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Abstract

In longitudinal event data, a crude rate is a simple quantification of the event rate, defined as the

number of events during an evaluation window, divided by the at-risk population size at the

beginning or mid-time point of that window. The crude rate recently received revitalizing interest

from medical researchers who aimed to improve measurement of misdiagnosis-related harms

using administrative or billing data by tracking unexpected adverse events following a “benign”

diagnosis. The simplicity of these measures makes them attractive for implementation and routine

operational monitoring at hospital or health system level. However, relevant statistical inference

procedures have not been systematically summarized. Moreover, it is unclear to what extent the

temporal changes of the at-risk population size would bias analyses and affect important

conclusions concerning misdiagnosis-related harms. In this article, we present statistical inference

tools for using crude-rate based harm measures, as well as formulas and simulation results that

quantify the deviation of such measures from those based on the more sophisticated Nelson-Aalen

estimator. Moreover, we present results for a generalized multibin version of the crude rate, for

which the usual crude rate is a single-bin special case. The generalized multibin crude rate is more

straightforward to compute than the Nelson-Aalen estimator and can reduce potential biases of the

single-bin crude rate. For studies that seek to use multibin measures, we provide simulations to

guide the choice regarding number of bins. We further bolster these results using a worked

example of stroke after “benign” dizziness from a large data set.
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1 | INTRODUCTION

Diagnostic error is one of the most important safety problems in health care today and

inflicts the most cost among all medical errors.1–3 Traditionally, identification of diagnostic-

error-related harm has often relied on a labor-intensive chart review process, which is prone

to reviewer bias,4 restricted by poor documentation,5,6 and is hard to apply on a large scale.

To address this urgent need, medical researchers, in the recent years, have attempted to

develop an automatic tool that quantifies harm that results from a “benign” (false negative)

diagnosis, utilizing the abundant disease occurrence information in existing clinical, billing,

administrative claims, or similar electronic medical record (EMR) data sets.7–12

This conceptual work is formalized by Liberman and Newman-Toker.13 The fundamental

idea is that for acute diseases such as stroke, unexpected adverse events attributable to a

false negative diagnosis would likely occur in a relatively short time window after the initial

diagnosis. Also, the risk of adverse events would have been constant had there been no

misdiagnosis of the symptoms. Therefore, the existence of excessive short-term adverse

event rate beyond the expected baseline adverse event rate for the population without

misdiagnosis would indicate the existence of misdiagnosis of symptoms, and the magnitude

of excessive risk reflects the magnitude of harm. Because the baseline rate is an

unobservable counterfactual quantity, one way that researchers proposed to approximate this

quantity was to use the long-term rate, that is, the event rate in a time window temporally far

away from the initial diagnosis and therefore are likely to be independent of misdiagnosis.

Using the long-term event rate estimated in the population of interest as a surrogate for the

counterfactual baseline rate also have a preferred property that it implicitly accounts for the

population composition disparity across institutes. This is especially important for diseases

such as stroke, whose baseline event rate is greatly elevated in some subgroups such as in

elderly. As a result, comparison measures between the short-term and long-term rates, such

as crude rate differences and ratios, can be used to quantify misdiagnosis-related harm

magnitude.

Mane et al14 applied this idea to analyze misdiagnosis related stroke among patients that

received a “benign” dizziness diagnosis. They proposed an operational measure based on the

widely used crude rate of stroke return visits. The crude rate was defined as

crude rate in window I = number of events in I
risk set size at beginning of I × length of I .

There is a rich statistical literature on more sophisticated estimators such as the Nelson-

Aalen,15,16 but crude-rate based estimators remain widely used in public health and medical

research and applications, especially in the area of safety and quality measurement. For

example, many of the measures endorsed by the National Quality Forum are crude rates

constructed with counts as numerators and denominators. The popularity of crude rates can
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be attributed to several reasons. First, crude rates are highly accessible to policymakers,

health care workers, and patients because they can easily understand such measures. Second,

steps to compute crude rates are simple and straightforward and can therefore be easily

carried out by researchers. This is especially important for quality measures that are often

computed without using sophisticated statistical software. The main computational

advantage is not due to the reduced computational complexity, which is at the order of n2 for

a Nelson-Aalen estimator and at the order of n for a single-bin crude rate, but due to the

reduced steps in the whole pipeline from data to a harm measure. For example, the data

warehouse server usually does not have adequate statistical software, due to limited RAM,

restricted administrative access for a statistician, the immense amount and complicated

structure of the data, as well as other confidentiality concerns. To calculate the N-A

estimator in a statistical software where computation is efficient, it would require that the

