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Abstract
Gastric cancer is still one of the most common and deadly malignancies in the world. 
Not all patients could benefit from chemotherapy or chemoradiotherapy due to tumor 
heterogeneity. Therefore, identifying different subgroups of patients is an important 
trend for obtaining more effective responses. However, few molecular classifications 
associated with chemosensitivity are based on immune–risk status. In this study, we 
obtained six key immune–related genes. Using these genes, we constructed a molecu-
lar model related to immune–risk status and calculated an individual immune–risk 
score. The score showed great efficiency and stability in predicting prognosis and iden-
tifying different subgroups where persons could benefit from postoperative adjuvant 
therapy. The patients could be divided into different risk groups based on the immune–
related score. For patients in the low–risk group, both postoperative chemoradiother-
apy and chemotherapy could significantly improve prognosis on overall survival (OS) 
and disease–free survival (DFS) (DFS, P < 0.001 and P = 0.041, respectively; OS, 
P < 0.001, P = 0.006, respectively) and chemoradiotherapy was significantly superior 
than simple chemotherapy (DFS, P = 0.031; OS, P = 0.027). For patients with an in-
termediate–risk score, postoperative chemoradiotherapy showed a statistically signifi-
cant survival advantage over no anticancer treatment (P = 0.004 and P = 0.002, 
respectively), while chemotherapy did not. Compared with no adjuvant treatment, nei-
ther postoperative chemoradiotherapy nor chemotherapy made significant difference 
for patients in the high–risk group. Combining the value of immune–risk status and 
chemosensitivity, the immune–risk score could not only offer us prognostic evaluation 
and adjuvant treatment guidance, but also improve our understanding about the bind-
ing point between chemotherapy or chemoradiotherapy and the immune system, which 
may be helpful for further expanding the application of immunotherapy.
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1  |   INTRODUCTION

Gastric cancer (GC) is one of the most common malignan-
cies in the world.1 Although its incidence has continually 
decreased, it is still ranked as the fifth most common ma-
lignancy in the word, especially in East Asian countries 
(mainly in China).2 Its prognosis is relatively poor and is 
ranked as the third leading cause of cancer death with the 
5‐year survival rate being less than 40% in most countries, 
which mainly results from difficulties in early diagnosis, low 
rates of radical resection and unsatisfactory effects of adju-
vant therapy.1,3

Radical surgery remains the only cure for patients with 
GC.4 However, most patients are diagnosed at an advanced 
stage, for whom simple surgical strategies cannot meet the 
requirement for the treatment.5 Recently, a great number of 
researchers have devoted to the study about application of 
adjuvant chemotherapy for GC and have obtained several 
significant conclusions. The phase III trial, SWOG9008/
INT‐0116, established the status of standard treatment for 
postoperative chemoradiotherapy.6 Thereafter, the ACTS 
GC trial and CLASSIC trial provided strong evidence for 
the application of postoperative chemotherapy.7,8 Therefore, 
for locally advanced tumors, radical surgical resection with 
subsequent perioperative chemotherapy or chemoradiother-
apy seems to be the main treatment strategy.9 Unfortunately, 
the overall effects of chemotherapy and chemoradiotherapy 
for patients with GC are relatively unsatisfactory due to 
tumor heterogeneity.10 In addition it is difficult to avoid the 
additional side effects resulting from ineffective treatment 
strategies, including immunosuppression, bone marrow 
suppression and so on, which could worsen the condition 
and affect the prognosis.11 Thus, it is very essential to un-
derstand the molecular heterogeneity characteristics of GC 
and establish a molecular model to classify GC patients into 
different subgroups, which could be considered in quickly 
and accurately shaping individualized clinical treatment 
decisions.

It is known that various components of the immune sys-
tem are involved in cancer occurrence and development.12 
The disorder of the immune system in tumor microenvi-
ronment is the main factor allowing tumor cells to evade 
immunologic surveillance and destruction, which has been 
viewed as a trigger for cancer.13,14 However, few molecular 
classifications associated with the chemosensitivity of GC 
are based on immune–risk status.15,16 Furthermore, the nor-
malization of immune microenvironment has an effect on 
improving other antitumor therapy, including chemother-
apy, radiotherapy and targeted therapy.17 And numerous 
immune–related genes (IRGs) have been reported to be re-
lated to the sensitivity of various chemotherapeutic drugs.18 
However, at the genetic level, the pattern of interactions 

between the immune microenvironment and chemotherapy 
remains to be further explored. Therefore, by constructing 
the molecular prediction model based on IRGs, we could 
identify the GC population benefiting from adjuvant therapy 
and further understand the underlying mechanism of interac-
tions between the immune microenvironment and adjuvant 
therapy, which may be helpful to further expand the applica-
tion of immunotherapy.

