant to sorafenib, and such resistance
could be reversed by sorafenib in combination with 0XO or
NG-25, another TAK1 inhibitor (Figure 11/ and J). These
data suggested the functional relationship between MTDH
and TAK1 in sorafenib resistance.

MTDH and TAK1 Are Both Correlated With Poor
Survival of HCC Receiving Sorafenib

To unravel the clinical significance of TAK1 and MTDH,
we used immunohistochemistry (IHC) to stain the TAK1 and
MTDH protein in tumor samples from 59 HCC patients who
underwent surgery before sorafenib treatment. Represen-
tative images indicated that HCC patients with high MTDH
expression might also have higher TAK1 protein level
(Figure 12A). Further IHC scoring and statistical analysis
revealed that high MTDH expression significantly correlates
with high TAK1 protein level (Figure 12B). Those patients
were then stratified into 2 groups on the basis of TAK1 or
MTDH protein level via IHC scoring. Further Kaplan-Meier
survival analysis revealed that HCC patients with higher
level of TAK1 or MTDH expression had shorter overall
survival and DFS (Figure 12C). Taken together, these data
indicated that TAK1 and MTDH were involved in the
development of sorafenib resistance, and their expression
positively correlates with each other and predicts sorafenib
response in HCC patients.

Discussion
Most HCC patients are diagnosed at an advanced stage
when surgical approaches and locoregional therapies are no
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Figure 12. MTDH/TAK1 expression in HCC patients receiving sorafenib. (A) Representative images of MTDH and TAK1
immunohistochemical staining in HCC patients receiving sorafenib before surgery. (B) Correlation between MTDH and TAK1
staining. Significance was determined using x2 (and Fisher exact) test. (C) Kaplan-Meier survival curves of these patients with
low or high TAK1 or MTDH staining. Significance was determined using Kaplan-Meier analyses. Survival analysis was per-

formed using log-rank test.

longer feasible. Improvements in patient outcomes from
most systematic therapies have been modest, although
several targeted drugs and immune checkpoint inhibitors
have been proved effective in the last decade,*® and more
combinational strategies are being explored.”’ The under-
lying mechanisms of sorafenib resistance remain complex
and largely unknown. To better address this critical prob-
lem, we had established acquired SR HCC cell models by
treating HCC cells with increasing concentrations of sor-
afenib in culture media over time.””' On the basis of these

models, our previous studies had proved the crucial role of
androgen receptor signals, EMT-related transcriptional fac-
tors, and several non-coding RNAs in sorafenib resistance,
highlighting the epigenetic regulation of driver oncogenes in
sorafenib resistance.”®**~*> However, therapy-induced tu-
mor cell evolving is comprehensive and systematic in terms
of cellular and molecular alteration. Thus, identifying other
novel targets still remains an unmet medical need, requiring
new insights into underlying molecular mechanisms that
support hepatocarcinogenesis, HCC progression, and drug
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resistance based on genomic, transcriptomic, and epi-
genomic studies.

In our study, some issues had been raised about SR cell
models. We previously reviewed that EMT and cancer stem
cells are common mechanisms underlying acquired sor-
afenib resistance. However, SR cells in our study underwent
atypical EMT process that not all EMT markers and EMT-
related transcriptional factors altered accordingly espe-
cially E-cadherin, although SR cells exhibited mesenchymal-
like morphologic changes. Recent studies revealed that EMT
is a processive program, and there are tumor cells under-
going intermediate EMT process. Actually, such EMT het-
erogeneity has already been proposed and remains
controversial in recent years.*® Cells express CDH1 (encodes
E-cadherin) but do not display E-cadherin at the cell surface,
cells with partially mesenchymal features but without
evident expression of EMT-related transcriptional factors,
and so on had been reported.””*® Another possible reason is
that E-cadherin might be asymmetrically distributed toward
the cell surfaces.”” Padmanaban et al*® found that E-cad-
herin promotes metastasis through limiting reactive oxygen-
mediated apoptosis in breast ductal carcinomas. To this
point, E-cadherin itself might have uncovered roles in our
SR model. We found that SR cells tend to be clustered under
sorafenib treatment, and stemness marker staining also
indicated that the stem cells are located in the core of such
“cluster”. It is possible that E-cadherin mediates cell-to-cell
connection during SR cell clustering, but further experi-
ments are required to demonstrate this hypothesis. Not all
SR cells exhibited stemness features, which is consistent
with EMT heterogeneity mentioned above. Such heteroge-
neity may also lead to functional heterogeneity of SR cells,
that is, during cell proliferation and division, some SR cell
subpopulation may lose sorafenib resistance. This may
explain why sorafenib alone could still induce apoptosis in
SR cells, although it remains a very low ratio.

