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Abstract: Reliable gas sensors are very important for hydrogen (H2) gas detection and storage.
Detection methods based on palladium (Pd) metal are cost-effective and widely studied. When
Pd is exposed to H2, it turns into palladium hydride with modified optical properties, which thus
can be monitored for H2 sensing. Here, we fabricated large-area Pd nanostructures, including Pd
nanotriangles and nanohole arrays, using colloidal lithography and systematically studied their
H2-sensing performance. After hydrogen absorption, both the Pd nanoholes and nanotriangles
showed clear transmittance changes in the visible–near infrared range, consistent with numerical
simulation results. The influences of the structural parameters (period of the array P and diameter
of the nanohole D) of the two structures are further studied, as different structural parameters can
affect the hydrogen detection effect of the two structures. The nanohole arrays exhibited bigger
transmittance changes than the nanotriangle arrays.

Keywords: palladium; hydrogen sensing; colloidal lithography; nanohole; surface plasmon

1. Introduction

Hydrogen is a colorless, odorless and highly flammable gas. It can be produced from
water and has huge potential applications as an alternative to fossil fuels. As a renewable
fuel, hydrogen has the potential to mitigate the global warming problem associated with
fossil fuel consumption, because no carbon emissions are produced when hydrogen is
consumed [1–3]. Hydrogen is also an important industrial raw material, widely used in
petroleum, electronics, metallurgy, the aerospace industry and many other fields. However,
H2 has a high diffusion coefficient (0.16 cm2/s) in air, low spark ignition energy (0.02 mJ),
high combustion heat (285.8 kJ/mol), easy leakage and wide flammable range (4.75%),
which makes it a potentially hazardous gas [1,4,5]. As hydrogen production and hydrogen
fuel cell technologies develop rapidly, the need for hydrogen sensors to safely process
hydrogen at all stages of production, distribution, storage and utilization will continue to
grow [1,6,7].

Optical hydrogen sensors based on the surface plasmon resonances (SPRs) of metallic
nanostructures have been widely studied [8–12]. Compared with traditional electronic
sensors, optical sensors usually have many advantages. The main advantage is that no
sparks are introduced when operating near the sensing area. In addition, they are compact,
relatively inexpensive, and immune to electromagnetic interference. It is also possible
to spatially separate the readout and the sensing areas for these sensors, enabling their
application in harsh environments [12,13].

Palladium and its alloys are commonly used for hydrogen detection. After palladium
is exposed to hydrogen, the local hydrogen pressure in palladium increases, and palladium
hydride (PdHx) is formed through the hydrogenation process [5,14–19]. The composition
of palladium hydride, and thus its optical properties, depends directly on the surrounding
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hydrogen concentration. The conversion process from Pd to PdHx leads to a change in
dielectric function [20]. The hydrogen absorption of palladium can be manifested in many
different optical parameters, including spectral extinction/transmission/reflection amplitude,
peak/dip position and full-width at half-maximum (FWHM) of the peak/dip [16–18]. Based
on this, various palladium plasmonic hydrogen sensors have been demonstrated [21–25]. For
practical applications, it is desirable to be able to fabricate these sensors in a cost-effective and
scalable fashion.

In this work, we used colloidal lithography (CL) to fabricate large-area palladium
nanohole and nanotriangle arrays. These Pd nanostructures were fabricated using scalable
nanofabrication techniques and thus large-area sample preparation is possible without
using sophisticated lithographic instruments. We varied their structural parameters to
systematically investigate their hydrogen sensing performance. At 3% H2 concentration,
nanohole arrays with a period of 500 nm showed the biggest intensity change of 5.5% at
resonance wavelengths.

2. Results and Discussions

Colloidal lithography, a scalable and versatile nanofabrication technique, has been
widely employed to fabricate a variety of plasmonic nanostructures for different sensing
applications [26–30]. The Pd NHA was fabricated on quartz substrates with a multi-step
process, which is illustrated in Figure 1a. First, a close-packed monolayer of polystyrene
(PS) nanospheres was formed on the quartz substrate through the self-assembly of the
nanospheres, as reported in our previous work [31] and described in detail in the Materials
and Methods section. Then the nanospheres were subjected to O2 plasma treatment with
reactive-ion etching (RIE) to reduce the sphere size to a desirable value. Finally, with the
etched nanosphere arrays as masks, 20 nm Pd was deposited onto the substrate followed
by the removal of the PS nanospheres with ultrasonication in ethanol, leaving ordered
Pd nanohole arrays on the substrate. The inset in Figure 1c shows a scanning electron
microscopy (SEM) image of the fabricated Pd NHA. The nanohole size as well as the array
periodicity is quite uniform over a large area, suggesting the quality of the PS nanosphere
monolayers is good. The diameter of the nanoholes can be accurately controlled by O2
plasma etching time and thus the resonance wavelengths of the NHA can be readily tuned.
In addition, using spheres with different diameters leads to corresponding changes in the
array period, providing additional tuning means for these nanohole arrays.