In this study, we measured the expression level of IRGs 
based on gene expression microarray data and obtained some 
key IRGs with significant prognostic value. Using these key 
IRGs, we constructed a genetic prognostic score to predict 
the prognosis of patients who received chemoradiotherapy. 
With the genetic prognostic score, we could classify the GC 
patients into different subgroups and evaluate the effect of 
chemoradiotherapy in each subgroup.

2  |   METHODS

2.1  |  Microarray data and clinical cohort
The gene expression profile, GSE26253, was downloaded 
from the GEO database (http://www.ncbi.nlm.nih.gov/
geo/), which is a public functional genomic data repository. 
GSE26253 included a total of 432 gastric adenocarcinoma 
cases of stage IB to IV (T2bN0 and T1N1, but not T2aN0), 
according to the 6th American Joint Committee on Cancer/
International Union Against Cancer (AJCC/UICC) staging 
system. These patients were all treated with standard chem-
oradiotherapy after curative resection and they all had not 
received neoadjuvant chemoradiotherapy (ACRT) or neoad-
juvant chemotherapy (ACT). The details of the clinical and 
pathological annotations as well as the treatment records are 
all presented elsewhere. The processing of the samples and 
measurement of mRNA could also be searched in the GEO 
database. Overall, we included 432 patients in the develop-
ment cohort.

To ensure the independence and feasibility of valida-
tion, we selected a combination of The Cancer Genome 
Atlas (TCGA) cohort and GSE62254 cohort to form a 
validation Cohort. Similarly, the included criteria were 
set as follows: gastric adenocarcinoma; stage of IB to IV 
according to the 6th AJCC staging system, without dis-
tant metastasis; and standard chemoradiotherapy (com-
bination radiotherapy and fluorouracil and/or platinum) 
after curative resection. To exclude interference from 
preoperative treatment and ensure comparability, patients 
receiving any neoadjuvant anticancer therapy were ex-
cluded. Finally, the validation cohort consisted of a total 
of 102 cases, 42 cases from TCGA and 60 cases from 
GSE62254. The overall study design is shown in the 
Figure 1.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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2.2  |  Individual prognostic signature based 
on IRGs
The individual prognostic signature was built based on IRGs, 
which were obtained from the ImmPort database (https://
immport.niaid.nih.gov).19 The genes of cytokines, cytokine 
receptors, and those that were related to the signaling path-
ways of the T–cell receptor, B–cell antigen receptor, natural 
killer cell cytotoxicity, and antigen processing and presenta-
tion were selected. Among these IRGs, only the genes meas-
ured by all platforms were included.

2.3  |  Generation of individual risk score
The Univariate Cox Analysis was performed to select IRGs 
with a significant prognostic value (P < 0.01) as the candi-
dates of the individual risk score. Then, for identifying ro-
bust IRGs (P < 0.05) associated with overall survival (OS) 
to build the IRGs risk score, these selected IRGs were fur-
ther refined with forward stepwise selection by taking use 
of multivariate Cox analysis. At the same time, a molecular 
model was constructed, and an individual risk score was cal-
culated based on a combination of coefficients and expres-
sion status of these refined IRGs. The risk score was set as 
Ri = 

∑n

k=1
�

k
×x

i
, where Ri is for the risk score of ith patient, 

n is for the number of these refined IRGs, βk is for the coeffi-
cient of xi and xi is for the expression status of IRG i. The ex-
pression status of IRG is 0 if its individual expression level 
is lower than the median value; otherwise, the expression 
status of IRG is 1.20 With the median of IRGs risk score, the 
cohort was stratified into high– and low–immune–risk.

2.4  |  Statistical analysis and immune–
related infiltration analysis
The statistical analyses in this study were all conducted in 
R, version 3.3.1 (https://www.r-project.org/). We compared 
the OS and disease–free survival (DFS) between different 
immune–risk score (low– and high–immune–risk score) in 
the development cohort. The time–dependent receiver op-
erating characteristic (ROC) curves at 5 years were drawn 
to identify the predictive value of the risk score. Similarly, 
the OS and DFS between the low– and high–immune–risk 
score in the combined cohort and the ROC curves at 5 years 
were drawn to validate the predictive value of the risk score. 
Furthermore, univariate Cox proportional hazards regression 
was used to estimate hazard ratios (HRs) between the low– 
and high–immune–risk scores within different clinicopatho-
logical characteristic subgroups in the validated cohort. The 
survival differences of OS and DFS were all calculated by 
the log–rank test.