Recently in many other tumor entities, TAK1 has been
considered a robust therapeutic target especially in lung,
colon, and pancreatic cancers, most of which exhibit
frequent KRAS mutations.”””" Although artificial TAK1-
deletion leads to early onset of hepatocarcinogenesis in
liver, HCC patients rarely harbor TAK1-deletion mutations
according to TCGA database. Moreover, we observed that
HCC specimens harbor higher TAK1 mRNA expression,
which was increasing from early-stage to advanced-stage
HCC patients. Metabolic syndrome together with alcohol
abuse and hepatitis C infection contribute to the increasing
incidence and death rate of liver cancers including HCC.**
From an etiologic perspective, recent studies indicated
that TAK1 promoted NASH and NAFLD.">'®*? The role of
TAK1 in inflammation-driven HCC including hepatic stea-
tosis and virus infection might be attributed to TNF-«
stimulation, which was also indicated to be potential target
to overcome sorafenib resistance recently.’” These clues
prompted us to explore the role of TAK1 in developed HCC,
especially in HCC progression and therapy resistance.
Indeed, we found elevated protein levels of TAK1 in HCC
patients, HCC cell lines, and SR cell models, and its expres-
sion predicts poor patient outcomes. In vivo and in vitro
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assay also suggested that genetic knockdown and pharma-
cologic inhibition of TAK1 using inhibitors 0X0O or NG-25
significantly suppressed cell proliferation and tumor
growth and overcame sorafenib resistance. But it is never
too cautious to make the conclusion that TAK1 is a thera-
peutic target for HCC.

Because TAK1 deletion could cause spontaneous hep-
atocarcinogenesis, it is worthy of discussion about whether
pharmacologic TAK1 inhibition could induce detrimental
effect. First, we believed that TAK1 deletion and pharma-
cologic TAK1 inhibition are totally different conditions. The
latter one only inhibits the phosphorylation of TAK1 in HCC
cells and will not completely eliminate all TAK1 protein,
which could continue to play essential functions. In addition,
TAK1 inhibitors have been applied in other tumor models
by many studies, but none reported spontaneous hep-
atocarcinogenesis in mice liver. Of course, it is also possible
that the authors were not aware of this issue, or the dura-
tion of TAK1 inhibitors treatment is too short to induce
hepatocarcinogenesis. Because of role of TAK1 in steatohe-
patitis, TAK1 inhibitor was also used to treat HFD (High fat
diet)-induced NAFLD in DUSP14-ko mice, and hep-
atocarcinogenesis was not reported in this model.”* More-
over, TAK1 deletion induced hepatocarcinogenesis was not
attributed to the inhibition of antiproliferative role of TAK1
but cell death-induced inflammation and compensatory
mechanisms, for instance, promoting macrophage infiltra-
tion.>® Last, genetic TAK1 deletion in liver is artificial, and
TAK1-deficiency induced hepatocarcinogenesis in natural
conditions had not been reported. All in all, the function of
TAK1 is context-dependent. In our study, we focused on the
status of TAK1 in transformed malignant HCC cells and its
role in subsequent tumor progression and treatment resis-
tance, which may not be in conflict with the role of TAK1
deletion in nonmalignant hepatocytes.

