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Abstract

We developed and tested a method to detect COVID-19 disease, using urine specimens.

The technology is based on Raman spectroscopy and computational analysis. It does not

detect SARS-CoV-2 virus or viral components, but rather a urine ‘molecular fingerprint’, rep-

resenting systemic metabolic, inflammatory, and immunologic reactions to infection. We

analyzed voided urine specimens from 46 symptomatic COVID-19 patients with positive

real time-polymerase chain reaction (RT-PCR) tests for infection or household contact with

test-positive patients. We compared their urine Raman spectra with urine Raman spectra

from healthy individuals (n = 185), peritoneal dialysis patients (n = 20), and patients with

active bladder cancer (n = 17), collected between 2016–2018 (i.e., pre-COVID-19). We also

compared all urine Raman spectra with urine specimens collected from healthy, fully vacci-

nated volunteers (n = 19) from July to September 2021. Disease severity (primarily respira-

tory) ranged among mild (n = 25), moderate (n = 14), and severe (n = 7). Seventy percent of

patients sought evaluation within 14 days of onset. One severely affected patient was hospi-

talized, the remainder being managed with home/ambulatory care. Twenty patients had clin-

ical pathology profiling. Seven of 20 patients had mildly elevated serum creatinine values

(>0.9 mg/dl; range 0.9–1.34 mg/dl) and 6/7 of these patients also had estimated glomerular

filtration rates (eGFR) <90 mL/min/1.73m2 (range 59–84 mL/min/1.73m2). We could not

determine if any of these patients had antecedent clinical pathology abnormalities. Our
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technology (Raman Chemometric Urinalysis—Rametrix®) had an overall prediction accu-

racy of 97.6% for detecting complex, multimolecular fingerprints in urine associated with

COVID-19 disease. The sensitivity of this model for detecting COVID-19 was 90.9%. The

specificity was 98.8%, the positive predictive value was 93.0%, and the negative predictive

value was 98.4%. In assessing severity, the method showed to be accurate in identifying

symptoms as mild, moderate, or severe (random chance = 33%) based on the urine multi-

molecular fingerprint. Finally, a fingerprint of ‘Long COVID-19’ symptoms (defined as lasting

longer than 30 days) was located in urine. Our methods were able to locate the presence of

this fingerprint with 70.0% sensitivity and 98.7% specificity in leave-one-out cross-validation

analysis. Further validation testing will include sampling more patients, examining correla-

tions of disease severity and/or duration, and employing metabolomic analysis (Gas Chro-

matography–Mass Spectrometry [GC-MS], High Performance Liquid Chromatography

[HPLC]) to identify individual components contributing to COVID-19 molecular fingerprints.

Introduction

Infection with SARS-CoV-2 and development of COVID-19 disease is associated with a delete-

rious effect in renal function and structure. This would be expected to potentially alter the

molecular composition of urine. Since COVID-19 evolved in 2019, there have been numerous

reports of acute kidney injury (AKI) associated with this infection [1–8]. The incidence of AKI

in COVID-19 patients has been estimated to range from about 27–50+% [9, 10]. Early in the

pandemic, several groups noted a correlation of disease severity, hospitalization, and intensive

care admissions with increased risk for developing AKI [11, 12]. This was not surprising. The

contribution of cardiopulmonary dysfunction, renal hypoperfusion, and/or multidrug therapy

leading to the development AKI has been well-known for decades prior to COVID-19 [13].

However, the role of renal viral infection in the development of AKI was uncertain.

A recent review by Hassler and coworkers [14] considered evidence both for and against

direct SARS-CoV-2 infection of the kidney. Rightly so, Hassler, et. al., and authors they cited,

felt that viral infection might help explain the disproportionately high incidence of AKI and

collapsing glomerulopathy seen in patients with COVID-19. Combining data from several

studies, Hassler, et. al., presented at least putative evidence of viral infection in 102/235 kidneys

(43%) from autopsied patients. A variety of techniques for viral/viral RNA detection were used

in the cited studies, including immunohistochemistry, real-time polymerase chain reaction

(RT-PCR), in situ hybridization, immunofluorescent microscopy, and electron microscopy

[14]. No study they referenced used two or more methods for cross-checking and validating

renal viral infection, a deficit in study design considered to affect interpretation in the results.