EMR or large claim databases be extracted, cleaned, and transferred to a statistician, who

may also needs approval for accessing the extracted data. The time-consuming data

extraction and transfer can only be carried out by limited personnel who have access but

who may not have enough statistical sophistication to clean the data into analysis-ready

format. Further cleaning needs to be done by a statistician, which also takes time. On the

other hand, simple data summaries such as counts usually can be directly obtained from the

data server. As a result, measures based on crude rates can be calculated directly without

extracting, transferring an analytic data set or obtaining high data access level. Simple and

accessible calculations, in turn, result in the timely evaluation of institutes’ diagnostic

performance that can inform interventions and policies that improve quality of care. Third,

the crude rates often yield results that are close to and as powerful as the more sophisticated

estimator in applications where event rates and censoring rates are low, which is often the

case in safety and quality measurement applications.

Although crude rates often work well in applications, practitioners are not properly guided

on specific methods to use and do not understand why crude rates are applicable and, more

importantly, when they are not and need to be replaced by a different estimator. This work

addresses this gap in understanding and provides guidance. To understand the interpretation,

bias, and usefulness of the crude rate, we consider a generalized multibin version of the

crude rate, with the standard single-bin crude rate as a special case. Through the multibin

crude rate, we establish the connection between the crude rate and the cumulative hazard,

which leads to the interpretation of the crude rate as a rough estimator of cumulative hazard.

We then study the difference between multibin crude rates and the Nelson-Aalen estimator,

and we summarized statistical inferential and hypothesis testing methods that are necessary

in an analysis using the general multibin crude rates. In addition, we perform simulation

studies to provide insights on situations where the single-bin crude rate may have adequately

good performance in terms of measuring and detecting harm. When the single-bin crude rate

performs not as well, we recommend that researchers consider general multibin crude rates

as alternatives. Further guidance on the choice of number of bins is provided through

simulation studies with settings that closely resemble real data. Finally, we illustrate with a

data analysis how the information in simulation studies can be used to guide the choice of

bins. Overall, we showed with simulation studies and the real data analysis that, when the

outcome disease and censoring occur at relatively low rates, the harm measure based on the
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single-bin crude rate has comparably good performance as the more sophisticated Nelson-

Aalen estimator.

2 | MULTIBIN CRUDE RATE

Suppose we want to calculate crude rate of event occurrences during some predetermined

time interval I of length L. The danger of using the standard calculation, as we argued in the

Introduction, is that we might introduce potentially large bias to the estimator in ignoring the

decrease of risk set size over time. To understand the effect of a shrinking risk set and

mitigate the effect when it is severe, we consider a generalized multibin version of the crude

rate described as follows.

Let Ij, j=1, …, J denote bins that divide interval I, let tj denote the left endpoint for bin Ij,

and let Lj denote the length of Ij. Then the crude rate in time bin Ij is

crude rate in window Ij =
number of events in Ij
risk set size at tj × Lj

.

We then obtain the multibin crude rate with J bins, or simply the J-bin crude rate, by taking

average of the naïve crude rates over J bins weighted by lengths. Or equivalently,

J‐bin crude rate in I = ∑
j = 1

J
Lj

−1
∑

i = 1

J number of events in Ij
risk set size at tj × Lj

× Lj = L−1 ∑
i = 1

J number of events in Ij
risk set size at tj

.

