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Mitochondria provide numerous essential functions for
cells and their dysfunction leads to a variety of diseases.
Thus, obtaining a complete mitochondrial proteome
should be a crucial step toward understanding the roles of
mitochondria. Many mitochondrial proteins have been
identified experimentally but a complete list is not yet
available. To fill this gap, methods to computationally
predict mitochondrial proteins from amino acid sequence
have been developed and are widely used, but unfortu-
nately, their accuracy is far from perfect. Here we de-
scribe MitoFates, an improved prediction method for
cleavable N-terminal mitochondrial targeting signals (pre-
sequences) and their cleavage sites. MitoFates introduces
novel sequence features including positively charged am-
phiphilicity, presequence motifs, and position weight mat-
rices modeling the presequence cleavage sites. These
features are combined with classical ones such as amino
acid composition and physico-chemical properties as in-
put to a standard support vector machine classifier. On
independent test data, MitoFates attains better perform-
ance than existing predictors in both detection of prese-
quences and in predicting their cleavage sites. We used
MitoFates to look for undiscovered mitochondrial pro-
teins from 42,217 human proteins (including isoforms
such as alternative splicing or translation initiation vari-
ants). MitoFates predicts 1167 genes to have at least one
isoform with a presequence. Five-hundred and eighty of
these genes were not annotated as mitochondrial in either
UniProt or Gene Ontology. Interestingly, these include
candidate regulators of parkin translocation to damaged
mitochondria, and also many genes with known disease
mutations, suggesting that careful investigation of Mito-
Fates predictions may be helpful in elucidating the role

of mitochondria in health and disease. MitoFates is
open source with a convenient web server publicly
available. Molecular & Cellular Proteomics 14:
10.1074/mcp.M114.043083, 1113–1126, 2015.

Mitochondria not only function as the provider of ATP but
also play crucial roles in the metabolism of amino acids and
lipids, the biosynthesis of iron-sulfur clusters, cell signaling
pathways, and apoptosis in eukaryotic cells. Moreover, mito-
chondrial dysfunction has been implicated in a wide variety of
medical conditions such as muscle and neurodegenerative
disease, cardiovascular disease, diabetes, and cancer (1).

Obtaining the complete proteome of mitochondria is an
essential step toward fully understanding its role in health and
disease. To this end, �900 (in yeast) and 1100 (in mouse)
mitochondrial proteins have been identified by large-scale
proteomics analyses (2, 3); and compiled with other relevant
mitochondrial proteomics data in useful databases such as
MitoCarta (3) and MitoMiner (4). However, these lists are
probably not yet complete, and indeed fungi and animal mi-
tochondria have been estimated to host �1000 and �1500
distinct proteins, respectively (5). Thus, many mitochondrial
proteins seem to remain undiscovered even in model organ-
isms. If high accuracy can be achieved, prediction of mito-
chondrial proteins from primary sequence can save time and
effort by identifying promising novel candidate mitochondrial
proteins.

The vast majority of mitochondrial proteins are encoded in
the nuclear genome and imported by translocator complexes
in the mitochondrial membranes. These mitochondrial pro-
teins can be classified into two groups based on the type of
targeting signal they contain: an N-terminal cleavable target-
ing signal (presequence); or a noncleavable, internal targeting
signal (6). A recent proteomic analysis of yeast estimated that
�70% of mitochondrial proteins possess a presequence (7).
Thus, improved prediction of presequences should contribute
to detecting undiscovered mitochondrial proteins.

Presequences reside in the first 10–90 N-terminal residues,
exhibit a high composition of arginine and near absence of
negatively charged residues (8, 9). Proteins containing such
presequences are translocated by the TOM and TIM protein
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complexes in the outer and the inner membranes, respectively
(6, 10, 11). Tom20 and Tom22 in the TOM complex are re-
ported to initiate import of these proteins by recognizing
presequence segments capable of forming a local amphiphilic
�-helical structure with hydrophobic residues on one face and
positively charged residues on the opposite face (6, 12, 13).
Widely used prediction tools such as MitoProt, TargetP, Pre-
dotar, and TPpred2 were developed with these properties of
presequences in mind (14–17).

The cleavage of mitochondrial protein presequences is an
important event implicated in efficient protein import (18) and
disease (19). Upon import into mitochondria, most prese-
quences are cleaved off by the heterodimer mitochondrial
processing peptidase (MPP)1 in the matrix, and some of them
subsequently further cleaved by intermediate peptidases
such as Oct1 (20) and the recently discovered Icp55 (7).
Although methods exist to predict these cleavage sites, their
accuracy leaves much room for improvement (7, 21). Because
the correct primary sequence of mature proteins is a prereq-
uisite for precise structural modeling, improving the accuracy
of cleavage site prediction should be useful for planning pro-
tein crystallography experiments or other structural studies of
mitochondrial proteins. Also, accurate in silico prediction of
the mature N-termini of mitochondrial proteins could in prin-
ciple be used to improve the identification of N-terminal pep-
tides in shotgun proteomics.

In this study, we describe MitoFates, a novel method for
mitochondrial presequence and cleavage site prediction.
MitoFates formulates presequence prediction as a binary
classification problem, employing a standard support vector
machine (SVM) classifier. Our contribution is the preparation
of an updated data set incorporating some recent proteomic
data; and the selection of classical and novel sequence fea-
tures such as amino acid composition, physicochemical
properties, a novel positive amphiphilicity score, novel prese-
quence motifs, and refined position weight matrices (PWMs)
modeling peptidase cleavage sites. On the task of discrimi-
nating between presequences and nonpresequences, Mito-
Fates achieves a true positive rate of 76% at a false positive
rate of only 1.7%, improving significantly on previous meth-
ods. Moreover, MitoFates predicts the position of cleavage

sites with an error rate of only �29% versus �47% for the
best previous method.

To investigate the potential of MitoFates to reveal interest-
ing candidate mitochondrial proteins, we looked for undiscov-
ered mitochondrial proteins among 42,217 human proteins
(including isoforms such as alternative splicing or translation
initiation variants), and obtained 580 candidate undiscovered
mitochondrial proteins. Open source software downloads and
a convenient MitoFates web server is available at http://mitf.
cbrc.jp/MitoFates/.