Hassler, et. al., [14] posited that renal biopsies (not autopsy-derived samples) and develop-

ment of urine-based screening tests would be keys to understanding the effects of COVID-19

on renal function and structure and these would be needed to improve detection and manage-

ment of disease.

Over the past four years, we have been developing and validating a novel approach to

molecular urinalysis, using a combination of Raman spectroscopic, computational, and physi-

cochemical analytical methods. This new method of urinalysis is termed Raman chemometric

urinalysis—abbreviated as Rametrix1. We have successfully applied this method of urinalysis

to determining the molecular characteristics and physical properties of urine specimens from
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healthy human volunteers (n = 235 urine samples) [15], patients with chronic kidney disease

(CKD) (n = 362 urine samples) [16], bladder cancer (BCa) and non-neoplastic genitourinary

pathologies (such as cystitis and benign prostatic hypertrophy/urinary retention, among oth-

ers) (n = 56 urine samples) [17, 18], and post-acute patients following exposure to Lyme patho-

gen (Borrelia sp.) (n = 30 urine samples) [19]. Data cited in these references was derived from

Rametrix1 analysis of urine specimens collected prior to December 2018.

Normal human urine contains over 2,000 separate chemical entities, reflective of systemic

physiology/metabolism and the processes of renal function [20]. In the past decade, mass spec-

trometry, liquid/gas chromatography, nuclear magnetic resonance, and kinetic nephelometry

methods have been used to detect analytes (i.e., biomarkers) associated with normal metabo-

lism or disease [21]. Metabolomics has been used to identify kidney disorders (including renal

cell carcinoma), coronary artery disease, diabetes, Alzheimer’s disease and cognitive

impairment, neurodegenerative disease, and colorectal cancer [22–27]. While metabolomics is

often used to search for circulating/plasma disease biomarkers, it is now used to study how the

presence of disease alters the urine metabolite profile (“fingerprint”).

Mass spectrometry-based urine biomarker and “-omics” technologies are used rarely by

caregivers in patient care settings. This is due to expense, the daunting requirement for

advanced technology, expertise required for interpretation of results, and the lack of assay vali-

dation requiring large datasets of normal and abnormal specimens. In fact, the complexity of

both acute and chronic genitourinary tract pathologies makes large dataset sampling and vali-

dation with technology-intensive methods (like mass spectrometry and high-performance liq-

uid chromatography) unlikely and cost-prohibitive.

As an alternative approach to mass spectroscopy-based urine metabolomics, we invented

and extensively validated Rametrix1 to analyze urine [15, 28, 29]. Raman spectroscopy is a

mature, well-studied, and powerful technology that has been applied to analysis of the chemi-

cal composition of a wide variety of solids and liquids, including biological specimens [30–33].

Irradiation of molecular mixtures (like urine), with wavelength-specific laser energy, produces

weak vibrational energy (Raman scatter radiation) from deformation/relaxation of the many

chemical bonds in hundreds of distinct molecules in specimens. Different molecular constitu-

ents are represented by Raman ‘bands’ (i.e., signal intensity peaks) and these bands/peaks are

indicative of chemical bond vibrations [34]. These vibrations may be present in several mole-

cules with similar chemical bonds in a sample, meaning it can be difficult to assign individual

Raman bands to specific molecules, unless they are present in abundance. This is the case for

urea in urine, for example, where the C-N bond stretch at 1,002 cm-1 is dominant and can be

associated with urea concentration. We have also identified the bands/peaks of creatinine,

heme, amino acids, albumin, collagen, and phospholipids in urine. A few of these and other

broad molecular assignments are shown in Raman spectra of urine from healthy volunteers

[15], CKD 4–5 patients [16], and Surine™ urinalysis analytical control solution (Dyna-Tek

Industries, Lenexa, KS) in Fig 1.

Because it is difficult to relate individual Raman bands to specific molecules, a chemometric

approach is required to analyze Raman spectra of highly complex heterogenous samples [28,

35–39]. The chemometric approach is unlike chromatographic and mass spectrometry

approaches that resolve single molecules. The chemometric approach treats an entire Raman

spectrum as a ‘fingerprint’ and then associates it with a condition (i.e., ‘healthy’, ‘chronic kid-

ney disease,’ ‘COVID-19 infection’, etc.) using statistical models and artificial intelligence.