This study also explored the regulatory mechanism of
TAK1 expression. We observed that sorafenib treatment
reduced total protein of TAK1 in HCC cells, suggesting TAK1
is a direct or indirect target of sorafenib. Sorafenib as well as
other tyrosine kinase inhibitors are well-known to inhibit
Ras/MEK/ERK and PI3K/Akt/mTOR pathways. Previous
research demonstrated that TAK1 functions in a KRAS-
dependent way in other tumor entities especially in
pancreatic adenocarcinoma. Sorafenib inhibits non-small-
cell lung cancer cell growth by targeting B-RAF in cells
with wild-type KRAS and C-RAF in those with mutant
KRAS.°® We knocked down KRAS expression using siRNA
and inhibited AKT function using selective inhibitor in HCC
cells. The Western blotting results showed that KRAS
knockdown and AKT inhibitor both decreased the total
TAK1 expression (data not shown). Hence, sorafenib might
down-regulate TAK1 expression through Ras/MEK/ERK
and PI3K/Akt/mTOR pathways. One study also proved that
sorafenib inhibited ATP-binding of TAK1 using in situ
kinome.”” Although the function of TAK1 and FBXW2
binding to TAK1 depends on specific site phosphorylation or
dephosphorylation, it is possible that sorafenib regulates
TAK1 level through inhibiting corresponding phosphoryla-
tion kinases. Altogether, the mechanistic reason for the
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decreased levels of TAK1 on sorafenib treatment might be
more diverse and is in need for further study.

However, it is the TAK1 protein level but not mRNA
expression that was elevated in SR cells and was retained
even under sorafenib treatment. Although most studies
focus on K63-polyubiquitylation-dependent activation of
TAK1,'"°® these data lead us to explore which E3 ligase
mediates K48-linked degradation of TAK1. F-box proteins
mediate the degradation of a large number of regulatory
proteins involved in diverse processes and have emerging
roles in cancer and drug resistance.*"”’ Previous study
identified FBXW5 as a functional suppressor rather than an
expression regulator for TAK1.°” We used IP assays and
identified FBXW2 as a novel E3 ligase targeting TAK1 for
K48-linked ubiquitylation and subsequent degradation
through specific degron sequences. Our results also revealed
that FBXW2 is not the only F-box protein that could bind to
TAK1, regardless of nonspecific binding to tag beads. It is
not surprising that other F-box proteins also regulate TAK1
activation and protein degradation because TAK1 is a
gatekeeper of cellular homeostasis and must be under tight
regulation. However, how other F-box proteins regulate
TAK1 needs further investigation. Moreover, some issues
remain unexplored in this study including how FBXW2 re-
cruits the substrate TAK1, whether such recruitments
depend on degron phosphorylation, and which kinases are
responsible for the degron phosphorylation.

MTDH has been identified as a master and actionable
gene in HCC as well as other tumor entities. It functions as a
downstream mediator of the transforming activity of
oncogenic Ha-Ras and c-Myc and activates MAPK, PI3K/Akt,

Reverse primer
CAGGTCGACTCTAGAGGATCCTTATCTGGAGATGTAGGTGTATGTTCGAGAAG
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Table 3.List of siRNAs

Target Sense Anti-sense
SiTAK1 GCAGUGAUUCUUGGAUUGU ACAAUCCAAGAAUCACUGC
siFBXW2-1 GCAGCGGUGAAGUUUGAUGAA UUCAUCAAACUUCACCGCUGC
siFBXW2-2 GCCUUUGAAACCUCGUCAU AUGACGAGGUUUCAAAGGC
siMTDH-1 GGAGGAGGCUGGAAUGAAA UUUCAUUCCAGCCUCCUCC
siMTDH-2 CAGAUAAAUCCAAGUCAAA UUUGACUUGGAUUUAUCUG
siMTDH-3 CUUAGUGAAUUGUGAUAAAGAAA UUUCUUUAUCACAAUUCACUAAGUGAU

-independent sorafenib resistance, rendering further pre-
clinical and clinical studies to explore.