The frozen tumor tissues in TCGA were divided into three 
parts: top and bottom sections for pathological examination 
and middle for genomic data. Therefore, we compared im-
mune–related infiltration information, such as lymphocytes, 
monocytes, neutrophils and necrosis percentage, among the 
different immune–risk groups using the Wilcoxon rank sum 
test.21

2.5  |  Clinical treatment strategy analysis
To search the guiding value of the risk score in individualized 
clinical decision making, we further conducted log–rank test 

F I G U R E  1   Flow chart of the 
development and validation of the 
immune–related–genes prognostic model 
for patients who received 5–Fu–based 
chemoradiotherapy after curative resection. 
IRGs, Immune–Related Genes

https://immport.niaid.nih.gov)
https://immport.niaid.nih.gov)
https://www.r-project.org/
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among the low–risk, intermediate–risk and high–risk groups 
stratified by the risk scores with the middle two quarters 
combined. Kaplan–Meier curves were performed to com-
prise OS and DFS among the three risk groups treated with 
different treatment strategies, including chemoradiotherapy, 
chemotherapy and no treatment.

3  |   RESULTS

3.1  |  Composition of the clinical cohort
A total of 958 GC patients were included in our initial study, 
of which 432 patients came from GSE26253, 253 patients 
from TCGA and 273 patients from GSE62254. Their detailed 
features are shown in Table 1. After screening, 432 patients 
from GSE26253 formed the development cohort, while 42 
patients from TCGA associated 60 patients from GSE62254 
were integrated into the validation cohort.

3.2  |  Definition of IRGs
There were 1443 IRGs downloaded from the ImmPort da-
tabase, among which 637 IRGs were measured in all plat-
forms. Using univariate analysis, the impact of these IRGs 
on survival was measured in the development cohort 
(Supplementary Table S1). Based on a threshold of P values 
less than 0.01, a total of 12 IRGs related to significant prog-
nosis were selected as further evaluation factors.

3.3  |  Construction and evaluation of the 
SIRGs score
These 12 IRGs were subjected to multivariate Cox analy-
sis with forward stepwise selection using a Cox propor-
tional hazard regression in the development cohort, and 
six refined IRGs were selected as the prognostic factors of 
the prognostic model, including BRD8, CCL25, CMTM3, 
FPR1, GDF10 and LEPR (Table 2). Then, a six immune–
related genes (SIRGs) score was constructed based on the 
β‐coefficient and expression status of these six genes, by 
which the development cohort was classified into high– and 
low–immune–risk groups. Kaplan‐Meier curves of DFS 
were constructed to assess the prognosis of patients strati-
fied into high– and low–immune–risk groups by the SIRGs 
score in the GSE26253 cohort (Figure 2A). Compared with 
the patients in the low–immune–risk, patients in the high–
immune–risk group had significantly worse prognoses 
(HR = 2.03; 95% CI = 1.50‐2.67; P < 0.001). Time–de-
pendent ROC curves showed effectiveness of SIRGs score 
in the GSE 26253 cohort at 5 years (DFS: AUC = 0.698, 
95% CI) (Figure 2B). Furthermore, the DFS of patients 
stratified into the high– and low–immune–risk groups by 
the SIRGs score presented significant differences for stage 

I to II patients (Supplementary Figure S1A) and stage III to 
IV patients (Supplementary Figure S1B) in the GSE26253 
cohort.

3.4  |  Validation of SIRGs score
To assess the SIRGs scores, the validation cohort was con-
structed with two independent clinical cohorts (TCGA cohort 
and GSE62254 cohort). Similarly, patients in the validation 
cohort were also divided into high– and low–immune–risk. 
The survival curves showed that the DFS and OS of the 
low–immune–risk group had significant survival advantages 
compared to the high–immune–risk group (DFS: HR = 2.92, 
95% CI = 1.38‐6.20, P = 0.005; OS: HR = 3.48, 95% 
CI = 1.42‐8.50, P = 0.006) (Figure 3A,B). Furthermore, the 
ROC curve presented the effectiveness of the risk score re-
gardless of the DFS and OS (DFS: AUC = 0.664, 95% CI; 
OS: AUC = 0.634, 95% CI) (Figure 3C). The validation in-
dicated great applicability and stability of the SIRGs scores.