Building an accurate model to predict the condition of an unknown sample requires a large

dataset of pre-analyzed Raman spectra. This can be seen, for example, in Fig 1. Here, represen-

tative urine spectra are shown for healthy volunteers and patients with diagnosed disease. Che-

mometric models determine whether an “unknown” patient sample more closely resembles
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the healthy urine spectrum or one of a diseased state, without knowing the identities of all mol-

ecules in each sample.

Rametrix1 computations are performed using the Rametrix1 Toolbox for MATLAB,

which is available to academic researchers through GitHub [28, 29]. The Rametrix1

Toolbox offers two approaches to data analysis (also shown in Fig 1), (i) qualitative classifica-

tion, and (ii) quantitative analysis. For classification (e.g., “yes/no” to the presence of disease)

the Rametrix1 Toolbox offers principal component analysis (PCA) followed by discriminant

analysis of principal components (DAPC) [28, 29, 32]. Other deep learning and artificial neu-

ral network options are available, and other classifier models used with Raman spectra were

surveyed recently [32]. Partial least-squares regression (PLSR) for quantitative analyses, and

methods to identify quantifiable biomarkers from Raman spectra have been produced recently

[17]. The Rametrix1 Toolbox also includes ISREA [40, 41], which enables us to “exclude”

non-diagnostic features in samples/spectra, such as the presence of blood/breakdown prod-

ucts, if such exclusion is warranted and logical [17, 32]. Finally, the Rametrix1 Toolbox offers

a graphical interface, spectral viewing pane, and predictive model cross-validation through

leave-one-out analysis [29].

Analysis of urine by Rametrix1 is inexpensive (uses off-the-shelf Raman spectrometers and

costs a few dollars a sample for consumables and analysis), rapid (typically less than 30 minutes

to process and interpret a sample), requires no urine sample preparation or chemical manipu-

lation, and is non-invasive (voided samples are analyzed).

These characteristics, and ease-of-use, suggested to us that this Raman spectroscopy-based

technology might be useful in determining if a COVID-19 ‘molecular fingerprint’ was present

Fig 1. Schematic of qualitative and quantitative chemometric analyses of urine spectra using the Rametrix1 Toolbox.

https://doi.org/10.1371/journal.pone.0270914.g001
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in the urine of diseased patients. If so, this fingerprint could be useful in disease detection and

patient management.

Methods

Patients and controls

Informed consent. The collection and analysis of all de-identified urine specimens

reported in this study and Raman spectra from previously reported reference studies were per-

formed in accordance with the principles of the Declaration of Helsinki. Informed consent for

the collection of urine specimens was obtained from healthy individuals (no evidence of

COVID-19 disease) and RT-PCR-positive COVID-19 patients. Following the description of

the proposed study by study personnel to prospective participants, patients who provided ver-

bal consent for the study were provided with specimen cups, urine collected, and the specimen

was encoded by study personnel. Informed consent for participation was recorded in patient

medical records securely retained by study personnel (JT). This study, and previously reported

studies cited in this document, were approved by the Virginia Tech Institutional Review Board

(VT IRB #s 15–703, 20–924, 21–569) and Virginia Commonwealth University Institutional

Review Board (reference bladder cancer study) (VCU IRB # HM20006879).

Study subjects: COVID-19 patients. Forty-six (46) patients, with clinical signs of

COVID-19 disease, RT-PCR confirmation of nasopharyngeal infection and/or household/con-

gregate and temporal exposure to RT-PCR confirmed patients, were seen by a primary care

physician for disease/symptom management. All patients were symptomatic, but ambulatory,

at the time of evaluation. The patient population consisted of 32 female and 14 male patients.

The age range of female patients was 18–68 years (average age 47.84 years/old) and of male

patients was 18–62 years (average age 47.85 years/old). As would be expected, the clinical pre-

sentation of patients was highly variable, as was the duration and severity of clinical symptoms.

Thirty out of 46 patients (30/46) were seen for evaluation (and specimen collection) within the

first 14 days of clinical disease. Twelve of 46 patients (12/46) had clinical disease present for

30–300 days, and 10 of 46 patients (10/46) had clinical disease present for 60–300 days. Based

on physician evaluation and self-assessment, 25/46 patients presented with ‘mild, symptom-

atic’ disease, while 14/46 patients presented with ‘moderate, symptomatic’ disease. Seven of 46

patients (7/46) were classified ‘severe, symptomatic’ at the time of presentation and specimen

collection.