Materials and Methods
Cell Culture and Transfections

Human embryonic kidney 293 (HEK293) cells, Huh7,
HepG2, SK-hep-1, HCCLM3, HLF, SMMC7721, JHH7, PLC/
PRF/5, and Ha22T cells, normal liver LO2 and Chang cells
were obtained from the American Type Culture Collection
and were maintained in Dulbecco modified Eagle medium
containing 10% (v/v) fetal bovine serum at 37°C in 5% CO,
condition. All cell lines were routinely tested to be negative
for mycoplasma contamination. Transfection of siRNA and
plasmids was performed using Lipofectamine 3000 Re-
agents (Thermo Fisher Scientific, Waltham, MA) following
the manufacturer’s instructions.

Bioinformatic Analysis and GSEA

HCC datasets were downloaded from TCGA data portal
(http://www.tcga-data.nci.nih.gov). MAP3K7 (TAK1) and
MTDH mRNA levels were analyzed from TCGA and NCBI
GEO databases (https://www.ncbi.nlm.nih.gov). For TCGA
data, 5 of 374 HCC patients were excluded because of the
absence of follow-up data. Finally, 369 HCC patients were
subjected to mRNA expression in our analysis. GSEA was
used to analyze whether a series of defined KEGG gene sets
show statistically significant, concordant differences be-
tween 2 groups stratified on the basis of MTDH expression
of HCC cases in TCGA dataset.

Plasmids, SiRNAs, and Reagents
HA-MTDH, HA-B-TrCP1, HA-FBXW2, HA-FBXW4, HA-
FBXWS, HA-FBXW7, HA-FBXWS8, HA-FBXW11, HA-

FBXW12, HA-FBXL3, and HA-FBX04 expression plasmids
were subcloned with N-terminal double HA tags into pXF4H
expression vector between the BamHI and EcoRI restriction
sites. Flag-TAK1 was constructed with N-terminal triple
Flag tags into pXF6F expression vector between the BamHI
and EcoRI restriction sites. Myc-FBXW2 was constructed
with N-terminal Myc tag into Pxf4H expression vector be-
tween the Clal and EcoRI sites. All vectors and Myc-Ub were
gifts from Lidan Hou. PCR and plasmids construction were
performed using 2x Phanta Max Master Mix (#P511) and
ClonExpress II One Step Cloning Kit (#C112) purchased
from Vazyme Biotech Co, Ltd, Nanjing, China according to
the manufacturer’s instructions. The primers used to
generate the above cDNA fragments were purchased from
Tsingke, Beijing, China and are shown in Table 2. The
pooled siRNA oligos targeting for MTDH, TAK1, and FBXW2
were purchased from Guangzhou RiboBio Co, Ltd
(Guangzhou, China), and the sequences of siRNA oligos are
shown in Table 3. Sorafenib and MG132 were purchased
from MedChemExpress (Princeton, NJ). 0XO was purchased
from MedChemExpress. APExBio, Cayman, and CHX were
purchased from Beyotime Biotechnology (Nanjing, China).
Puromycin (Solarbio, Beijing, China; P8230) was purchased
from Solarbio. MLN4924 was a gift from Lidan Hou (Zhe-
jlang University). Apoptosis (70-AP101) and Cell Cycle
Assay (70-CCS012) were purchased from Multi Science,
Beijing, China. Cell Counting Kits (40203ES60) were pur-
chased from Yeasen Biotechnology, Shanghai, China. DAPI
solution (C0060) and Mounting Medium (S2110) were
purchased from Solarbio.