The multibin crude rate is an improved version of the single-bin crude rate in accuracy and

adds little computational complexity. It also serves as a bridge between the naïve estimator

and the quantity we aim to measure. Specifically, if we take the effectively finest interval

partition, that is, we use bins such that tj, j=1, …, J, are distinct time points of all event

occurrences, then we observe exactly one event in each bin and the decrease in risk set is

fully accounted for. In this case, the J-bin crude rate is

L−1 ∑
j = 1

J
1

risk set size at tj
,

which is exactly the Nelson-Aalen estimator for cumulative hazard, divided by L. If we

further assume that the hazard rate is constant in interval I, this special J-bin crude rate is the

hazard over I. Therefore the crude rate can be considered as a rough estimate of the average

hazard over interval I, and the difference and ratio between short-term and long-term crude

rates can be interpreted as the difference and ratio of average hazards in the misdiagnosed

population and approximately the correctly diagnosed population.

Despite similar forms, the multibin crude rates are not a special type of the weighted or

scaled N-A estimator.17 In general, the multibin crude rate has systematic bias and does not

converge to the population cumulative hazard even when sample size goes to infinity, but the

N-A estimator is a consistent estimator of the population cumulative hazard given some
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predetermined covariate distribution. However, as partition of time interval becomes finer,

the bias of multibin crude rate gets smaller and eventually converges to zero. Theoretically,

we can always expect improvement with interval partitions when each bin covers at least one

event occurrence, refining the risk set considered at the beginning of each bin. We show in

Section 3 that the improvement of a J-bin crude rate over a single-bin crude rate depends on

how event occurrences and censoring are distributed across bins. In addition, we illustrate

the performance of the multibin crude rate in relation to the number of bins with simulation

studies in Section 4.

3 | THEORETICAL PROPERTIES

In this section, we study properties of the multibin crude rate estimators. We consider, for

patients indexed by i=1, …, n, a general survival outcome Ti which is subject to independent

censoring Ci. Suppose (Ti,Ci) are independent and identically distributed across i, and that

we observe data (Yi,Δi) where Yi = min(Ti,Ci) and Δi = 1 Ti ≤ Ci . All of the following

results cover the standard single-bin crude rate as a special case.

3.1 | Bias in multibin crude rate from the Nelson-Aalen estimator

Consider a time window I =[t0,tJ), over which we calculate the J-bin crude rate using

partition at points t0 < t1 <· · ·<tJ. This J-bin crude rate is formally defined as

CR tj j = 0
J = tJ − t0

−1 ∑
j = 1

J ∑i = 1
n 1 tj − 1 ≤ Yi < tj, Δi = 1

∑i = 1
n 1 Yi ≥ tj − 1

,

and we are interested in its deviation from the Nelson-Aalen estimator. Suppose that we

observe events at time tj1 < … < tj
mj over interval tj − 1, tj  and that we have tj0 ≡ tj − 1.

Denote by Pn A = n−1∑i = 1
n 1 A  the empirical probability of some event A occurring. With

some algebra, we have

CR tj j = 0
J = tJ − t0

−1 ∑
j = 1

J
∑

m = 1

mj P tjm ≤ Yi < tj
m + 1, Δi = 1

P Yi ≥ tjm
×

P Yi ≥ tjm

P Yi ≥ tj − 1
,

and its difference from the Nelson-Aalen can be written as

tJ − t0 −1 ∑
j = 1

K
∑

m = 1

mj
1

P Y i ≥ tjm
× 1 − P Y i ≥ tjm

P Y i ≥ tj − 1

= ∑
j = 1

K
∑

m = 1

mj
1

P Y i ≥ tjm
− ∑

j = 1

K mj
P Y i ≥ tj − 1

.
(1)

We observe that the first summation on the right-hand side of the equation above is invariant

to the partition of time interval I and that the quantity above is always positive. Then to
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minimize the bias of a K-bin crude rate for fixed K, we maximize the quantity

∑j = 1
K mj/P Y i ≥ tj − 1 . With some algebra we can show that when censoring is ignorable

and event rate is low, a partition that assigns each time bin with equal number of events gives

the smallest bias. Under more general scenarios, a different partition could yield better

results. In practice, however, it is often unrealistic to use partitions with irregular time points

that are based on event occurrences as it beats the purpose of using the simplistic crude

rates. A common practice is to use the partition with equal bin lengths, which could be sub-

optimal but actually creates little additional bias when event and censoring rates are low, as

implied by (1).