Several patients had pursued multiple avenues of diagnosis and variable courses and types

of therapies (including antibiotics) prior to evaluation.

Clinical pathology evaluation (serum chemistry) was performed on a subset of 20/33

patients. Seven of 20 patients had mildly elevated serum creatinine values (>0.9 mg/dl; range

0.9–1.34 mg/dl) and 6/7 of these patients also had eGFR<90 mL/min/1.73m2 (range 59–84

mL/min/1.73m2).

Controls: Healthy volunteers (pre-COVID-19). A full analysis of the healthy human vol-

unteer urine dataset has been published [15]. This dataset contains 235 urine specimens col-

lected from 39 females and 9 males, and all were collected prior to December of 2018. All

volunteers were healthy (free of infectious or degenerative disease) at the time of collection

and had no history or evidence of renal disease. The population ranged in age from 18 to 70

years, and 87.5% were between 19–22 years of age (median of 21 years). A total of 185 urine

spectra were selected randomly from this dataset and used in this study.

Controls: Healthy volunteers (fully vaccinated against COVID-19). For this study, 19

additional urine specimens were collected from healthy volunteers who had been fully
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vaccinated against COVID-19 and who had no history or evidence of either renal disease or

COVID-19 disease.

Controls: End-stage renal disease (ESRD) patients (pre-COVID-19). The ESRD patient

urine dataset has also been published [16]. It contains 362 urine specimens from 96 patients

receiving treatment for ESRD with peritoneal dialysis therapy. The age range was 24 to 90

years, with a mean of 60 and median of 63.5 years. Twenty (20) spectra were selected randomly

from this dataset and used in this study.

Controls: Bladder cancer (BCa) patients (pre-COVID-19). We have also published

urine spectra from patients with active or remissive BCa [18]. The dataset contains 56 urine

specimens (one per patient) from patients between 31–91 years old (mean and median of 62

years) were collected. The patients ranged in age from 31–91 years old. The mean and median

age of 62 years. From this dataset, we selected 17 specimens from patients with active BCa at

the time of collection for this study.

Specimen collection and storage. Voided, mid-stream urine specimens were collected,

frozen immediately at -15˚C, and stored at -35˚C until analysis. We have demonstrated the

suitability of this procedure for preserving samples [18].

Raman methodology and measurements. Urine specimens were analyzed at room tem-

perature in bulk liquid form using 2 mL screw thread flat bottom borosilicate glass vials (Fisher

Scientific). A Wasatch Photonics 785 nm dispersive Raman spectrometer (Wasatch Photonics,

Morrisville, NC) was used with a Rametrix1 AutoScanner (DialySensors, Inc., Blacksburg,

VA) to automate sample scanning. The following settings were used: 25˚C, 785 nm laser, 30 s

excitation time, 30 mW laser power, 0.2 mm laser spot size, 200–2000 cm-1 range, and spectral

resolution of 8 cm-1 (manufacturer default). Ten scans were obtained per vial. ENLIGHTEN™
software (Wasatch Photonics) was used for spectrometer operation, and molecular contribu-

tions investigated with a published database [42]. In all cases, Raman intensity and wavenum-

ber calibrations were performed during each operation of the Raman spectrometer using

Surine™ urine analytical control (see below) and published chemometric protocols.

Analytical standards. Surine™ Urine Negative Control (Dyna-Tek Industries, Lenexa,

KS) was used as a control in this study.

Computational methodology. Previously published computational methods were used

[19, 28, 29, 42] with the Rametrix1 Toolbox (LITE v1.1 and PRO v1.0) with added capabilities

for ISREA baselining [40, 41]. Calculations were performed in MATLAB R2018A (Mathworks;

Natick, MA). Raman spectra were truncated to 600–1800 cm-1, baseline corrected with ISREA,

averaged over the 10 scans for each urine specimen, and vector normalized. ISREA was applied

using nodes (or ‘knots’) at wavenumbers of 400, 950, 1100,1500, and 1800 cm-1. In specified

cases, the placement of nodes was also allowed to vary, as described previously [19], to exclude

specific Raman shift regions of spectra selectively. Spectra were analyzed by principal compo-

nent analysis (PCA) and discriminant analysis of principal components (DAPC) in the Rame-

trix1 LITE Toolbox, and models were cross-validated with leave-one-out analysis with

Rametrix1 PRO. These methods have been implemented and described previously [19, 28, 32,

35–39]. This procedure allowed calculation of overall prediction accuracy, sensitivity, specific-

ity, positive-predictive value (PPV), and negative-predictive value (NPV) for detecting

COVID-19 in human urine. These metrics have also been defined in previous publications,

and here, the RT-PCR nasopharyngeal swab test and/or proximate/congregate/temporal expo-

sure to COVID-19 positive patients is treated as the “Gold-Standard” test when comparing to

the Rametrix1 urine screen.