IP and Immunoblotting
Cells were lysed in an IP lysis buffer (150 mmol/L
NaCl, 1% NP-40, 50 mmol/L Tris-HCI, pH 8.0, 1 mmol/L

Table 4.List of Antibodies for Indicated Uses

Target gene Catalog no. Producer Target gene Catalog no. Producer
Anti-TAK1 Ab109526 Abcam Anti-TAK1 #5206S CST
Anti-TAK1 (p-S439) Ab109404 Abcam Anti-LYRIC Ab227981 Abcam
Anti-FBXW2 11499-1-AP ProteinTech Anti-CUL1 Ab75817 Abcam
Anti-Flag F3165 Sigma-Aldrich Anti-SKP1 Ab76502 Abcam
Anti-HA H6908 Sigma-Aldrich EMT Kit 9782 CST
Anti-Myc Ab32 Abcam
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Table 5.List of Primers for g°PCR

Target Forward primer Reverse primer
MTDH AAGGAGATTCTACACTTCAGGTTTC TTCCAGCCTCCTCCATTGAC
TAK1 ATTGTAGAGCTTCGGCAGTT TATATAAAGAGCCCCCTTCAGC
FBXW2 CGGGGGCGGTGTTCAGT AGCCCATACTTTCACAGCGA
GAPDH GTCTTCACCACCATGGAGAAGG ATGATCTTGAGGCTGTTGTCAT
Bcl-2 CAGGATAACGGAGGCTGGGATG AGAAATCAAACAGAGGCCGCA
GADD45B CTGGTCACGAACCCTCACAC CTTTCTTCGCAGTAGCTGGC
UBE2E1 AGTTGCTGTTGCTGCACTTC AACAGCCCCTCTCTTTGTGTC
GAN AGCCCGTACATCAGGACAAAG TGATCTGCCCACTGAAGATGT
RNF168 AACGTGGAACTGTGGACGAT GTCATCAGCCACTTCCTCTGA
RAD18 TTTTGCACGGAATCATCTGCTG TTAACCTGCTCCCCTGCTTT
MDM2 CAGTAGCAGTGAATCTACAGGGA CTGATCCAACCAATCACCTGAAT
UNKL TGGCAAGATGCCAACTTCGT GTGGACCTGTACTGGAACCG
WWP1 ACTGCAGCTCATCTCCAACC TTCAACAGCCAACCTGGCA

Na3V04), supplemented with complete protease inhibitor
cocktail (EDTA free, mini-Tablet; MedChemExpress). For
[P, 1-2 mg lysates were incubated with bead-conjugated
FLAG, MYC, or HA (Sigma-Aldrich) or the appropriate
antibody (2 ug) in a rotating incubator overnight at 4°C,
followed by 2-hour incubation with Protein-A Sepharose
beads (Santa Cruz Technology, Santa Cruz, CA). Immuno-
complexes were washed 4 times with TBST or IP lysis
buffer before resolved by sodium dodecyl sulfulate-
polyacrylamide gel electrophoresis and analyzed by
immunoblotting. For direct IB analysis, cells were lysed in
lysis buffer (50 mmol/L Tris-HCl, pH 8.0, 150 mmol/L
NaCl, 1% TritonX-100, 1% sodium deoxycholate, and 0.1%
sodium dodecyl sulfate, 1 mmol/L EDTA). Proteins were
resolved on sodium dodecyl sulfate polyacrylamide gels
and then transferred to a polyvinylidene difluoride mem-
brane. After blocking with 5% (w/v) milk or bovine serum
albumin, the membrane was stained with the corre-
sponding primary antibodies that are shown in Table 4. All
antibodies were diluted in Primary Antibody Dilution
Buffer (Solarbio, A1810).

RNA Extraction and Real-Time PCR

Cells were transiently transfected with indicated plas-
mids or siRNA for 24-48 hours, and the total RNA was then
isolated using TRIzol Reagent (15596-018; Invitrogen,
Carlsbad, CA). The concentration of RNA was measured by
NanoDrop 2000. Total RNA was then transcribed into
complementary DNA using Hifair II 1st Strand cDNA Syn-
thesis Kit (11121ES60, Yeasen Biotechnology) according to
the manufacturer’s protocol. The quantification of comple-
mentary DNA was performed using SYBR Green Master Mix
(11201ES08-5, Yeasen Biotechnology) on LightCycler 480
(Roche, Basel, Switzerland). The housekeeping gene, glyc-
eraldehyde-3-phosphate dehydrogenase, was used as a
loading control. The sequences of primer sets are shown in
Table 5.