MATERIALS AND METHODS

Training and Test Data Set—
Presequence Prediction—We prepared a data set of 759 prese-

quence containing mitochondrial proteins by combining the data sets
of TargetP and Predotar (containing proteins from various eukaryotes)
with presequences identified via recent mitochondrial N-terminal pro-
teome measurements on S. cerevisiae (7), and on A.thaliana and
O.sativa (22). Based on an initial inspection of the data, when devel-
oping MitoFates we decided to discard any putative mature N-termini
from these studies that cannot be explained as the product of cleav-
age by MPP with an arginine at the �2 position (possibly followed by
secondary cleavage by Icp55 or Oct1). We made this decision be-
cause for the rest of the data we failed to discern any overall pattern
in either the local sequence surrounding the putative cleavage sites or
the distance from the original N-termini. Presumably, this non-R-2 site
data includes proteins processed by proteases such as IMP and
m-AAA, possibly some noncanonical MPP cleavage and probably
some nonspecific degradation products. Although we did not include
these sites when developing MitoFates itself, we did include them in
an exploratory clustering experiment described below. Note that we
did include plant mature N-termini with an arginine at the �3 position
as they could plausibly be explained as the product of canonical MPP
cleavage followed by an additional cleavage of one N-terminal resi-
due by a plant counterpart to yeast Icp55. For negative examples, we
used 6310 nonmitochondrial proteins with clear UniProt annotation of
subcellular localization and 108 noncleaved yeast mitochondrial pro-
teins (7). These sequences (taken from UniProt (23) ver. 2012 10) were
selected such that no pair shared more than 80% mutual sequence
identity within the positive or negative data sets. To compare the
prediction performance of MitoFates with previous methods, we pre-
pared an independent test data set consisting of 78 mitochondrial
proteins possessing a presequence and 8934 nonmitochondrial pro-
teins; in such a way that the sequence identity between training and
test data sets and within the positive and negative data sets is less
than 25%.

Cleavage Site Prediction—We extracted cleavage sites from the
proteomic analysis experiments on S. cerevisiae (7) and A.thaliana
and O.sativa (22), excluding N-termini inconsistent with canonical
MPP cleavage as described in the previous section. As was done for
the TargetP (15) data set, we extracted sequences from their original
N-terminus to three residues after their cleavage site, and applied
redundancy reduction at 40% identity in each taxonomic group.
Although the original proteomic data for yeast shows multiple cleav-
age sites for some proteins, we chose to use only the most frequently
observed site in each protein. Although a few proteins that do not
contain arginine at �2, are annotated as cleaved by MPP and other
intermediate proteases, we excluded them. For our metazoan data
set, we extracted presequences as annotated in UniProt. Similar to
the yeast and plant cases, we extracted presequences with an argi-
nine at the �2, �3, or �10 positions. In this way, we obtained 104,
76, and 161 MPP cleavage sites in yeast, plant, and animal, respec-

1 The abbreviations used are: MPP, mitochondrial processing pep-
tidase; PWM, position weight matrices; SVM, support vector ma-
chine; MCC, Matthews correlation coefficient; AUC, area under the
curve; ROC, receiver operating characteristic curve.
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tively, after applying sequence redundancy reduction at a 40% iden-
tity level. As an additional human test data set we also extracted
presequences with canonical R-2 MPP cleavage sites from the re-
cently developed DegraBase database (24), again applying sequence
redundancy reduction at a rate of 40%. We prepared the negative
data (sites not cleaved by MPP) by extracting sequences from non-
cleaved R-2 sites in the positive data set (i.e. we simplify the task to
discrimination between arginines belonging to MPP cleavage sites
versus other arginines).

Prediction Features—
Amino Acid Composition—It has been observed that prese-

quences exhibit biased amino acid composition, with a high fre-
quency of arginine and few negatively charged residues (8, 9). Thus,
for presequence prediction we include the frequency of each of the 20
standard amino acids in the first 30 N-terminal residues in our feature
set. Moreover, we include the 400 possible dipeptides and the 400
possible skip-two dipeptides (A1xxA2, where x is any residue). This
was motivated by the suggestion that the formation of specific sec-
ondary structure motifs is important to presequence recognition (25)
and the fact that secondary structure is known to correlate with
dipeptide and skip-two dipeptide frequency. When predicting cleav-
age sites, the feature set is computed on the part of the sequence up
to the candidate cleavage site, which can be quite short and therefore
without adjustment, the composition features would be very sparse.
For example, the shortest presequence in our data set is only seven
amino acids long, so when computing amino acid composition on this
candidate presequence, at least 13 of out 20 possible amino acids
would have zero frequency. For cleavage site prediction, we allevi-
ated this problem by smoothing the amino acid frequencies with a
20-component Dirichlet mixture model prior (26) and not using dipep-
tide features.

Local Sequence Models (Position Weight Matrices) of MPP, Icp55,
and Oct1 Cleavage Sites—A large majority of presequences are
cleaved by MPP, and many of those by secondary proteases as well.
MPP cleavage sites display local sequence tendencies (20), the most
conspicuous one being the presence of arginine in the �2 position in
nearly all cases, consistent with electrostatic interaction between this
arginine and negatively charged residues in MPP (27). After cleavage
by MPP, the secondary proteases Oct1 and Icp55 further cleave
some presequences, removing eight residues or a single residue,
respectively (7). It is reasonable to hope that explicit modeling of this
two-step process might improve the prediction of those prese-
quences. Thus, we generated a consensus Position Weight Matrix
(PWM) based on the frequencies of amino acids between the �4
position and the �5 position of training set sequences aligned by
cleavage site. As with the amino acid composition values described
above, we smoothed the observed frequencies in each column of the
PWM with a 20-component Dirichlet mixture model (26). The PWM
score is calculated as the log-odds ratio between those smoothed
frequencies and a background composition based on the mature
region of cleaved mitochondrial proteins. To predict if putative MPP
cleavage sites are further cleaved by Oct1 or Icp55, we employed
PWMs based on the cleavage sites of those peptidases in the training
data. By inspection of the training data, we chose the range of
positions covered by the PWMs to be [�1, �4] (length 4) and [�1, �2]
(length 2) for MPP�Oct1 and MPP�Icp55, respectively (Fig. 1A).
Because plant data was rather limited and PWMs require a large
number of parameters (19 per column), we chose to use PWMs
trained on the more abundant yeast data, even when making predic-
tions for plant proteins (however, we did retrain the length distribution
as described below).

Length Distribution of Presequences—Presequence length is vari-
able, but usually falls within a certain range. To utilize this information
we weighted scores at each position according to the probability of

finding a cleavage site at that distance from the N-terminus. We
implemented this by modeling the presequence length distribution
with a mixture model of Gamma distributions, estimating parameters
using an Expectation-Maximization learning algorithm (28) on the
training data (for metazoan presequence length we prepared a train-
ing set based on UniProt annotation). Because yeast, plant, and
metazoan presequences each showed distinct length distributions
(supplemental Fig. S1A), we chose to learn three separate mixture
models. Based on the results of a Kolmogorov-Smirnov goodness of
fit test, we chose a 1-component model for yeast and 3-component
models for plant and metazoa.