Statistical comparisons. Of spectra were performed through the calculation of total spec-

tral distance (TSD), as has been demonstrated [15, 16, 18, 19, 29, 32]. In calculation of TSD,

the difference between each urine spectrum and that of Surine™ was calculated at each
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wavenumber and summed. One-Way Analysis-of-Variance (ANOVA) and pairwise compari-

sons using Tukey’s honestly significant difference (HSD) procedure were used to determine if

TSD values of COVID-19 patient urine were different from those of healthy volunteers and

those with other diseases.

Results

Raman dataset

Urine Raman spectra from the patient dataset shown in Table 1 were used in this study. Spec-

tra obtained from patients with active COVID-19 are a new contribution in this study, along

with spectra obtained from healthy volunteers vaccinated for COVID-19 but with no known

history or exposure to COVID-19. Other Raman scans for healthy human volunteers (col-

lected and analyzed pre-2019; i.e., before COVID-19).

Spectral processing

All spectra were truncated between 600–1,800 cm-1, baselined using ISREA [40, 41], vector

normalized, and averaged for each urine specimen. For the ISREA implementation, nodes

were applied at 400, 950, 1100, 1500, and 1800 cm-1. The concept of ISREA node placement

and optimization has also been introduced recently [32]. Averaged spectra from all classes

listed in Table 1 are shown in Fig 2. The most notable observable difference from the spectra

of the COVID-19 and Healthy (pre-2019) classes was the height of the urea representative

band (1,002 cm-1). Inspection also revealed other minor differences (e.g., 970 cm-1; 1100–1200

cm-1), prompting additional differences to be investigated by chemometric methods. To date,

patients with ESRD have the most visually different urine Raman spectra from the Healthy

class (Fig 2). However, it is noted that the ESRD class is also identified by a reduced urea

Raman band intensity.

Statistical significance

Total Principal Component Distance (TPD) [18, 28, 29] calculations were performed to deter-

mine if urine Raman spectra of the “COVID-19” class were different from all other classes

(combined to form a “non-COVID-19” class). In short, TPD uses ISREA baselined and

Table 1. Patient dataset analyzed in this study.

Number of Urine

Specimens

Description Classification Reference

185 Healthy human volunteers (pre-2019) “Healthy” Senger et al. 2019

20 Peritoneal dialysis patients with CKD 4–5 “ESRD” Senger et al. 2020

17 Patients with active bladder cancer “BCa” Huttanus et al. 2020

6 Surine™ (lot from 2016) “Surine” Huttanus et al. 2020 and This

study

5 Surine™ (lot from 2021) “Surine” This study

19 Healthy human COVID-19 vaccinated volunteers (2021) “Healthy” This study

46 Patients with active COVID-19 “COVID-19” This study

25 Patients with ‘mild’ severity COVID-19 symptoms “COVID-19 (Mild)” This study

14 Patients with ‘moderate’ severity COVID-19 symptoms “COVID-19 (Moderate)” This study

7 Patients with ‘severe’ COVID-19 symptoms “COVID-19 (Severe)” This study

12 Patients with COVID-19 clinical disease lasting longer than 30

days

“COVID-19 (Long COVID

19)”

This study

https://doi.org/10.1371/journal.pone.0270914.t001
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processed spectra. The first five principal components (PCs) of PCA are used. For each sample,

the distance (across all five PCs) is calculated between that sample and Surine™ (using a simple

distance formula). This provides a distance calculation for every sample in the dataset. Then,

ANOVA and pairwise comparisons are used to determine if statistically significant distances

exist between classes of spectra. TPD was applied to the COVID-19 class and all other classes

grouped as non-COVID-19. Through this method, the COVID-19 class and non-COVID-19

grouped class were found statistically significant (p< 0.001). Pairwise comparisons were

applied, and the COVID-19 class was found statistically different (p< 0.001) against all other

groups in Table 1. From experience, this indicates that an effective predictive model may be

able to be constructed from PCA followed by DAPC. Of other pairwise comparisons, it was

found that the Healthy and Surine™ groups were not statistically different from one another

(p = 0.79) according to TPD calculations.