3.2 | Statistical inference for multibin crude rate difference and ratio

In this section, we summarize statistical inference and hypothesis testing methods for harm

measures based on multibin crude rates. We consider a short-term window IS = t0S, tJ1
S  over

which we calculate the J1-bin crude rate using bin partition at t0S < t1S < … < tJ1
S , and a long-

term window IL = t0L, tJ2
L  over which we calculate the J2-bin crude rate using partitions at

t0L < t1L < … < tJ1
L . Let CR tjS j = 0

J1  and CR tjL j = 0
J2  denote these two crude rates, and let

CR tjS j = 0
J1  and CR tjL j = 0

J2  be their limits in probability as n goes to infinity. Misdiagnosis-

related harm can measured by the difference and ratio of the short-term and long-term crude

rates. For these two harm measures, we present routine asymptotic normality and confidence

interval results as follows.

Asymptotic normality: By central limit theorem and delta method, we have that

n1/2{(CR{tjS}j = 0
J1 − CR{tjL}j = 0

J2 ) − (CR{tjS}j = 0
J1 − CR{tjL}j = 0

J2 )} D N 0, σRD
2 ,

n1/2{log(CR{tjS}j = 0
J1 /CR{tjL}j = 0

J2 ) − log(CR{tjS}j = 0
J1 /CR{tjL}j = 0

J2 )} D N 0, σRR
2 ,

where

σRD
2 = σ

tjS j = 0
J1

2
+ σ

tjL j = 0
J2

2
,

σRR
2 =

σ
tjS j = 0

J1
2

CR tjS j = 0
J1 +

σ
tjL j = 0

J2
2

CR tjL j = 0
J2 ,
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and σ tj j = 0
J

2
 for a general bin partition using points tj j = 0

J  is the variance of crude rate

estimator CR tj j = 0
J . By law of large numbers, delta method, and using the plug-in

estimator in places of probabilities, this variance can be estimated by

σ tj j = 0
J

2
= tJ − t0

−2 ⋅ n

⋅ ∑
j = 1

J ∑i = 1
n 1 tj − 1 ≤ Yi < tj, Δi = 1 × ∑i = 1

n 1 Yi ≥ tj − 1 − 1 tj − 1 ≤ Yi < tj, Δi = 1

∑i = 1
n 1 Yi ≥ tj − 1

3 .

Therefore, variances of crude rate difference and ratios can be estimated respectively using

σRD
2 = σ tjS j = 0

J1
2

+ σ tjL j = 0
J2

2
,

σRR
2 =

σ tjS j = 0
J1

2

CR tjS j = 0
J1 +

σ tjL j = 0
J2

2

CR tjL j = 0
J2 .

Note that the variances of crude rate difference and log ratio have clean forms because the

crude rates over non-overlapping intervals are in fact independent.

Statistical inference results presented above follow from routine maximum likelihood

estimator theories, and construction of the confidence intervals has specifically adopted the

delta method. Alternatively, the Fieller’s method could be used for the ratio’s confidence

interval. However, both theoretical18 and simulation19 results in the literature have suggested

that the Fieller and Delta confidence intervals have only minimal differences, especially

when the two quantities in a ratio have a small correlation as is the case in the crude rate

ratio.

Confidence intervals: Let RD denote the crude rate difference, RR the crude rate ratio,

and let RD and RR be their convergents. The (1 − α)% confidence intervals can be

constructed as

(RD − n−1/2 ⋅ z1 − α/2 ⋅ σRD, RD + n−1/2 ⋅ z1 − α/2 ⋅ σRD)
exp log RR − n−1/2 ⋅ z1 − α/2 ⋅ σRR , exp log RR + n−1/2 ⋅ z1 − α/2 ⋅ σRR ,

where z1−α∕2 is the 100 ⋅ (1 − α∕2)% quantile of standard normal.

Point estimates and confidence intervals can be used to measure the magnitude of harm.

However, researchers sometimes also need to qualitatively investigate whether harm exists

and whether institutions vary in their diagnostic performances, for which we present a
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summary of relevant existing hypothesis testing tools that are appropriate under various

scenarios.