Positively Charged Amphiphilicity Score for Presequence Detec-
tion—We defined a simple scoring function that assigns high scores
to positions that could form a local �-helical secondary structure with
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FIG. 1. Local sequences and prediction performance of cleav-
age sites. A, Sequence logo of MPP cleavage sites partitioned into
three classes (MPP only, MPP�Icp55, MPP�Oct1) based on recent
proteomics data. The dashed line boxes show the range of positions
covered by the PWMs for MPP, Oct1, and Icp55. B, Cleavage site
accuracy comparison on the yeast data set. Error bars show the
standard error of mean estimation based on 10-fold cross validation
(only MitoFates is retrained, the other tools are used as distributed
without retraining but their prediction accuracy still varies between
test folds).
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high hydrophobicity on one face and positively charged residues on
the opposite face. The scoring scheme is a weighted sum of the
standard hydrophobicity moment (29) and a positive charge moment,
as expressed in this formula:

PA �
1
n ����iHicos��i��2 � ��iHisin��i��2

� rcos����iCicos��i��2 � ��iCisin��i��2� (Eq. 1)

where r is a scaling parameter to balance between hydrophobic
moment and charge moment, and � is the angle between the hydro-
phobic and charge moment vectors (defined so that its effect is maxi-
mized when the two moments point in exactly the opposite direction). Hi

indicates the hydrophobicity of the ith residue by the Aboderin hydro-
phobicity scale (30) and similarly Ci indicates the charge (RKH:1, DE:
�1, otherwise: 0) of the ith residue. The PA score is normalized by
window length n. We used the training data set to optimize r and the
helix angle parameter � empirically, obtaining values of 8.5 and 96°
respectively. To compute a single feature score from an amino acid
sequence, standard hydrophobicity moments are computed for all
possible window sizes of 10 to 20 on the N-terminal 30 residues, and
then the PA score is calculated for the window with the maximum
hydrophobic moment.

Frequently Observed Hexamers in Presequences—We looked for
short sequence motifs that are enriched in the N-terminal region of
presequences and hopefully relate to presequence recognition. Using
a subset of the training data, we experimented with parameters such
as the length of the candidate motifs and the range in which to look
for them. After preliminary analysis with motif lengths of five to seven
and different N-terminal region lengths, we chose a motif length of six
and the first N-terminal 90 residues as the search range. The training
subset we used consists of 317 mitochondrial proteins with prese-
quences and 3897 nonmitochondrial proteins sharing no more than
25% sequence identify in their N-terminal regions. To reduce the size
of the motif model space (and therefore potentially gain statistical
power) we grouped the standard 20 amino acids into five characters
based on their physicochemical properties: hydrophobic � (L, F, I, V,
W, Y, M, C, A); basic 	 (R, K, H); acidic � (E, D); polar 
 (S, T, N, Q);
and secondary structure breaker � (P, G). We partitioned the N-ter-
minal 90 residues into three blocks of 30 residues each and simply
counted the number of sequences with an exact match to each of the
56 possible hexamer motifs in each block of the mitochondrial and
nonmitochondrial proteins. We used a Fisher’s exact test to compute
p values, correcting for multiple testing with LAMP (31), a more
sensitive (but still rigorous) method to compute the Bonferroni cor-
rection factor than simply multiplying uncorrected p values by 56. We
selected motifs with p value � 10�5, yielding a total of 14 hexamers
that were all found in the first N-terminal 30 residue block. Thus, we
defined 14 binary features taking a value of 1 or 0 based on the
presence or absence of the given motif in the first 30 residues.
Additionally we defined a combined motif score, defined as the sum
of �log10 (p value) for each motif hit. For example, if two motifs
were found in the first 30 residues of a query sequence, one of
which had a LAMP corrected p value of 10�5 and another of which
had a LAMP corrected p value of 10�7 within the training data, the
value of the combined motif score feature for that query sequence
would be 12.

Physicochemical Propensities—Proteins bound for the endoplas-
mic reticulum (usually) and peroxisome (often) possess predictable
sorting signals in their N- and C-terminals, respectively. To distinguish
between mitochondrial presequences and such signal sequences, we
partition the N- and C-terminal 90 residues into six blocks of 15

residues, and then compute the average Aboderin hydrophobicity
(30), �-helical and 	-strand periodicity scores (32, 33), and the density
of basic (K, R, H), acidic (D, E), small polar (S, T), aromatic (W, Y, F),
and secondary structure breaker (P, G) residues for each block. We
also include those compositions computed over the entire sequence
in the feature set. Finally, we include four physicochemical propensity
based features designed for signal peptide detection as we described
in a previous study (33).

For cleavage site prediction, we defined four physicochemical fea-
tures: average net charge, average hydrophobicity measured by
Aboderin scale, number of [KR] residues, and number of [DE] resi-
dues. For each potential cleavage site, these features are computed
for the N-terminal region up to that site.

Prediction Method—We adopted the Support Vector Machine
(SVM) classifier implemented in LIBSVM 3.0 with RBF-kernel (34)
for both presequence (presence versus absence) and cleavage site
prediction. For cleavage site prediction, we did not use the hexamer
motifs or the PA score used in presequence prediction. Given the
way we defined positively charged amphiphilicity and trained the
hexamer motifs, these features largely reflect presequence recog-
nition rather than cleavage site selection. Because both the hex-
amer motifs and positively charged amphiphilicity are defined in
terms of local sequence and it is conceivable that presequence
recognition is somehow coupled to proteolytic cleavage, it might be
interesting to see if they can be used to improve cleavage site
prediction but we did not pursue that possibility in this study. When
predicting cleavage sites, MitoFates computes the prediction score
of each position and considers the maximum scoring position to be
a MPP cleavage site. MitoFates then uses the PWMs for Oct1 and
Icp55 cleavage to predict if the site is further cleaved by one of
them. For plants, MitoFates does not consider the possibility of
Oct1 cleavage.

Performance Measures—We quantify prediction performance in
several ways, including Precision-Recall curve, Matthews correlation
coefficient (MCC), and ROC AUC. We used the independent test data
to measure presequence prediction. For evaluation of cleavage site
prediction, we used 10-fold cross-validation on the yeast and plant
data sets, and performance on the independent DegraBase data set
for human proteins. Following standard definitions: precision is the
fraction of actual presequences among predicted presequences and
recall is the fraction of presequences that are successfully predicted.
The Matthews correlation coefficient (MCC) (35) is the Pearson’s
correlation coefficient of the binary vector of the true labels (1 for
presequences, 0 for nonpresequences) and the predicted labels. The
Area Under the Curve (AUC) of a Receiver Operating Characteristics
(ROC) graph is a widely used metric to evaluate binary classification
accuracy (36). ROC AUC estimates the probability that a randomly
chosen presequence attains a higher prediction score than a ran-
domly chosen nonpresequence. ROC AUC ranges from 0 to 1.0, with
perfect prediction yielding 1.0, uninformative prediction 0.5, and per-
fectly wrong prediction 0.0. We generated the ROC plots in the usual
way by sorting instances according to their prediction scores, and
then plotting true positive rate (y axis) versus false positive rate (x
axis).