Predictive urine screen for COVID-19

With the COVID-19 class showing statistical significance from all other classes, predictive

models were built using PCA and DAPC. The model inputs were truncated, baselined, and

normalized urine spectra, and the ISREA nodes of 400, 950, 1100,1500, and 1800 cm-1 were

used in this initial model-building. Spectra were processed further by PCA to produce princi-

pal components (PCs). A specified number of PCs were then fed into DAPC to return a “yes/

no” for the presence of COVID-19. Predictive models differed by the number of PCs fed into

DAPC, and these were evaluated for performance by leave-one-out cross-validation. Results

are shown in Fig 3A for a model designed to separate all classes in Table 1 using 99% of the

dataset variance (available in the top 20 PCs). This plot was effective in showing cluster separa-

tion, particularly that the COVID-19 cluster separated from the Healthy cluster more effec-

tively than the BCa group did. The separation of COVID-19 and the non-COVID-19 groups

for this model is shown in Fig 3B. When cross-validated with leave-one-out, an overall predic-

tion accuracy of 97.6% for our dataset. The sensitivity of this model for detecting COVID-19

Fig 2. Averages of ISREA baselined and vector normalized spectra for classes specified in Table 1.

https://doi.org/10.1371/journal.pone.0270914.g002
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was 90.9%. The specificity was 98.8%, the positive predictive value (PPV) was 93.0%, and the

negative predictive value (NPV) was 95.8%. Finally, the performance of several DAPC models

is given in Fig 3C and illustrate the influence of model architecture on performance. It is noted

that at least 6 PCs were required to obtain overall prediction accuracy, sensitivity, specificity,

positive predictive value, and negative predictive value above 50%.

Next, we varied the location of the ISREA nodes with the objective of reducing the number

of PCs required in DAPC. Several iterations were tried, and node positions of 400, 439, 446,

605, 1045, 1163, 1247, 1443, 1739, 1768, and 1775 cm-1 yielded similar results to those reported

above; however, only 4 PCs of the dataset were required (as opposed to 20). A comparison of

the two node sets for detecting the presence of COVID-19 in urine with Rametrix1 analysis is

shown in Table 2.

Molecular contributions

The separation of COVID-19 and non-COVID-19 cluster separation in Fig 3B was investi-

gated further through PC and canonical (DAPC) loadings. Significant Raman shifts (defined

as above 0.2% total contribution) are given in Table 3. The molecular assignments were

obtained by a published database [43]. It was observed the occurrences of lipids/cholesterol,

Fig 3. DAPC models demonstrating cluster separation of COVID-19 Raman urine spectra from those of other groups (A, B), and DAPC

predictive model performance (C).

https://doi.org/10.1371/journal.pone.0270914.g003

Table 2. Detection of COVID-19 in urine by Rametrix1 given two different ISREA node sets.

ISREA Nodes PCs Overall Accuracy Sensitivity Specificity PPV NPV

400, 950, 1100,1500, and 1800 cm-1 20 97.6% 90.9% 98.8% 93.0% 95.8%

400, 439, 446, 605, 1045, 1163, 1247, 1443, 1739, 1768, and 1775 cm-1 4 97.6% 93.2% 98.4% 91.1% 98.8%

https://doi.org/10.1371/journal.pone.0270914.t002
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Table 3. Molecular assignments for Raman shifts leading to cluster separations in Fig 3.

Raman Shift (cm-1) Present in PCA, DAPC, or Both Molecular Assignment [43]