3.5  |  Annotation of the SIRGs score
We also evaluated the prognostic value of the SIRGs score 
in different subgroups. Based on the SIRGs score, we cal-
culated HRs of high vs low SIRGs score risk groups within 
subgroups stratified by different clinicopathological charac-
teristics in the combined cohort (Figure 4). It can be seen 
from the forest plot that patients in groups with low SIRGs 
score risk had a significantly good prognosis within most 
subgroups. In order to compare immune–related infiltration 
status of high and low SIRGs scores, the further analysis was 
conducted (Figure 5). It could be concluded that the group 
with low SIRGs scores had a significantly higher infiltration 
level of Lymphocyte (P = 0.028), Monocyte (P = 0.028) 
and Necrosis (P = 0.012), but not Neutrophil (P = 0.113). 
Although none of the differences reached statistical signifi-
cance, patients in the low–immune–risk group had a high in-
filtration tendency of neutrophil compared with those in the 
high–immune–risk group. These differences about immune–
related infiltration level might elucidate the potential immune 
mechanism of the SIRGs scores.

3.6  |  Direction of clinical treatment strategy
The survival analysis was performed to explore the DFS and 
OS of different risk groups in the validation cohort treated 
with different clinical strategies, including chemoradio-
therapy, chemotherapy and no adjuvant therapy. All patients 
in the TCGA and GSE62254 cohort were combined for the 
analyses (Figure 6A,B). The combined patients were strati-
fied into low–risk (Figure 6C,D), intermediate–risk (Figure 
6E,F) and high–risk groups (Figure 6G,H) according to the 
SIRGs scores for the analyses. For GC patients after curative 
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resection, subsequent chemoradiotherapy or chemotherapy 
could significantly improve DFS and OS (P < 0.001) (Figure 
6A,B). Patients in the low–risk group can significantly benefit 
from chemoradiotherapy (OS, P < 0.001; DFS, P < 0.001) and 
from chemotherapy (OS, P = 0.006; DFS, P = 0.041). In ad-
dition, chemoradiotherapy could significantly improve prog-
nosis compared with simple chemotherapy for patients with 
low–risk scores (DFS, P = 0.031; OS, P = 0.027). A similar 

conclusion was not applicable for the intermediate–risk group, 
for which only chemoradiotherapy could bring significant sur-
vival benefits compared with no chemotherapy (OS, P = 0.002 
and DFS, P = 0.040). However, for the high–risk group, pa-
tients treated with chemoradiotherapy (OS, P = 0.353; DFS, 
P = 0.270) or chemotherapy (OS, P = 0.251; DFS, P = 0.297) 
could not obtain any obvious survival benefits compared with 
no chemotherapy.

Clinicopathological 
characteristics

GSE 26253 Cohort 
(N = 432)

TCGA Cohort 
(N = 253)

GSE 62254 
Cohort (N = 273)

AJCC 6th TNM Stage

IB 68 57 30

II 167 87 97

III 130 68 96

IV 67 41 50

T stage

T1 — 3 0

T2 — 155 176

T3 — 63 82

T4 — 32 15

N stage

N0 — 75 37

N1 — 120 126

N2 — 44 69

N3 — 14 41

Sex

Female — 91 87

Male — 162 186

Age, y

<65 — 110 146

≥65 — 142 127

Missing 1 —

Tumor location

Lower — 97 143

Middle — 95 99

Upper 58 28

Whole — 3

Missing 3 —

Lauren type

Intestinal — 204 141

Diffuse/Mixed — 49 132

Treatment type

No treatment — 126 111

5‐Fu–based ACRT 432 42 60

5‐Fu–based ACT — 71 81

Other treatment — 14 21

ACRT, adjuvant chemoradiotherapy; ACT, adjuvant chemotherapy; TCGA, the cancer genome atlas.

T A B L E  1   Basic demographic and 
tumor characteristics of included patients
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4  |   DISCUSSION

GC is still one of the most common and deadly malignan-
cies in the world, whose prognosis is relatively poor.1 Most 
patients are diagnosed at an advanced stage, for whom sim-
ple surgical treatment could not yield satisfactory results.5 
For a long time, whether the application of adjuvant therapy 
for GC could improve the prognosis was debated. Recently, 
several clinical trials obtained significant conclusions 
and established postoperative chemotherapy and chemo-
radiotherapy as the main treatment strategies for GC.6,22 

Unfortunately, the benefits from adjuvant therapy for pa-
tients were still very limited due to tumor heterogeneity and 
some additional adverse effects resulting from ineffective 
treatment strategies could not be avoided.10,23 Therefore, it 
is very critical to identify the benefit population that could 
benefit from postoperative adjuvant therapy. This study 
focused on establishing a molecular model to evaluate the 
prognosis of GC patients and a method to identify popula-
tions that could benefit from postoperative adjuvant therapy.