Testing harm existence: To qualitatively check whether misdiagnosis-related harm

exists based on crude rate difference, we test the null hypothesis of RD=0 against the

alternative RD > 0 using test statistic T RD = n1/2 ⋅ RD/σRD. Similarly when using crude rate

ratio to identify existence of harm, we test the null hypothesis RR=1 against the alternative

RR>1 using test statistic T RR = n1/2log RR/σRR. Test statistics follow standard normal

distributions, and calculations of P-value, power, and sample size then follow routine

procedures.

Comparing two institutions: We may also be interested in comparing misdiagnosis-

related harms across institutions, in which case we would test whether crude rate differences

or ratios from two institutions are equal. Specifically, suppose that the crude rate differences

are RD1 and RD2 whose corresponding convergents are RD1 and RD2. Also denote by

σRD, 1
2 /n1 and σRD, 2

2 /n2 the variance estimates for RD1 and RD2 respectively, where n1 and

n2 are number of patients in the two institutions. We then test the null hypothesis RD1 =RD2

against the alternative RD1 ≠RD2 using test statistic

T RD, 1, 2 = (RD1 − RD2)/ σRD, 1
2 /n1 + σRD, 2

2 /n2
1/2

. Similarly, we can use crude rate ratios to

compare institutions. Consider log crude rate ratios log RR1 and log RR2 from two

institutions. Denote by logRR1 and logRR2 their convergents and by σRR, 1/n1 and σRR, 2/n2
their variance estimates. We then test the null hypothesis RR1 =RR2 against the alternative

RR1 ≠RR2 using test statistic T RR, 1, 2 = (log RR1 − log RR2)/ σRR, 1/n1 + σRR, 2/n2
1/2. Test

statistics follow standard normal distributions, and calculations of P-value, power, and

sample size then follow routine procedures.

Testing interinstitutional heterogeneity: When researchers compare the diagnostic

performances among several institutions, they might not know a priori which two specific

institutions to compare. Performing multiple pairwise hypothesis testing creates multiple

testing issues, and it could be preferable to test the more general hypothesis of whether harm

differs across multiple institutions. For this purpose, we recommend using the following

testing procedure of the Wald type.20 Suppose we have independent crude rate differences

RD1, … , RDQ from Q institutions indexed by q=1, …, Q, whose limits are RD1, …, RDQ.

And we assume that variance estimates of these crude rate differences are

σRD, 1
2 /n1, … , σRD, Q

2 /nQ respectively, where n1, …, nQ are patient sample sizes. Denote by

RD 1, …, Q = (RD1, … , RDQ)┬, and by ΣRD, 1, …, Q  the variance-covariance matrix

estimate of (RD1, … , RDQ)┬ such that its diagonal elements are σRD, q
2 /nq for q=1, …, Q

and its off-diagonal elements are zeros. Formally we are interested in testing the null

hypothesis H0 :RD1 =· · ·=RDQ against the alternative that at least one equality does not

hold. Let f(RD 1, …, Q ) = (RD1 − RD2, … , RDQ − 1 − RDQ)┬ and we consider test statistic
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TRD, 1, …, Q = f(RD 1, …, Q )┬ ⋅
∂f(RD 1, …, Q )

∂RD 1, …, Q
ΣRD, 1, … , Q

∂f(RD 1, …, Q )
∂RD 1, …, Q

┬ −1

⋅ f(RD 1, …, Q ),

which follows chi-squared distribution with degree of freedom Q−1. We can similarly test

whether levels of harm differ across Q institutions in terms of log crude rate ratios, denoted

as log RR1, … , log RRQ. Let ΣRR, 1, … , Q  be the variance-covariance matrix estimate for

log RR 1, …, Q = log RR1, … , log RRQ
┬. We test the null hypothesis H0 :RR1 =· · ·=RRQ

against the alternative that at least one equality does not hold. We consider the test statistic

TRR, 1, …, Q = f(log RR 1, …, Q )┬

⋅
∂f(log RR 1, …, Q )

∂log RR 1, …, Q
ΣRR, 1, … , Q

∂f(log RR 1, …, Q )
∂log RR 1, …, Q

┬ −1
⋅ f(log RR 1, …, Q ),

which also follows chi-squared distribution with degree of freedom Q−1. Calculations of P-

value, power, and sample size then follow routine procedures, and the order of institutions

does not affect any result.