Numerical simulations were performed on such Pd NHAs to evaluate the changes in
their optical properties upon H2 absorption. The simulation results, as shown in Figure 1b,
show that the transmittance increases dramatically at resonance dips while the broad
resonance peak at 750 nm shifts to a longer wavelength. This is due to the change in the
optical permittivity ε of Pd to PdHx. The permittivity of Pd can increase by 20% under
the exposure of H2 [32–35]. The momentum matching condition

√
ε1εd

ε1+εd
in Equation (1)

become larger, and λP (i, j) moves to a longer wavelength. Figure 1c shows the experimental
transmission spectra of a fabricated Pd NHA with D = 360 nm and P = 500 nm in the N2
environment and with a 3% hydrogen concentration, which qualitatively agrees with the
results in Figure 1b. From the simulation and experimental results, it can be seen that
all of the spectra show two peaks and two dips; we denote the peak/dip wavelengths as
λP1, λP2, λD1 and λD2, respectively. According to previous reports [35–39], as shown in
Equations (1) and (2), λP1, λP2, λD1 and λD2 can be assigned to the (1,1) Pd/glass and (1,0)
Pd/glass resonance peaks, (1,0) Pd/glass and (1,0) Pd/air Wood’s anomaly transmission
minima, respectively [35,37].
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Figure 1. Fabrication and optical characterization of Pd NHA. (a) Schematic of the fabrication process
of Pd NHA; (b) Simulated transmission spectra of Pd NHA (D = 360 nm, P = 500 nm) before (black)
and after (red) H2 adsorption. The inset shows the geometrical configuration of Pd NHA and the
unit cell for numerical simulations; (c) Experimentally measured transmission spectra of the Pd NHA
(P = 500 nm, D = 360 nm) before (black) and after (red) H2 adsorption. The inset shows the SEM
image of the nanohole arrays. D and P represent the diameter of the nanohole and the period of the
array, respectively.

As shown in Figure 1b,c, λP1 is broad and shifts to a longer wavelength after hydrogen
absorption, making it difficult to track its spectral positions. Therefore, we monitored the
transmittance changes in the samples in this study. Three sets of Pd nanohole arrays, i.e.,
P500D400, P500D360 and P300D200, were prepared and used to study the effect of different
periods and hole sizes. The samples were placed inside a custom-built gas chamber.
Hydrogen gas concentration in the chamber was controlled by regulating the flow rate of a
3% N2-diluted H2 gas and a pure N2 via two mass flow controllers. The total flow rate of
the gas mixture was fixed at 300 sccm during the test. After the H2 concentration was set,
we continuously recorded the transmission spectrum of the Pd NHA with a time interval
of 2 min.

Figure 2 shows the hydrogen sensing performance of the three groups of Pd NHAs.
Figure 2(a2,a3) shows the absorption and desorption, respectively, of the transmission
spectra of P500D360 NHA under different hydrogen concentrations in the wavelength range
from visible to near-infrared. When the Pd NHA is exposed to H2 gas, the transmission
spectrum exhibits dramatic changes and the magnitudes of these changes are strongly
wavelength-dependent. Before hydrogen absorption, the transmittance varies between
37% and 52% in the wavelength range of measurement. After hydrogen absorption, the
transmittance varies between 42% and 49% with a smaller fluctuation range of 7%. The
change in transmittance before and after hydrogen absorption can be attributed to the fact
that the absorption of H2 leads to a negative dispersion factor ε1/ε2 decrease (ε1 and ε2 are
the real and imaginary parts of the dielectric constant of the Pd/PdHx film, respectively),
which weakens the plasmon response of the nanoholes. In particular, the transmission
increases at λP1, λD1 and λD2, but decreases at λP2. As the hydrogen concentration decreases,
the transmission spectrum of the Pd NHA is gradually restored to its original position.
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As shown in Figure 2(a2,b2), when the hydrogen concentration increases from 0 to
3%, the spectral positions of λP2 of P500D360 and P500D400 exhibit considerable red-shifts
with a corresponding sensitivity greater than 200 nm at 3% H2. For sample P300D200
(Figure 2(c2)), the sensitivity in terms of the wavelength shift is about 100 nm at 3% H2.
The wavelength shift is generated by the formation of Pd hydride upon exposed to H2,
leading to a variation in the permittivity of the Pd hole array. According to Equation (1),
we can derive the wavelength sensitivity to the metal permittivity as follows:

dλP(i, j)
dεd

=

√
3

4εd

P√
i2 + ij + j2

√
ε3

1

(ε1 + εd)
3 (3)