Clustering of Yeast Presequences—To explore the trends in our
data set, we conducted a clustering analysis of 243 yeast prese-
quences, obtained by applying 40% identity reduction to recent pro-
teomics data (7). Unlike our cleavage site prediction data set, for
clustering we included presequences regardless of consistency with
canonical R-2 MPP cleavage, although to reduce noise we did re-
move putative presequences from proteins annotated with a nonmi-
tochondrial localization site. The features we used for clustering are:
length, average net-charge, positively charged amphiphilicity score
(PA), MPP cleavage site score (PWM score without weighting by the
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length distribution), the compositions of four charged residues (Arg,
Lys, Asp, and Glu), and an ortholog multiple alignment based mea-
sure of the degree of evolutionary sequence conservation shown to
be predictive of presequences in our earlier work (37) but this time
adopting the Jensen-Shannon divergence (38) as the function applied
to each column of the multiple alignments. We computed PWM
scores for all possible cases: MPP only, MPP�Oct1, and MPP�
Icp55; and treated the maximum score as the MPP cleavage score.
Because evolutionary sequence conservation scores fluctuate greatly
from column to column, we summarized these as two features aver-
aged over the first 18 and 36 N-terminal residues, respectively (36
was chosen as the average yeast presequence length). We clustered
this data by application of a Gaussian mixture model (39), and model
parameter estimation by the EM algorithm (28) as implemented in
Weka (40).

To determine the number of clusters we followed the default Weka
criteria. In this empirical wrapper procedure, the data is randomly split
into 10 partitions for 10-fold cross validation and the average log-
likelihood of the test partition is computed. Starting with one cluster,
the number of clusters is incremented until the test partition average
log-likelihood stops increasing.

RESULTS

Prediction of Mitochondrial Presequences—We bench-
marked presequence prediction performance between our
predictor (MitoFates) and four previously developed predic-
tors: TPpred2, TargetP (ver. 1.1), Predotar (ver. 1.03), and
MitoProtII (ver. 1.101) on the independent test data containing
78 presequences described in Methods. Fig. 2A shows the 11
point precision-recall curve (PR-curve) of each predictor av-
eraged over 10 random selections of 500 negative test set
proteins. MitoFates achieves an average precision of 84% on
the PR-curve, outperforming TPpred2, Predotar, TargetP, and
MitoProtII, which obtained an average precision of 81%, 79%,
78%, and 74%, respectively. In particular, MitoFates attains
better precision for recall values of 50–80% (in this range the
average precision of MitoFates, TPpred2, Predotar, TargetP
and MitoProtII is 91%, 81%, 82%, 77%, and 77%, respec-
tively). The ROC AUC of MitoFates is also superior to other
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predictors (Table I). For MitoFates, we focused on two pre-
diction cutoffs (0.5 and 0.385) based on a 5-fold cross-vali-
dation test within the training data set (supplemental Fig. S2);
0.5 is the default cutoff determined by LIBSVM (34) with a
precision and recall of 0.83 and 0.73, respectively; and 0.385
corresponds to a precision and recall of 0.79 and 0.80. At
both prediction cutoff values, MitoFates’ Matthews correla-
tion coefficient (MCC) is better than those of other predictors
at their default cutoffs. In addition, the PR-curve and ROC
AUC of MitoFates is better than TargetP and Predotar even
when MitoFates is trained on their training data set (supple-
mental Fig. S3), suggesting that our novel features contribute
to improved prediction accuracy (the training data set of
TPpred2 overlapped to a large extent with our test data so we
did not do this experiment on the TPpred2 training data).
However, the PR-curve and ROC AUC of MitoFates trained on
those data sets is inferior to those of MitoFates trained on its
original data set, suggesting that the updated MitoFates train-
ing data also contributes to its superior performance.

To more rigorously evaluate MitoFates performance relative
to previous methods, we tested the statistical significance of
the number of true positives at each false positive rate using
McNemar’s test for paired data (41). As shown in Fig. 2B, the
true positive ratio of MitoFates as always equal or greater than
the best competitor and this difference is statistically signifi-
cant near a false positive rate of 1.7%, where MitoFates
achieved 76% precision (Fig. 2C). This suggests MitoFates
can be a useful method to identify promising candidate pre-
sequences for experimental validation with fewer false posi-
tives than previous prediction methods.

MitoFates assigned a very high presequence score (LIBSVM
estimated probability 	 0.99) to five of the 8934 negative test
set proteins. Interestingly, although not annotated in UniProt
at the time of data set preparation, a literature search revealed
that at least two of them have been reported to have mito-
chondria localization (human Acyl-coenzyme A thioesterase
11 and NipSnap homolog 3A) (42, 43).

We also evaluated MitoFates presequence prediction per-
formance on an additional data set containing 226 matrix
proteins obtained from recent human mitochondrial matrix
proteome data (44) as a positive test. MitoFates achieved the
best performance as measured by PR-curve, ROC AUC, or
MCC, on this data set as well (supplemental Fig. S4), although

the difference between MitoFates and the second best pre-
dictor TPpred2 is modest.

Discrimination Capability of Individual Prediction Features
for Presequence Prediction—To examine the discrimination
capabilities of each prediction feature, we calculated F-scores
(45 and supplemental Text) and Spearman’s rank correlation
coefficients within the training data set for each feature. By
F-score, the best feature is the score of MPP cleavage site
(F-score 
 0.250), and the next best four are the composition
of Arg in the N-terminal 30 residues (0.217), the total hexamer
motif score (0.159), the dipeptide composition of Leu-Arg
(0.126), and the positively charged amphiphilicity (PA) score
(0.126), respectively. Using Spearman’s rank correlation co-
efficient as a measure of feature importance also produces
the same top five features in nearly the same order (PA comes
fourth and Leu-Arg fifth). Below we discuss some of these top
features in some detail.