4 | SIMULATION STUDIES

In this section, we present simulation studies that investigate bias and performance of the

crude-rate-based harm estimators in detecting misdiagnosis-related harm compared with

those of Nelson-Aalen estimator. Through these simulations, we obtain an understanding of

the scenarios, in terms of number of events, level of censoring, and sample size, under which

multibin crude rates with small number of bins, especially the single-bin crude rate, have

little bias in measuring harm and are equally powerful in detecting harm.

We generate time of event incidences following Weibull distributions (scaled by a constant

of three). We take shape parameter of the Weibull distributions from k =1,0.8,0.6,

representing scenarios with no harm, mild harm, and severe harm. Size parameters of the

Weibull distributions are chosen such that the number of expected incidences over short-

term window (0,1.5] is 5, 30, and 200 respectively for sample sizes 1000, 10 000, and 100

000. As a result, number of expected incidences over the long-term window [3,6) may vary.

We also consider different levels of uniform censoring at 10%, 35%, and 60% over the union

of the short-term window (0,1.5] and the long-term window [3,6). That is, the probability of

observing a censored incidence in (0,1.5]∪[3,6) is 10%, 35%, and 60% respectively. These

simulation scenarios emulate real data cases with different event rates, censoring rates, and

sample sizes. A variety of scenarios exist outside of what are considered in our simulations,

for example, censoring distributions can be nonuniformâ–we do not attempt to be

comprehensive but hope to provide some typical examples that practitioners can use as a

guide, a case study that they can extrapolate from, or a reference for how to perform similar

simulations in a different context. See Table 1 for the specification of simulation parameters
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as well as the true values of cumulative hazard differences and ratios under various

scenarios.

We generate data with 1000 replications for each scenario and study the crude rate

differences and ratios calculated for intervals [0,1.5) and [3,6) based on multibin crude rate

estimators with 1, 2, 4, 8, 16, or 32 equal-sized bins per 1.5 unit of time. As a reference, we

also calculate the Nelson-Aalen estimates. Empirical biases compared to the difference or

log ratio of average cumulative hazards, as well as type-I error and power for detecting the

existence of misdiagnosis-related harm, are summarized in Figures 1 and 2 for censoring at

10% and in additional figures in the Supplementary Information for censoring at 35% and

60%.

We observe that the level of bias decreases with an increased number of bins and flattens

with around 10 bins, indicating that further increasing the number of bins used for J-bin

crude rate calculation might not add much improvement. For hypothesis testing, we observe

close to theoretical type-I error throughout simulated scenarios and observe that the power

for detecting misdiagnosis increases with an increase in the expected number of incidences

in the short-term window. On the other hand, power appears to be almost invariant to the

number of bins used in simulated scenarios. We do observe some spurious results when the

event rate is high under heavy censoring at 60%. But in general, these results suggest that

using a small number of bins is often sufficient for appropriately detecting misdiagnosis-

related harm despite the potential bias where the event rate and censoring rate are low as

investigated in our simulations. As expected, we observe smaller bias and higher hypothesis

testing power with increasing sample size.

Note that we have taken equal-sized bins without considering how many incidences or

censoring each bin aggregates. Theoretically, what directly affects the accuracy of estimation

and efficiency of testing is the number of events and censoring observed in each bin instead

of the number of bins. Therefore, a theoretically more efficient approach is to aggregate

equal numbers of incidences or censoring across bins. However, adopting such time bins

contradicts the point of using a simple measure, and therefore using equal-sized bins is more

practical. As a rule of thumb, 10 bins for crude rate calculations are often sufficient for

minimizing the bias and maintaining the power for harm detection. We can also utilize

simulation results to provide a more specific guide on how many bins to use by finding the

simulation scenarios that are close to real data in terms of number of events, censoring rate,

and sample size. We illustrate this strategy in Section 5.