425 Both N/A

445 Both N-C-S stretch

485 Both Glycogen

518 DAPC Phosphatidylinositol

614 DAPC Cholesterol ester

621 Both C-C twisting of phenylalanine

627 DAPC N/A

682 DAPC N/A

688 PCA N/A

702 DAPC Cholesterol ester

719 PCA Lipids

776 PCA Phosphatidyl inositol

782 PCA DNA

810 PCA Phosphodiester

817 PCA Collagen

830 PCA Phosphate stretching, Tyrosine

847 PCA Monosaccharides

860 DAPC Phosphate group

880 Both Tryptophan

893 PCA C-C backbone

900 DAPC N/A

906 DAPC Tyrosine

913 DAPC Glucose

955 PCA Carotenoids

980 Both Beta-sheet proteins

992 DAPC Red blood cell, phenylalanine, NADH

1002 Both Urea

1006 Both Carotenoids (absent in normal tissue)

1008 DAPC Phenylalanine

1013 DAPC N/A

1030 DAPC Phenylalanine of collagen

1049 DAPC Glycogen

1058 PCA Lipids

1073 PCA Fatty acids

1077 DAPC Lipids, phospholipids, phosphate

1080 DAPC Phospholipids, phosphate, collagen, tryptophan

1104 PCA Phenylalanine

1107 PCA N/A

1126 Both Protein, disaccharides, lipids

1185 PCA Phosphate

1240 DAPC RNA, phosphate, collagen

1327 Both Nucleic acids

1396 Both Beta-carotene

1491 PCA Amino radical cations

1607 Both Tyrosine and phenylalanine

1630 PCA N/A

1641 DAPC N/A

https://doi.org/10.1371/journal.pone.0270914.t003
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collagen, and phosphates occurred more regularly than our similar analyses of CKD and BCa

[16, 18].

Severity of clinical symptoms

The separation of COVID-19 urine Raman scans by severity of clinical symptoms from those

of healthy volunteers is shown in Fig 4A. When clustered by DAPC, the COVID-19 data

largely separated by severity, with mild symptoms clustering closer to healthy scans, on aver-

age. However, we note one urine sample from a COVID-19 patient with severe symptoms

clustered with the healthy group. This is unexplained by our analysis. With separation by

severity, the presence of COVID-19 was detected with 93.5% overall accuracy (87.5% sensitiv-

ity, 100% specificity, 100% PPV, and 88.0% NPV). When inspecting among COVID-19 sam-

ples to determine severity, 60–66% overall accuracy was achieved for the three levels (mild,

moderate, and severe). Full results are given in Table 4. We note that given the three levels of

severity, the random chance of correct prediction is 33%.

Fig 4. DAPC models demonstrating cluster separation of COVID-19 Raman urine spectra by clinical severity (A) and duration of symptoms

(Long-Haul) (B).

https://doi.org/10.1371/journal.pone.0270914.g004

Table 4. Prediction of COVID-19 clinical severity by Rametrix1 analysis of urine.

Clinical Severity� Accuracy Sensitivity Specificity PPV NPV

Mild 59.1% 79.2% 35% 59.4% 58.3%

Moderate 65.9% 61.5% 67.7% 44.4% 80.8%

Severe 65.9% 57.1% 67.6% 25% 89.3%

� Random chance of correct prediction is 33%.

https://doi.org/10.1371/journal.pone.0270914.t004
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Identification of long COVID19

Of the patients treated for COVID-19, 26% (12/46) showed symptoms longer than 30 days. Of

this group, over 83% showed symptoms for longer than 60 days (up to 300 days). Thus, this

group of patients was defined as ‘COVID-19 (Long COVID19)’. A molecular fingerprint was

sought to determine if urine metabolomic differences existed between the Long COVID19

group and those whose symptoms resolved in less than 30 days (regardless of clinical severity).

Using the initial ISREA node set (400, 950, 1100,1500, and 1800 cm-1), no significance was

found, where prediction accuracy, sensitivity, specificity, PPV, and NPV all exceeded 50% (the

random chance of correct prediction). To find a signal, we shortened the truncation range to

600–1800 cm-1 and searched for additional ISREA nodes. Ultimately, a node set was located

that led to 70% sensitivity, with better than 98% specificity, for detecting Long-Haul COVID-

19. The results are shown in Fig 4B, and a comparison of the ISREA node sets with prediction

metrics is given in Table 5. We note that the plot in Fig 4B was constructed with 12 PCs

(instead of 4) to better show the separation of Long-Haul samples.

Discussion

We believe this is the first study demonstrating that SARS-CoV-2 infection changes the chemi-

cal composition of urine. These changes–complex, multimolecular ‘fingerprints’—can be

detected using Raman spectroscopic examination and computational analysis. Sample analysis

is low-cost (dollars per sample) and rapid (results<30 minutes). This analytical method does

not detect virus or viral components. This method also does not identify a single “biomarker”

of COVID-19 disease, but rather a “biomarker pattern” composed of molecular clusters associ-

ated with disease. These biomarker patterns reflect systemic inflammatory, immunologic, and

metabolic reactions to infection. We hypothesize that viral infection of the kidney (if substanti-

ated) may affect renal form/function and urine composition. Our results support information

in many of the studies reviewed/critiqued by Hassler, et. al. [14].