Prediction of Cleavage Site Location—As described in
Methods, our cleavage site predictor uses cleavage site
PWMs (Fig. 1A) and other sequence features. To evaluate the
performance of MitoFates and other predictors we conducted
10-fold cross validation on a yeast presequence proteomic
data set (7). For TPrepd2, MitoProtII, and TargetP we simply
ran them as is, without consideration of possible overlap
between their training sets and data in the test folds. To
simplify this comparison we only compared proteins for which
all of TPpred2, MitoProtII, and TargetP predict cleavage
somewhere in the protein. This criterion leads to 70, 56, and
79 cleavage sites for yeast, plant, and human, respectively. As
shown in Fig. 1B, MitoFates’ prediction accuracy on the yeast
data set (71%) was considerably higher than the next best
predictor TPpred2 (54.7%); or equivalently, TPpred2 makes
1.56 times as many errors as MitoFates. MitoFates also pre-
dicts cleavage sites more accurately in plants and human,
correctly predicting 72.2% and 51.9%, respectively, improv-
ing on the second best predictor’s performance of 55.0% and
43.0% (supplemental Fig. S1B and S1C).

Interestingly, the change in accuracy when predictions are
allowed to be off by a given distance offers a glimpse into the
ability of each predictor to correctly predict secondary pepti-
dase cleavage events. MitoProtII and TargetP show noticea-
ble leaps in accuracy between 0 and 1, and between 6, 7, and
8. The leap between 0 and 1 often comes from under/over-
prediction of Icp55 cleavage, whereas the leaps between 6, 7
and 8 mainly result from under/over-prediction of Oct1 cleav-
age, sometimes combined with over-prediction of Icp55
cleavage.

Such leaps can also be observed in the plant and human
data sets as well (supplemental Fig. S1B and S1C), however,
MitoFates prediction shows only a single leap between 0 and
1 in plants. Although plants do have a homolog to yeast Oct1
(At5G51540), it appears to localize to chloroplasts (46), and
presequences with an arginine in the �10 position (possibly
indicating cleavage by MPP�Oct1) are not prevalent in plants

TABLE I
Comparison of ROC AUC and MCC on an independent test data set

Predictor ROC AUC MCC

MitoFates (cutoff: 0.5) 0.954 0.465
MitoFates (cutoff: 0.385) 0.446
TPpred2 0.948 0.355
Predotar 0.939 0.304
TargetP 0.933 0.242
MitoProtII 0.941 0.217
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(22). Therefore, MitoFates does not consider Oct1-type cleav-
age for plants. For plant cleavage site prediction, we do take
into account the length distribution of presequences in plants
(supplemental Fig. S1A), which differs significantly from yeast.
For the DegraBase human data set, large leaps in accuracy
between 0, 1 and 6, 7, 8 are observed in all predictors includ-
ing MitoFates (supplemental Fig. S1C). As with the yeast data,
these leaps may largely reflect genuine mispredictions of
secondary protease cleavage, but it is possible that some
fraction may also be explained as intermediate MPP cleavage
sites present in the data set that are actually destined for
additional cleavage by human counterparts to Icp55 and
Oct1.

Although a homolog or counterpart to Icp55 has not been
identified in plant mitochondria, presequences with an argi-
nine in the �3 position (suggesting MPP�Icp55-like cleavage)
are prevalent. However, these sites differ from R-3 prese-
quences in yeast. In particular, phenylalanine at the �1 posi-
tion of R-3 presequences (i.e. directly after the inferred MPP
cleavage site) is relatively rare in yeast R-3 presequences (Fig.
1A) because those are usually cleaved by Oct1 (yielding an
R-10 presequence), but are common in plant R-3 prese-
quences; also consistent with a lack of Oct1-like cleavage in
plant mitochondria. Another difference is that plant R-3 pre-
sequences sometimes have a methionine in the �1 position,
but MitoFates cannot predict them well as it uses PWM’s
trained on yeast data and yeast Icp55 cleavage sites to not
exhibit methionine in that position. These observations sug-
gest that MitoFates prediction of cleavage sites in plants
could potentially be improved further, but because prese-
quence cleavage site training data for plants is currently lim-
ited, we leave a careful optimization of the Icp55-like pepti-
dase model for plants as future work.

Modification of the Hydrophobic Moment Score for Prese-
quence Prediction—Although the ability to adopt an amphi-
philic �-helix has been proposed to be important for prese-
quence recognition (9, 47), prior to this work, attempts to use
this feature for prediction have had limited success (16). To
investigate this problem, we compared the distributions of
maximum hydrophobic moment score (29) in the first 30, 60,
and 90 N-terminal residues of proteins containing or lacking
presequences. The distributions differ the most in the N-ter-
minal 30 residues, but still overlap each other to a large extent
(Fig. 3A, top). We considered one reason for this poor sepa-
ration may be that the hydrophobic moment calculation does
not distinguish between positive and negative charges on the
polar face. Given that Tom20 and Tom22 in the TOM complex
most likely recognize an amphiphilic helical local structure
consisting of hydrophobic and positively charged faces (6, 12,
13), we conjectured that a score that favors positive charges
on the polar face might better characterize presequences.
Thus, we defined the PA score (Positively charged Amphiphi-
licity score) that adds a positive charge moment to the hydro-
phobicity moment as described under “Experimental Proce-

dures” above. This PA score yields much better discrimination
(Fig. 3A, bottom). We also note known Tom20 binding sites in
the presequences Su9 of N.crassa (48) and ALDH2 of R.nor-
vegicus (12) exhibit a high PA score (data not shown).

Novel Hexamer Motifs in Mitochondrial Presequences—Al-
though no obvious consensus sequence is common to pre-
sequences, some attempts have been made to find com-
mon sequence motifs. Obita et al. proposed the consensus
��
	�� (where �, 	, �, and 
 represent a hydrophilic, basic,
hydrophobic, and any residue, respectively) based on the
results of a peptide library experiment measuring the binding
of rat ALDH precursor derived peptides to Tom20 (49). How-
ever, they noted that their results did not generalize quantita-
tively to the precursors of other proteins. Indeed their pro-
posed motif covers only 18% of the yeast proteomic
presequences (7) and only 19% of the UniProt annotation
derived presequences used in this study, while unfortunately
also matching 8% of the N-terminal 30 residue region of
nonpresequence containing proteins. In a computational ap-
proach, motif finding based on discriminative training of Pro-
file Hidden Markov Models (Profile HMMs) found a few
tetramer motifs in yeast mitochondrial sequences (50). However,
this study did not search only within presequences, but rather
included the entire sequence of mitochondrial proteins with
and without presequences. Judging based on visual inspec-
tion of the motif sequence logos given in their supplementary
material, their top mitochondrial motif is essentially a detector
for high lysine content, even though in presequences arginine
is generally more enriched than lysine. TargetP (15) uses
MEME (51) derived PWM motifs to model peptidase cleavage
sites but do not report motifs that may be related to other
stages of presequence recognition such as Tom20 binding.