According to Equation (3), the wavelength sensitivity is directly proportional to the
hole array period. Therefore, it is expected that a larger sensitivity can be obtained with
bigger PS spheres. Indeed, it is observed that the sensitivity of P500D360 and P500D400
sensors is much higher than that of a P300D200 sensor. Both P500D360 and P500D400 show
similar sensitivity, indicating that the hole diameter plays a minor role in this diameter
range. In our experiments, as the position of λP2 eventually moves out of the range of the
spectrometer. It is noted that the shift in resonance wavelength is inevitably accompanied by
intensity changes. We thus monitored the transmission changes in the NHAs in a different
hydrogen environment. Table 1 shows the performance of other reported plasmonic
hydrogen sensors. It can be found that the NHAs proposed in this study show comparable
or better sensitivity performance while the hydrogen absorption and desorption times are
longer. If the sensor response time is defined as the time needed for the sensor to reach 80%
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of its stable response, the sensor response time of the NHAs is estimated to be 16 min at
3% H2.

Table 1. Performances of other reported hydrogen sensors.

Hydrogen
Sensors Type

Sensitivity Response
Time

Recovery
Time Ref.

Transmission Wavelength

Pd nano-disk ~6.5% at 3% H2 30 nm at 3% H2 <10 s <30 s [40]
Pd hole arrays ~7% at 2% H2 200 nm at 2% H2 - - [41]
Pd hole arrays ~7% at 2% H2 200 nm at 2% H2 - - [34]
Au nano-disk ~1.8% at 10% H2 ~3 nm at 10% H2 0.3–1 s - [42]

For better visualization, we have displayed the transmittance changes in the samples
in Figure 3. ∆T is defined as the difference between the spectral transmittance under a
given hydrogen concentration and the transmittance in a N2 environment. As shown
in Figure 3(a1), ∆T exhibits the largest variation at resonance dip λD1 = 460 nm when
P500D360 is exposed to 3% H2. The evolution of ∆T during H2 absorption and desorption
is displayed in Figure 3(a2) showing a hysteresis-like curve. After the Pd NHA stayed in
N2 for 5 min, hydrogen was introduced and its concentration gradually increased, leading
to changes in the spectral transmittance. From 8 min on, the transmittance change increases
rapidly before becoming saturated at 5.5% after half an hour when H2 concentration reaches
3%. Afterwards, as the H2 concentration is reduced, hydrogen molecules are released from
the palladium lattice into the air, and the transmittance of the sample begins to decrease
quickly. After the hydrogen is desorbed for about 20 min, the spectral transmittance
basically returns to the initial value. A similar hysteresis-like curve is also observed for
transmittance changes at λP1 with smaller ∆T values.
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The spectral transmittance of P500D400 for H2 absorption and desorption shows
similar phenomena as shown in Figure 2(b2,b3) and Figure 3(b1–b3), illustrating that the
nanohole diameters have little influence on the sensing performance of the Pd NHAs,
which can be an advantage from the point view of fabrication tolerance.

Smaller PS nanospheres were also used to fabricate more compact nanohole ar-
rays. The transmission spectra of P300D200 for H2 absorption and desorption are shown
in Figure 2(c2,c3). Different from P500D360 and P500D400, the spectra of P300D200
show two transmission peaks and one resonance dip. The position of the transmission
dip at λD2 ≈ 420 nm is (1,0) Pd/air Wood’s anomaly transmission minima according to
Equation (2). The two transmission peaks at λP1 ≈ 350 nm and λP2 ≈ 650 nm can be at-
tributed to the (1,1) Pd/glass and (1,0) Pd/glass resonance peaks, according to Equation (1).
Considering the smaller period, it is likely that λD1 shifts to a shorter wavelength in the UV
range. Its response towards H2 seems weak as the spectral transmittance shows smaller
changes compared to Pd NHAs with P = 500 nm. At λP1, ∆T = 1.2% is observed when the
H2 concentration is 3%. Its hysteresis-like curve is shown in Figure 3(c1–c3). Although the
transmittance changes are small for P300D200, it is noted that the wavelength shift of λP1 is
large, indicating a good sensing method in this wavelength range.