This study would not have been possible without access to a large database of urine Raman

spectra (n = 235) from healthy volunteers collected prior to SARS-CoV-2/COVID-19 and

other large databases of urine Raman spectra (pre-COVID-19 CKD and bladder cancer

patients) These provided the critical context for interpretation of spectra from COVID-19

patients. Without access to large, pre-COVID-19 spectral databases, we could not have been

sure that what was observed in our study was related to SARS-CoV-2 infection. Other investi-

gators may find that a lack of pre-COVID-19 clinical samples (urine, serum, from healthy and

diseased individuals, for example) is a challenge as they search for COVID-19-related

biomarkers.

Our understanding of the myriad effects of COVID-19 disease is in its infancy. The tro-

pisms of the pathogen, clinical course of infection, the ongoing evolution of variants under

immunologic pressure, and individual responses to infection have only been intensively stud-

ied for slightly more than 23 months. Largely unknown are long-term effects of infection. We

do not know if acute infection evolves to chronic disease and organ dysfunction. This may be

Table 5. Detection of long COVID-19 in urine by Rametrix1 given two different ISREA node sets.

ISREA Nodes PCs Overall Accuracy� Sensitivity Specificity PPV NPV

400, 950, 1100,1500, and 1800 cm-1 12 95.1% 25.0% 98.7% 50.0% 96.2%

600, 1074, 1153, 1230, 1313, 1416, 1507, 1800 cm-1 4 97.6% 70.0% 98.7% 70.0% 98.7%

� Random chance of correct prediction is 50%.

https://doi.org/10.1371/journal.pone.0270914.t005
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especially important for COVID-19 patients who had antecedent renal disease. By analogy, Yu

and Bonventre [44] noted the complex interplay between diabetic kidney disease (DKD), dia-

betes mellitus (DM), and AKI. They noted that DKD/DM patients were more likely to develop

AKI and that the interactions of these disease process affected development of CKD and

ESRD. One might expect that patients with COVID-19-associated AKI might be at increased

risk for progression of chronic renal disease.

We acknowledge limitations of this study. The small number of patients studied (n = 46)

limits computational comparisons and correlations of disease severity and duration. These

comparisons will require much more sampling and data analysis. None of the patients studied

had AKI, although standard laboratory metrics (serum creatinine, eGFR) for patients indicated

a mild degree of renal dysfunction. We did not follow patients with serial samples and there-

fore it is not possible to determine if there is a progression of renal dysfunction or a return to

pre-COVID renal metrics. These limitations will be addressed in ongoing and planned studies.

What are the next steps? First, we need to conduct a larger study of COVID-19 patients to

determine 1) are the results of this preliminary study validated with further sampling, 2) how

does the molecular fingerprint vary among individuals, 3) does the molecular fingerprint differ

in individuals with different disease severities and durations, 4) how long does the molecular

fingerprint persist following acute infection, 5) can the molecular fingerprint specifically indi-

cate renal infection, and 6) can the molecular fingerprint predict development of AKI? Second,

the important molecular clusters contributing to the molecular fingerprint will need to be

studied with confirmatory metabolomic analysis. With this additional information, we may

have a validated, non-invasive, inexpensive method to monitor systemic manifestations of dis-

ease. This could be used to detect infections potentially missed with current PCR/antigen-

based technologies and to monitor the efficacy of therapy and/or detect possible disease pro-

gression. We expect it will be a very useful tool for monitoring direct/indirect renal effects of

COVID-19 disease. This technology, once more fully validated, could easily be used for non-

invasive, repetitive monitoring of individuals who choose not to be vaccinated, to detect

‘break-through’ infections in vaccinated individuals, and to differentiate COVID-19 disease

from seasonal respiratory infections (influenza), and may be especially useful in the detection

and management of Long COVID19.

Conclusions

Our preliminary data shows that SARS-CoV-2 infection and COVID-19 disease alters the

molecular composition of urine, as determined by Raman spectroscopy and computational

analysis. We believe our findings could be applied to disease detection, early screening for seri-

ous renal complications such as AKI, and overall management of COVID-19.
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