Based on our survey of previous work summarized above,
we felt that it would be useful to make a new attempt to find
presequence-specific motifs. For simplicity, we choose a sim-
ple motif model consisting of a string from the degenerate
alphabet: hydrophobic � (L, F, I, V, W, Y, M, C, A), basic 	 (R,
K, H), acidic � (E, D), polar 
 (S, T, N, Q), and secondary
structure breaker � (P, G). We chose a reduced alphabet in
order to reduce the size of the hypothesis space, and thus,
potentially gain statistical power. Of course condensing the
alphabet comes at the cost of possibly throwing away impor-
tant information. We hope this affect was ameliorated by our
particular choice of grouping, motivated by consideration of
the physico-chemical properties of amino acids in the light
of what hints we currently have regarding the mechanism of
presequence recognition. To avoid learning motifs specific to
a particular family of proteins we conducted this search on the
nonredundant (� 25% sequence identity) training data, using
LAMP (31), a recently introduced, highly sensitive multiple
hypothesis testing method. As an additional control, we per-
formed the same motif search procedure on three 30-residue
blocks in the N-terminal 90 region (1–30, 31–60, and 61–90).
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We found 14 statistically significant (p value � 10�5)
hexamers (Fig. 3B, supplemental Fig. S5), all in the first 30
residue block, and all enriched in the positive (i.e. prese-
quence) examples, rather than the negative examples. Inter-
estingly, most of these hexamers have a PA score above 2.72
(the 90th percentile score over all hexamers in the positive
and negative examples), indicating the potential to form am-
phiphilic helixes with a positively charged hydrophilic face,
and we speculate that they may reflect Tom20 binding. On the
other hand 	��


, one of the hexamers with a lower PA
score, matches the MPP cleavage sites of presequences
subsequently cleaved by Oct1 (Fig. 1A).

Presequences exhibit characteristic amino acid composi-
tion biased toward arginine and against negatively charged
residues. To clarify how the hexamer motifs found by our
procedure are influenced by amino acid composition, we
reran the motif finding procedure using scrambled sequences
of positive examples as negative examples. In 100 random
trials, eight of the fourteen hexamers were observed fewer

than five times (supplemental Table S1) and therefore these
appear to largely reflect amino acid composition bias. On the
other hand, the motifs ��
	��, ��	
��, and 	��


 are
observed 100 times, 88 times, and 73 times, respectively,
indicating that they are specific presequence motifs, reflecting
more than amino acid composition. As mentioned above,
	��


 matches the MPP cleavage sites of presequences
subsequently cleaved by Oct1. To look for a hint into the
nature of the other two hexamers, we investigated their
matching positions. Interestingly, the other two hexamers fre-
quently occur exactly at the N-terminus (23 and 15 times,
respectively) or at the position directly following the N-termi-
nus (10 and 12 times). We confirmed this trend holds under
25% sequence identity redundancy reduction as well (supple-
mental Fig. S6). One of the matching proteins, Potato formate
dehydrogenase, has a ��
	�� motif (MAMSRVA) near its N
terminus (supplemental Table S2A) and it has been reported
that deletion of the first and second residues (Met and Ala) or
mutation of the third residue (Met) inhibited mitochondrial
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targeting of this protein (52). Thus, those N-terminal ��
	��

sequences might constitute a mitochondrial targeting se-
quence. We note that N-terminal ��	
�� matches are also
frequently found in fungi mitochondrial proteins (supplemental
Table S2B) and it would be interesting to experimentally test
if these function as mitochondrial targeting signals.

Because arginine is highly enriched in presequences and
has a central role in determining MPP cleavage sites, we also
tried our motif finding procedure with arginine separated as a
distinct character, i.e. with a character set of: hydrophobic,
arginine, other basic 	 (K, H), acidic, polar, and secondary
structure breaker. In general, the results were similar to when
R, K, and H were grouped together as one (note that the
amino acid matching 	 usually was R anyway, as evident in
the sequence logos in supplemental Fig. S5). Rerunning the
sequence scrambling test under this alphabet, ��
R�� is
observed in all 100 trials suggesting that arginine is preferred
over other basic residues in this motif and that this preference
is not simply a consequence of the generally high overall
composition of arginine in presequences.

Recently, a long presequence pSu9 was reported to con-
tain two distinct Tom20-binding elements; a Tom20 binding
element in the N-terminal half and an element important for
efficient protein import in the C-terminal half (48). Thus, we
attempted to find motifs characteristic of long presequences
by preparing a data set of 102 mitochondrial proteins with
long presequences (more than 40 amino acids) and searching
for statistically significant hexamers in their N-terminal 90
residues (divided in three blocks of 30 residues each) with
LAMP (31). However, even with a lenient p value threshold of
0.05, we found no significant hexamer motifs in the second
and third blocks.

Cluster Analysis for Yeast Mitochondrial Presequences—
MitoFates improves the state-of-the-art in presequence pre-
diction, but unfortunately still fails to predict a sizable number
of presequences. Visual inspection of these false negatives
reveals that they usually have fewer positively charged resi-
dues or poor score for MPP cleavage, suggesting they may
belong to a different class of presequences than the true
positives. To investigate this, we clustered 243 yeast prese-
quences as described in Methods. The results suggests yeast
presequences can be grouped into at least three clusters
(supplemental Table S3), as visualized by primary component
analysis (PCA) in Fig. 4A. The largest cluster (cluster I, blue in
Fig. 4A) consists of 144 presequences that are strongly en-
riched for arginine and contain almost no negatively charged
residues, exhibit typically low conservation (i.e. average value
for presequences), a relatively well defined length distribution
centered at an average of 25 residues, high PA score, and
significantly higher MPP cleavage scores than other prese-
quences. These properties are consistent with known features
of presequences. However, the two remaining clusters differ
in some ways from the classical view of presequences.

The second largest cluster (cluster II, red in Fig. 4A) con-
tains 64 presequences. Their level of evolutionary conserva-
tion and PA scores are similar to cluster I. However, they are
much longer (average length of 60 residues), have lower net
charge because of lower arginine and higher D�E composi-
tion, and have significantly lower MPP cleavage scores than
cluster I (Fig. 4B). The low average MPP cleavage score can
be explained by a high proportion of presequences lacking a
canonical MPP cleavage site arginine (the fraction of the
proteins containing arginine at the �2, �3, or �10 position is
84%, 30%, and 9%, in clusters I, II, and III, respectively).
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Overall amino acid composition might be expected to be less
biased for long presequences, simply because the average is
taken over a longer region. Nevertheless, the low MPP cleav-
age scores for presequences in cluster II suggests that some
may be cleaved by other proteases. In fact, cluster II includes
the presequences of Ccp1, MrpL32, Cy1, and Gut2; known
substrates of the inner membrane proteases m-AAA and Imp
(11). Cluster II also contains Imo32, which is cleaved by MPP
and Oct1 (53), but at a highly atypical MPP cleavage site with
a cysteine substituted for the nearly invariant arginine at the
�2 position. Like other cluster II presequences, Imo32 is
longish (38 residues) but has relatively few arginines (only
two).