Half-Life Analysis

After gene manipulation, 100 ug/ml CHX (Beyotime) was
added to the cell medium. At the indicated time points, cells
were harvested, lysed, and subjected to Western blotting
analysis. The densitometry quantification was performed
using Image Lab Processing software (Bio-Rad, Hercules,
CA).

In Vivo Antitumor Study

Four- to five-week-old BALB/c athymic nude mice (nu/
nu, male) were purchased from Shanghai SLAC Laboratory
Animal Centre. Mice were fed with a regular diet and had
free access to water and food. All mice procedures were
approved by the Sir Run-Run Shaw Hospital Committee on
Use and Care of Animals. The cell line-derived xenograft and
orthotopic models were constructed as described below.
Around 5 x 10° HCCLM3-SR cells were mixed with
phosphate-buffered saline in a total volume of 0.2 mL and
were then subcutaneously injected into both flanks of mice.
When the tumors reached a volume of ~500 mm?, the mice
were then Kkilled, and the tumors were cut into small pieces
evenly and replanted into 1 flank of mice. Those mice were
then divided into 2 groups. To maintain the sorafenib
resistance in HCCLM3-SR-derived tumors, sorafenib (25
mg/kg, oral) was given once a day in one group, whereas
the other group received only vehicle as control. Two weeks
later, the xenograft tumor volume was compared between 2
groups, and SR tumors were then chosen and replanted into
the flank of mice or liver of mice to construct xenograft or
orthotopic models. The abdomen of the nude mice was
touched to determine the size of the tumor every week.
When the tumors reached ~100 mm?, mice were then ran-
domized into 4 groups (6 mice per group). Sorafenib (25
mg/kg, oral) was given once a day; 0XO (20 mg/kg, intra-
peritoneal) was administered every 2 days; mice of the
control group received only dimethyl sulfoxide (DMSO) as
the vehicle control. The growth of tumors was measured at
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the indicated time points, and average tumor volumes were
calculated according to the equation, Volume = (Length x
Width x Width)/2. After 2 weeks, mice were killed, and all
the tumor tissues were collected, fixed, and sectioned.

Human Specimens and Immunohistochemical
Staining

Human HCC tumor tissue microarrays data were pur-
chased from Shanghai Xinchao Biotech, China. For immu-
nohistochemical staining, the sections were deparaffinized
in xylene and rehydrated through graded ethanol. Antigen
retrieval was performed for 20 minutes at 100°C with 0.1%
sodium citrate buffer (pH 6.0). After quenching of endoge-
nous peroxidase activity with 3% H,0,-dH,0 and blocking
of nonspecific binding with 5% goat serum albumin buffer,
sections were incubated overnight at 4°C with indicated
antibodies. After 3 times washes of phosphate-buffered sa-
line, the sections were treated with horseradish peroxidase
conjugated secondary antibody for 30 minutes at room
temperature and stained with 0.05% 3, 3-diaminobenzidine
tetrahydrochloride. Slides were photographed with virtual
slide microscope. Quantification of the immunohistochem-
ical staining was conducted on the basis of the ratio and
intensity of the staining.

Statistical Analysis

Results are expressed as mean =+ standard error of the
mean. The Student ¢t test was used for comparison between
2 groups. One-way analysis of variance was used for com-
parisons between the means of 3 or more groups. The
Tukey test, Bonferroni test, or Dunnett test were used for
post multiple comparisons between groups. For analysis of
tissue microarrays, the Fisher exact test was used. The level
of significance was P < .05 (*P < .05, **P < .01, and ***P <
.001). The number of independent experiments was n >3 (if
not depicted otherwise). Calculations were performed using
the GraphPad Prism Software (San Diego, CA).
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