Identifying subgroups of patients who could benefit from 
specific therapeutic agents has been viewed as an important 

Predictors Multivariate analysis

Gene name Expression status β‐coefficient HR 95% CI P value

BRD8 Low 0 1

High −0.334 0.716 0.528‐0.971 0.031

CCL25 Low 0 1

High −0.398 0.671 0.496‐0.910 0.010

CMTM3 Low 0 1

High 0.355 1.426 1.055‐1.927 0.021

FPR1 Low 0 1

High 0.409 1.505 1.115‐2.032 0.008

GDF10 Low 0 1

High −0.387 0.679 0.503‐0.918 0.012

LEPR Low 0 1

High 0.460 1.584 1.166‐2.151 0.003

CI, confidence interval; HR, hazard ratio.

T A B L E  2   Multivariate Cox 
proportional hazards regression model for 
disease–specific survival

F I G U R E  2   A, Kaplan–Meier Curves of Disease–free Survival stratified by Six Immune–Related Genes (SIRGs) score in high and low risk 
for patients in GSE26253 cohort. B, Time–Dependent receiver operating characteristic (ROC) curve for SIRGs scores in the GSE 26253 Cohort at 5 
Y. AUC, area under curve; DFS, disease–free survival
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opinion to obtain more effective therapeutic responses.24,25 
With advances in molecular research methods, many molec-
ular classifications based on individual differential genetic 
expressions were established, and appropriate subgroups 
were identified accordingly. Among these studies, some 
molecular classifications were revealed to classify patients 
into different subgroups related to the degree of benefit from 
postoperative adjuvant therapy.26,27 Furthermore, increasing 

evidences showed that inflammation and the immune system 
are involved in cancer.28-30 The immune microenvironment 
of tumors has been confirmed as a key driver of biological 
behavior and as a factor that influences chemotherapy.31-33 
However, few classifications could evaluate the prognosis of 
GC patients based on the risk status of immunological mole-
cules and could be used to guide the application of adjuvant 
therapy in clinical practice.15,16 Therefore, the purpose of this 

F I G U R E  3   Kaplan–Meier Curves of Disease–free Survival (A) and Overall Survival (B) stratified by SIRGs scores in high and low risk 
for Patients in combined cohort. B, Time–Dependent ROC Curve for SIRGs scores in the combined cohort at 5 y. AUC, area under curve; DFS, 
disease–free survival; OS, overall survival

F I G U R E  4   Forest Plot for the hazard ratios (HRs) of High vs Low SIRGs score Risk Groups stratified by different clinicopathological 
characteristics in combined cohort. DFS: disease–free survival; OS, overall survival. *one patient with age not available were excluded from the 
analysis
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study was to explore a prediction model using the IRGs, by 
which we could screen GC populations that could benefit 
from postoperative chemotherapy and chemoradiotherapy.

In the study, we obtained a total of 6 key IRGs, including 
BRD8, CCL25, CMTM3, FPR1, GDF10 and LEPR, which 
were all significantly related not only to the immune–risk 
status but also to prognosis of GC. It had been reported that 
BRD8, CCL25, FPR1 and GDF10 could be associated with 
chemotherapy in other types of cancers and could be viewed 
as novel therapeutic targets to improve the outcome of che-
motherapy.18,34-36 By conducting analysis of these IRGs, we 
found that they were also associated with the effect of che-
motherapy against GC. Based on the SIRGs, we constructed 
a risk score system and verified its classification value in an 
independent validation cohort. In a departure from the pre-
vious molecular models of GC, the SIRGs score provided 
us with a stratification standard associated with responses to 
postoperative chemotherapy and chemoradiotherapy at the 
genetic level, and this stratification standard was based on the  
immune–risk status. The SIRGs could be viewed as a pre-
diction model to prejudge the treatment response to different 
adjuvant treatment strategies in different immune–risk sub-
groups. Patients in the low–risk group achieved significantly 
great response from chemoradiotherapy (OS, P < 0.001; 
DFS, P < 0.001) and from chemotherapy (OS, P = 0.006; 
DFS, P = 0.041). Additionally, chemoradiotherapy could 
significantly improve the prognosis compared with simple 
chemotherapy (DFS, P = 0.031; OS, P = 0.027). For pa-
tients in the intermediate–risk group, only chemoradiother-
apy could bring significant survival benefits compared with 
no anticancer therapy (OS, P = 0.002 and DFS, P = 0.040). 
For high–risk group, patients did not obtain any obvious sur-
vival benefits from chemoradiotherapy (OS, P = 0.353; DFS, 
P = 0.270) or chemotherapy (OS, P = 0.251; DFS, P = 0.297) 
compared with no anticancer therapy. Based on these signifi-
cant conclusions, SIRGs could be used as a potential clinical 
treatment direction at the molecular level. For GC patients 
with a low–risk score, postoperative chemoradiotherapy and 