The 35 presequences in the third cluster (cluster III, yellow
in Fig. 4A) differ the most from other presequences in their
high evolutionary sequence conservation. Like cluster II, they
exhibit a lower average net-charge than cluster I, and in fact
40% of these presequences have a negative net-charge. We
did not use the MitoFates 14 presequence hexamer motifs
during clustering, but noticed that cluster III sequences have
very few matches to them (56%, 42%, and 14% of precursors
match at least one hexamer motif in clusters I, II, and III,
respectively). Interestingly, 13 of the 35 presequences in clus-
ter III are derived from the mitochondrial proteins annotated
with dual localization or nonmitochondrial localization in Uni-
Prot. Low net charge and PA score are consistent with pre-
viously reported characteristics of dual-localized mitochondrial
proteins (54). Cluster III also includes some presequences with
higher average net-charge (enriched in lysine rather than ar-
ginine). Most (six) of these are ribosomal protein prese-
quences. However, ribosomal proteins presequences are also
found in the other clusters (23 and six of them in Cluster I and
II, respectively).

Although not perfect, MitoFates can predict typical prese-
quences, like those found in cluster I, relatively reliably. To
further improve in silico prediction of mitochondrial localiza-
tion from amino acid sequence, it will be necessary to better
characterize the remaining presequences. Also, there is a
need to develop accurate prediction methods for mitochon-
drial proteins localized without the use of presequences, via
internal or C-terminal targeting signals (55, 56).

Human Proteome Analysis by MitoFates—
Analysis of Human Mitochondrial Intermembrane Space

Proteome—Most presequence bearing proteins are localize
to the matrix, but some localize to the inner membrane via
arrest of a hydrophobic segment during translocation. In ad-
dition, some proteins are released to the intermembrane
space (IMS) after proteolysis by inner membrane proteases
(e.g. HtrA2 and Opa1/Mgm1) (10). Conversely, some IMS
proteins, such as Tim9 and Tim10 localize to the IMS via
alternative pathways (6, 11) and it is unclear what portion of
IMS proteins localize via presequence dependent transloca-
tion. Fortunately, a recent proteomics advance (57) gave us
the opportunity to obtain 127 human proteins in or at least

partially accessible from the intermembrane space (IMS) and
examine the proportion of them that are predicted by Mito-
Fates to have presequences (supplemental Table S4). Mito-
Fates predicted 43 of the 127 proteins to have presequences,
of which 24 are annotated or predicted as single-pass mem-
brane proteins and two as multiple-pass membrane proteins.
Of the remaining 17 proteins, eight contain N-terminal hydro-
phobic segments. Considering the transport pathways to the
inner membrane and IMS mentioned above this result seems
reasonable.

Candidate Undiscovered Mitochondrial Proteins in the Hu-
man Proteome—According to recent estimates (5), animal
mitochondria are expected to contain proteins from �1500
different genes. In MitoCarta, the most comprehensive animal
mitochondria proteomics study to date, Pagliarini et al. (3)
identified 1098 mouse mitochondrial proteins with an esti-
mated false positive rate of 10%. Thus, hundreds of mito-
chondrial proteins may remain undiscovered. Under its de-
fault threshold (0.385 corresponding to an estimated 79%
precision and 80% recall), MitoFates predicts 1847 human
proteins (from 1167 genes) to contain mitochondrial targeting
presequences (supplemental Table S5), including 580 pre-
dicted presequence genes (851 proteins) without annotation
as mitochondrial proteins in either UniProt or Gene Ontology
(supplemental Table S6). We hope that this list of predicted
mitochondrial presequence proteins (including isoforms) will
be a useful resource for prioritizing experimental investigation
of novel candidates.

Candidate Mitochondrial Proteins with Differentially Local-
ized Isoforms—In humans and many other eukaryotic organ-
isms, most protein genes produce multiple isoforms via
mechanisms such as alternative splicing and alternative trans-
lation initiation. Many cases are known in which isoforms of
the same gene exhibit differential subcellular localization. For
example, aldehyde dehydrogenase 7A1 (ALDH7A1), which
plays an important role in protecting cells and tissues from
hyperosmotic stress, has both mitochondrial and nonmito-
chondrial isoforms that are differentially expressed in a tissue-
specific manner. Mitochondrial ALDH7A1 is thought to utilize
an alternate upstream start codon, resulting in the addition of
a presequence (58). Several genes like ALDH7A1, possessing
both mitochondrial and nonmitochondrial targeted isoforms
have been identified, but a comprehensive list of such pro-
teins is not available. Thus, we applied MitoFates to search for
candidate differentially localized isoforms, obtaining 517 can-
didate genes (supplemental Table S7), a sizable (44%) per-
centage of predicted mitochondrial genes. In about 90% of
these candidates, the maximum score difference between
isoforms is larger than 0.4, reflecting major changes in the
N-termini of those sequences (supplemental Fig. S7).

Predicted Mitochondrial Proteins Related to Human Dis-
ease—Mitochondrial disorder is implicated in a wide range of
diseases, including Parkinson’s disease, a neurodegenerative
disease affected by mitochondrial dysfunction. Recent stud-
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ies reported that the Parkinson’s disease associated genes
PINK1 and parkin function in selective degradation of mito-
chondria (mitophagy) preventing the accumulation of dys-
functional mitochondria. PINK1 is rapidly degraded in healthy
mitochondria but accumulates on the surface of membrane
potential deficient mitochondria where it recruits parkin to
ubiquitylate the damaged mitochondria (59–62). Hasson et al.
(63) recently performed a screening experiment for regulators
that have an impact on parkin translocation to damaged mi-
tochondria, using genome wide small interfering RNA. In that
study, SIAH3 was identified as a novel mitochondrial protein
that inhibits PINK1 accumulation after mitochondrial damage
by reducing parkin translocation. Encouragingly, MitoFates
can predict SIAH3, even though TargetP and Predotar cannot,
suggesting that MitoFates may have the ability to find other
undiscovered mitochondrial proteins among candidate parkin
translocation regulators. Thus, we ran MitoFates on protein
sequences from supplemental Table S1 of Hasson et al. (63),

yielding 72 novel mitochondrial protein candidates from 42
genes (supplemental Table S8). In addition to those 42 genes,
MitoFates predicted one of the isoforms of Rhomboid-related
protein 3 (RHBDL3, UniProt AC: Q495Y4) to have a prese-
quence. This is interesting because another rhomboid prote-
ase family protein, PARL, regulates PINK1 accumulation by
mitochondria membrane potential dependent cleavage of
PINK1 (64). This isoform of RHBDL3 shows weak positive
regulation of parkin translocation in the Hasson et al. screen-
ing study, but it is possible that the protein localizes to mito-
chondria and mediates parkin translocation by cleaving some
proteins in a membrane potential dependent manner.