5 | DATA ANALYSIS

In this section, we illustrate the proposed analysis procedure with analyses on the

Longitudinal Health Insurance Database (LHID). The LHID is an one-million patient

database randomly sampled from the National Health Insurance Research Database of

Taiwan (NHIRD). The Taiwan NHIRD is an electronic medical record database that dates

back to March 1995 and covers 99% of Taiwan’s populations with close-to-none missing

data or out-of-network patients. In this analysis, we include 144 355 patients who were

enrolled in the Taiwan National Health Insurance (NHI) program in 2010. We then
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retrospectively identify patients who had a dizziness visit in outpatient departments between

1 January 2002 and 31 December 2009. We excluded patients that were admitted or referred

to emergency departments at the dizziness visits because they were considered to have

received “positive” diagnoses while we only aim to measure the harm of false negative

diagnoses. The included 144 355 patients remained under observation for 365 days for the

first stroke inpatient hospitalization after their first dizziness visit within the time frame

under consideration. By including only those patients who were enrolled in 2010, we

implicitly exclude patients who had died before 2010, creating a potentially biased sample

from the general population. However, addressing this issue is beyond the scope of this

article, and we would restrict any conclusion of the data analyses to the LHID sampled

population.

We analyze stroke event time during the short-term window from 1 to 30 days and during

the long-term window from 91 to 180 days after the index visit. The short-term window of 1

to 30 days is chosen because it has been considered in previous literature as a window for

defining potentially missed stroke diagnosis.10 Also the window is wide enough for

sufficient number of observed events. The long-term window from 91 to 180 days is chosen

such that the stroke risk has mostly flattened and that the window is wide enough for

sufficient observations.

We observe 340 stroke events within 30 days after the index visit, and 168 events from 91 to

180 days. The data most closely resembles simulation scenarios with expected number of

short-term events around 200, that of long-term events around 100, sample size 100 000, and

censoring at 10%. Simulation results for such scenarios indicate that using the single-bin

crude rate is sufficient for small bias, an appropriate type-I error, and a high hypothesis

testing power. Thus we calculate the single-bin crude rate difference and ratio to quantify the

misdiagnosis-related harm.

We estimate the one-bin crude rate difference to be 18.94 cases per 30 days and per 10 000

people (95% confidence interval [16.45,21.43], P-value < .01), suggesting the existence of

misdiagnosis-related harm. We also estimate the one-bin crude rate log ratio to be 1.78 (95%

confidence interval [1.59,1.96], P-value < .01), which supports the same conclusion.

To illustrate the proposed hypothesis testing tools, we study age disparity in misdiagnosis-

related harm by categorizing patients into young (age≤40, 49 872 patients), middle-aged

(40<age≤60, 54 491 patients), and old (age>60, 39 992 patients) groups. We then test the

existence of group heterogeneity using hypothesis testing procedures discussed in Section

3.2. Results suggest that misdiagnosis-related harm is different among age groups on the

absolute scale (in terms of crude rate difference; chi-squared statistic 3×1010, P-value < .01),

but not on the relative scale (in terms of crude rate ratio; chi-squared statistic 0.31, P-

value .96). These results suggest that the different levels of harm incurred in different age

groups are likely due to lower stroke incidences in younger groups rather than diagnostic

disparities. If researchers are interested in comparing two specific groups, further hypothesis

testing can be carried out.
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To further check the validity of using the single-bin crude rates instead of the more

complicated multibin versions, we perform harm quantification analyses using K-bin crude

rates for K =1, …, 15. We present the crude rate difference and ratio estimation and

hypothesis testing results concerning age heterogeneity in Figure 3. We observe that crude

rate differences and log ratios have almost identical estimates and confidence intervals

across different numbers of bins, and hypothesis testing results are barely affected. These

results confirm that choosing to use one bin based on simulation results has been a valid

strategy in terms of obtaining equally informative harm measures.

6 | DISCUSSION

In this article, we provided thorough discussions on statistical tools and insights related to

the easy-to-compute crude rate and crude-rate based measures for timely monitoring

misdiagnosis-related harm. We generalized the single-bin crude rate to its multibin version

and provided an interpretation for using crude rate difference and ratio as harm

quantification, linking the crude rate to cumulative hazard. We then analyzed the deviation

of crude rate from the Nelson-Aalen estimator which statisticians would have used for

estimating the cumulative hazard if the more sophisticated analyses were feasible. The

deviation was shown to be small in the presence of low event and censoring rates. We further

illustrated with simulation studies and real data analysis using stroke event occurrences from

the LHID that a small number of bins, or even a single bin, was often sufficient for an

estimate with minimal bias and powerful hypothesis testing results.