simple chemotherapy were both optional objects, and chemo-
radiotherapy was the better choice especially for patients with 
a heavy tumor load. Accordingly, simple chemotherapy was 
the appropriate choice for patients with intolerant side effects 
to chemoradiotherapy. For patients in the intermediate–risk 
group, chemoradiotherapy was the only appropriate choice 
compared with no anticancer treatment. However, for the 
high–risk group, both chemoradiotherapy and simple chemo-
therapy could not improve the prognosis and best supportive 
care might be worthy of recommendation.

Furthermore, the tumor microenvironment, which is com-
posed of tumor cells, stromal cells as well as cytokines and 
inflammatory mediators secreted by stromal cells, provides 
support for tumor biological behavior including occurrence, 
development, invasion and metastasis.31,37,38 These stromal 
cells mainly consist of fibroblasts, immune cells, inflam-
matory cells, mesenchymal cells and so on.32,39 Increasing 
evidences has revealed the abnormal infiltration of immune 
cells and inflammatory cells, such as lymphocytes, mono-
cytes, neutrophils and necrosis, in the tumor microenvi-
ronment.28,29,40,41 Conducting a correlation analysis of the 
tissues of tumor sections with different immune–risk scores, 
we found that the low–immune–risk group had a signifi-
cantly higher degree of infiltration compared with high– 
immune–risk group about lymphocyte necrosis and mono-
cyte. Although none of the differences reached statistical sig-
nificance, patients in the low–immune–risk group had a high 
tendency toward neutrophil infiltration. These differences 
about immune–related infiltration levels might elucidate the 
potential immune mechanism of the SIRGs scores. The re-
sults suggest a more intuitive approach for us to determine 
whether the patient belongs to the high–immune–risk or low–
immune–risk group, and this method is simple and feasible.

However, this study has a lot of limitations. Firstly, the 
sample size of the study was relatively small, which might 
cause some bias in our conclusions. Secondly, the study 
was retrospective and the value of this molecular model 
to predict prognosis was not verified in clinical samples 
by experiments. Lastly, the development cohort lacked par-
tial clinicopathologic data, and ethnic differences existed 
between different groups. The potential issues inevitably 
became a limitation and might result in some statistical 
bias to the research results. Therefore, we will further con-
duct the study using raw data from our treatment center 
and perform further experiments and prospective studies 
to evaluate the molecular model in clinical practice for our 
future work.

5  |   CONCLUSION

In conclusion, the SIRGs risk score was a molecular prognos-
tic model related to immune–risk status. It was constructed 

F I G U R E  5   Immune–related infiltration status of high– and 
low–SIRGs scores in The Cancer Genome Atlas (TCGA) Cohort. 
*compared the difference between low– and high–immune–risk group 
by Wilcoxon rank sum test
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using the six IRGs and showed certain efficiency and stability 
in predicting prognosis and identifying different subgroups 
associated with benefit levels for postoperative chemotherapy 

or chemoradiotherapy. Compared with simple chemother-
apy, postoperative chemoradiotherapy could significantly 
improve the DFS and OS of patients in the low–risk group. 

F I G U R E  6   Kaplan–Meier Curves 
showed the comparison of Disease–free 
Survival (A, C, E, G) and Overall Survival 
(B, D, F, H) between different treatment 
types. All patients in the TCGA and 62254 
cohort were combined for analyses (A, B). 
Combined patients were also stratified into 
low–risk (C, D), intermediate–risk (E, F) 
and high–risk group (G, H) according to the 
risk scores for the analyses
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For patients with the intermediate–risk scores, postoperative 
chemoradiotherapy showed a statistically significant survival 
advantage over no anticancer treatment, while chemotherapy 
did not. Neither chemoradiotherapy nor chemotherapy could 
bring significant survival benefits for patients in the high–
risk group.
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