In addition, we attempted to predict undiscovered mito-
chondrial proteins having disease mutations by performing
MitoFates prediction against the humsavar data (human poly-
morphisms and disease mutations data available from Uni-
Prot; http://www.uniprot.org/docs/humsavar). MitoFates pre-
dicts 31 novel candidate genes with 266 mutations related to

FIG. 5. An example of prediction output from the MitoFates web server is shown.
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40 diseases (supplemental Table S9B). Also 158 genes having
1608 mutations from 164 diseases are predicted that already
are annotated as mitochondrial proteins (supplemental Table
S9A). The predictions include the recently identified mito-
chondrial protein F-box/LRR-repeat protein 4 (FBXL4) having
a mutation causing mitochondrial encephalopathy (65).

Some mutations in presequences may lead to disease
through mislocalization of mitochondrial proteins. For exam-
ple, mitochondrial pyruvate dehydrogenase E1 component
subunit alpha, somatic form (PDHA1) has a mutation R10P
(the 10th residue Arg is mutated to Pro) reducing the effi-
ciency of mitochondrial translocation of PDHA1, resulting in
pyruvate dehydrogenase E1-alpha deficiency (66). Interest-
ingly, the mutation occurs in a position corresponding to both
a ��
	�� hexamer match and the region with the maximum
PA score within the N-terminal 30 residues. The mutation of
positively charged Arg to the secondary structure breaker Pro
might lead to loss of mitochondria localization ability of
PDHA1 by disruption of the amphiphilic helix and/or reduction
of net positive charge. In another example, mitochondrial DNA
polymerase subunit gamma-1 (POLG) has a disease mutation
R3P related to progressive external ophthalmoplegia in its
predicted presequence (67). Similar to PDHA1, this mutation
is located in the region with the highest PA score, suggesting
that our PA score and hexamer motifs might give hints as
to the likelihood that disease mutations result in protein
mislocalization.

MitoFates Webserver—We developed a MitoFates web-
server for easy use, available at http://mitf.cbrc.jp/MitoFates/.
The default threshold is set to 0.385, corresponding to an
estimated 79% precision and 80% recall. The MitoFates web-
server can accept multiple protein sequences at a time. The
output shows prediction results with predicted cleavage sites
(of MPP and secondary proteases) and presequence hexamer
motif hits having a maximum PA score (Fig. 5). More informa-
tion is available at http://mitf.cbrc.jp/MitoFates/usage.html.
The source code for MitoFates is also available at the website.

DISCUSSION

Our main result is the MitoFates prediction method, which
predicts presequences and their cleavage sites more accu-
rately than previous methods. In particular, MitoFates achieves
a sizable gain over previous methods in the accuracy of
presequence cleavage site prediction. This improved accu-
racy should be useful for applications that can benefit from
accurate prediction of mature protein N-termini such as crys-
tallography and mass-spectrometry. It is interesting that our
method performs well on plants and animals (supplemental
Fig. S1) even though it is trained only on the sequence char-
acteristics of yeast cleavage sites with only the length distri-
bution of the cleavage portion customized for plants and
animals. Apparently this reflects exceedingly strong functional
conservation of MPP across species (20) and is consistent
with previous Kohonen network analysis (8), which failed to

find species-specific presequence motifs. In addition, the
secondary protease Oct1/MIPEP is conserved from yeast to
mammals and corresponding R-10 cleavage sites are widely
observed in fungal and metazoan species. Icp55, the other
secondary protease considered by MitoFates, is experimen-
tally confirmed only in yeast, but R-3 cleavage sites are ob-
served in all of yeast, metazoa, and plant. Therefore it seems
likely that a counterpart of yeast Icp55 functions in the mito-
chondrial matrix of plants and metazoa. One candidate pro-
tease is XPNPEP3, a human homolog of yeast Icp55 that was
recently confirmed to localize to mitochondria in renal cells
(68).

We also applied MitoFates prediction to the human pro-
teome; providing candidate lists of presequence containing
proteins, protein isoforms with differential localization, and
potentially disease related mitochondrial proteins. We hope
these lists will prove helpful in prioritizing experiment work on
those topics.

* This work was supported by a grant of the Platform for Drug
Discovery, Informatics, and Structural Life Science, Grants-in-Aid for
Scientific Research on Innovative Areas (“Matryoshka-type evolu-
tion”, No. 3308) from Ministry of Education, Culture, Sports, Science
and Technology (MEXT), and Grant-in-Aid for JSPS Fellows (No.
12J06550).

□S This article contains supplemental Figs. S1 to S7, Tables S1 to
S9, and Text.

¶ To whom correspondence should be addressed: National Insti-
tute of Advanced Industrial Science and Technology, Computational
Biology Research Center, 2-4-7 Aomi Koto-ku, Toyko 135-0064, Ja-
pan. Tel.: �81-3-3599-8064; E-mail: horton-p@aist.go.jp. and E-mail:
kenichiro.imai@aist.go.jp.

REFERENCES

1. Duchen, M. R., and Szabadkai, G. (2010) Roles of mitochondria in human
disease. Essays Biochem. 47, 115–137

2. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., and Sickmann, A.
(2006) Toward the complete yeast mitochondrial proteome: multidimen-
sional separation techniques for mitochondrial proteomics. J. Proteome
Res. 5, 1543–1554

3. Pagliarini, D. J., Calvo, S. E., Chang, B., Sheth, S. A., Vafai, S. B., Ong,
S.-E., Walford, G. A., Sugiana, C., Boneh, A., Chen, W. K., Hill, D. E.,
Vidal, M., Evans, J. G., Thorburn, D. R., Carr, S. A., and Mootha, V. K.
(2008) A mitochondrial protein compendium elucidates complex I dis-
ease biology. Cell 134, 112–123

4. Smith, A. C., Blackshaw, J. A., and Robinson, A. J. (2012) MitoMiner: a data
warehouse for mitochondrial proteomics data. Nucleic Acids Res. 40,
D1160-D1167

5. Meisinger, C., Sickmann, A., and Pfanner, N. (2008) The mitochondrial
proteome: from inventory to function. Cell 134, 22–24

6. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T., and Pfanner, N.
(2009) Importing mitochondrial proteins: machineries and mechanisms.
Cell 138, 628–644
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