Specially, we observed in our simulation studies that the single-bin crude rate was almost as

accurate and efficient as its multibin or Nelson-Aalen-estimator based alternatives when

short-term and long-term event rates were below 10% per unit of time and when the

censoring rate was below 10% per unit of time. This translates to no more than 100 events

and 100 censoring per 1000 patients between 1 and 30 days and no more than 300 events

and 300 censoring per 1000 patients between 91 and 180 days, which are usually satisfied in

the misdiagnosis context with administrative data.

We also observed that for all simulated scenarios, using a 10-bin crude rate would yield

results close to those based on the Nelson-Aalen estimator. For other scenarios that

researchers may encounter in practice, our simulation studies can be used as a guide, a case

study to extrapolate from, or a reference on how such simulations can be run.

Our work faces a few limitations. First, the interpretation of crude rate difference and ratio

for quantifying misdiagnosis-related harm was established with approximation under the

assumption of a low event rate, which is common in the context of diagnostic errors but

might not be as common otherwise. Second, partitions with irregular time points were not

studies although they might reduce bias. Third, the choice of the short-term and long-term

windows was not discussed despite its relevance—using a wide short-term window improves

robustness but might dilute signal, while using a long-term window that is wide and far from

the short-term window is desirable but not always practical as longer follow-up is needed.

There are trade-offs that take thoughtful consideration in choosing these windows. However,

overcoming these limitations likely comes at a price of complexity and is beyond the scope
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of this article. On the other hand, more data-driven ways of selecting the short-term and

long-term windows is one exciting direction for future work.

Supplementary Material
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FIGURE 1.
Simulation results for crude rate difference estimation and hypothesis testing when we have

10% censoring. Biases decrease with increased number of bins, decreased number of

expected events, and larger sample sizes; type-I errors are generally all close to 0.05; power

increases with more expected incidences, but not much with increase in sample size or

number of bins [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2.
Simulation results for log crude rate ratio estimation and hypothesis testing when we have

10% censoring. Biases decrease with increased number of bins, decreased number of

expected events, and larger sample sizes; type-I errors are generally all close to 0.05; power

increases with increased numbers of expected incidences, but not much with increase in

sample size or number of bins [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3.
Comparison of analysis results of the Taiwan NHIRD using difference number of bins. We

observe that increasing the number of bins from 1 to 15 results in less than 0.2% of increase

in crude rate difference, less than 0.03% of increase in crude rate ratio, and ignorable

changes in test P-values. These observations suggest that using a small number of bins has

little effect on analysis results
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TABLE 1

Simulation settings

k log10n λ
Expected number of
incidences in (0,1.5]

Expected number of
incidences in [3,6)×0.5

Average cumulative
hazard difference×n

Average cumulative
hazard log ratio

0.6 3 3405.7 5 1.9 6.11 0.939

168.31 30 11.2 37.1 0.939

6.09 200 57.1 272 0.939

4 158 673.96 5 2 6.09 0.939

7992.47 30 11.7 36.6 0.939

333.65 200 76 246 0.939

5 7 367 755.99 5 2 6.09 0.939

371 814.22 30 11.7 36.6 0.939

15 722.76 200 77.9 244 0.939

0.8 3 374.88 5 3.2 3.56 0.438

39.29 30 18.3 21.6 0.438

3.26 200 84.8 158 0.438

4 6685.31 5 3.2 3.55 0.438

710.81 30 19.2 21.3 0.438

65.65 200 124.2 143 0.438

5 118 917 5 3.2 3.55 0.438

12 661.55 30 19.3 21.3 0.438

1180.7 200 128.5 142 0.438

1 3 99.75 5 4.9 0 0

16.42 30 27.8 0 0

2.24 200 115.2 0 0

4 999.75 5 5 0 0

166.42 30 29.8 0 0

24.75 200 190.2 0 0

5 9999.75 5 5 0 0

1666.42 30 30 0 0

249.75 200 199 0 0
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