Through a finite difference time domain (FDTD) simulation, the transmission spectra
of Pd NHAs were obtained to explore the effect of H2 absorption. Figure 2(a4,b4,c4) shows
the simulated transmission spectra of P500D360, P500D400 and P300D200, respectively.
It can be seen that there is a good consistency between the experimental transmission
spectra and the simulated ones of the Pd-PdHx process of Pd NHAs. The overall spectral
features are consistent with those obtained experimentally, with some differences that can
be attributed to the real refractive index changes in such thin Pd films.

In addition to nanohole arrays, ordered triangular nanostructures can be also fabri-
cated by colloidal lithography with PS nanosphere monolayers as deposition masks. We
prepared two Pd nanotriangle arrays (Pd NTA): P500 and P300, in which P represents
the period of the array (i.e., the diameter of the PS spheres). Pd thin films were directly
deposited onto unetched, densely packed PS sphere monolayers. Subsequent ultrasoni-
cation in ethanol produces periodic Pd nanotriangles on the substrate. Compared with
Pd NHAs, the nanotriangles show weak plasmon modes with a relatively small peak
magnitude. A similar H2 absorption and desorption process was carried out with these two
samples and the results are shown in Figure 4 with different hydrogen concentrations. In
the wavelength range of the experiments, the transmittance of both NTA samples increases
with the increasing H2 concentration. When the concentration reaches 3%, ~2% changes
are observed at most of the wavelengths of P500 with little changes in the plasmon spectral
positions. Similar trends are also observed for NTA P300.

For both P500 and P300, the largest changes occur at ~750 nm. We monitored the
transmittance changes at these wavelengths and their evolution curves are shown in
Figure 5. Similar to the Pd NHA samples, both Pd NTAs exhibit hysterisis-like curves
with similar maximum transmittance changes of ~2.5%. It can be concluded from these
two samples that the change in period has little influence on the maximum position of
transmittance changes for these Pd nanotriangle arrays.
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3. Conclusions

We have demonstrated the nanofabrication of large-area Pd nanostructures (nanoholes
and nanotriangles) with colloidal lithography and investigated their hydrogen sensing
performances. It is observed that Pd nanohole arrays exhibit better-defined plasmon mode
features and provide better sensing performances than nanotriangle arrays. Nanohole
arrays with different diameters and periods are prepared and their spectral transmittance
changes with different H2 concentrations are monitored. It is found that the sensing
performance of the nanohole arrays greatly depends on the array period. Thus, within
the detection range of the measurement system, it is better to choose bigger PS spheres.
Considering the ease of fabrication of these scalable Pd nanostructures, this study could
provide a guide to designing such large-area plasmon hydrogen sensors.

4. Materials and Methods
4.1. Nanohole Fabrication

Sulfate-functionalized polystyrene spheres with nominal diameter of 500 nm were
purchased from Polyscience Inc. and dispersed in a water/ethanol mixture (1:1 volume
ratio). Quartz substrates were cleaned in a mixture of NH4OH/H2O2/H2O (1:1:5 volume
ratio) at 80 ◦C for 15 min and blown dry with N2. The nanospheres formed a closely packed
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monolayer on the glass substrates by colloidal lithography, as reported previously [31].
Diameters of the PS spheres were reduced by O2 plasma with reactive ion etching (RIE).
The following etching parameters were used in our fabrication process: the oxygen flow
rate was 10 sccm, the pressure of the chamber was 376 mTorr, the etching power and
etching time were 100 W, 26 min for P500D400; 100 W, 34 min for P500D360; and 50 W,
14 min for P300D200, respectively. These etched sphere monolayers were then used as
a template for Pd deposition with e-beam evaporation. The substrates were coated with
20 nm of Pd under a constant deposition rate of 0.01 nm/s. PS nanospheres were removed
with sonication in ethanol for 5 min.

4.2. Optical Characterization

The optical transmission of Pd NHAs and Pd NTAs with different H2 concentrations
was characterized by a homemade setup. Transmission spectra of Pd NHAs and Pd NTAs
were measured by a fiber-coupled spectrometer (Ocean Optics, 2000PRO). The chamber
and samples were flushed more than 10 times with hydrogen-nitrogen cycles. All the
measurements were performed at 25 ◦C.

4.3. Numerical Simulation

Finite domain time difference (FDTD) method was used to simulate the transmission
spectra of the nanohole arrays. A rectangular unit cell for calculation was used, with a
2-dimesional periodic boundary condition in x-axis and y-axis, and a perfectly matched
layer (PML) boundary condition applied on the z-axis of the simulation. The refractive
index of the quartz substrate was fixed at 1.5, and the optical parameters of Pd and PdHx
were extracted from Ref. [33].
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