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A b s t r a c t .  Normal and genetically engineered skeletal 
muscle cells (myoblasts) show promise as drug deliv- 
ery vehicles and as therapeutic agents for treating 
muscle degeneration in muscular dystrophies. A limi- 
tation to the widespread use of myoblast transplanta- 
tion is the immune response of the host to the trans- 
planted cells. Allogeneic myoblasts are rapidly rejected 
unless immunosuppressants are administered. How- 
ever, continuous immunosuppression is associated with 
significant toxic side effects. Here we test whether im- 
munosuppressive treatment, administered only tran- 
siently after allogeneic myoblast transplantation, al- 
lows the long-term survival of the transplanted cells in 
mice. Two immunosuppressive treatments with differ- 
ent modes of action were used: (a) cyclosporine A 
(CSA); and (b) monoclonal antibodies to intracellular 
adhesion molecule-1 and leukocyte function-associated 
molecule-1. The use of myoblasts genetically en- 
gineered to express fl-galactosidase allowed quantita- 

tion of the survival of allogeneic myoblasts at different 
times after cessation of the immunosuppressive treat- 
ments. Without host immunosuppression, allogeneic 
myoblasts were rejected from all host strains tested, 
although the relative time course differed as expected 
for low and high responder strains. The aUogeneic 
myoblasts initially fused with host myofibers, but these 
hybrid cells were later destroyed by the massive im- 
munological response of the host. However, transient 
immunosuppressive treatment prevented the hybrid 
myofiber destruction and led to their long-term reten- 
tion. Even four months after the cessation of treat- 
ment, the hybrid myofibers persisted and no inflam- 
matory infiltrate was present in the tissue. Such 
long-term survival indicates that transient immunosup- 
pression may greatly increase the utility of myoblast 
transplantation as a therapeutic approach to the treat- 
ment of muscle and nonmuscle disease. 

M 
YOBLASTS arg among the leading candidates for 
cell-mediated gene therapy (Blau et al., 1993; Par- 
tridge, 1994). Myoblasts are proliferating precur- 

sor cells found in skeletal muscle tissue which upon differen- 
tiation fuse with one another to form multinucleated muscle 
fibers. Transplanted myoblasts fuse with endogenous muscle 
fibers and are maintained in a stable physiological environ- 
ment for extended periods in vivo (Hughes and Blau, 1992; 
Rando and Blau, 1994). Myoblasts have been tested as drug 
delivery vehicles in animals (Barr and Leiden, 1991; Dha- 
wan et al., 1991; Dai et al., 1992; Jiao et al., 1993) and as 
therapeutic agents in the treatment of muscle degeneration 
in human muscular dystrophies (Gussoni et al., 1992; Law 
et al., 1992; Karpati et al., 1993; Tremblay et al., 1993b). 

A limitation to the widespread use of myoblast transplan- 
tation is the immune response of the host. Myoblasts trans- 
planted across histocompatibility barriers are rapidly re- 
jected in immunocompetent hosts (Watt, 1990; Labrecque et 
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al., 1992; Huard et al., 1994; Rando and Blau, 1994). Cur- 
rent drugs used clinically to prevent rejection of foreign tis- 
sue transplants must be taken lifelong and have toxic side 
effects. The discovery of alternate strategies of host im- 
munosuppression which are transient but lead to the long- 
term maintenance of allogeneic myoblasts would facilitate 
the use of myoblasts for gene therapy purposes. 

Transient immune suppression around the time of trans- 
plantation has led to long-term survival of allografts such as 
organs, skin and neural cells. Transient treatments have in- 
cluded short term administration of immunosuppressant 
drugs such as cyclosporine A (Green and Allison, 1978; 
Calne et al., 1979; Green et al., 1979; Nagao et al., 1982; 
White and Lira, 1988; Auchincloss and Winn, 1989; Ortega 
et al., 1992), which block the production ofcytokines neces- 
sary for T cell activation (Borel, 1990) or monoclonal anti- 
bodies against cell surface molecules such as CD2, CD3, 
CD4, CD8, intracellular adhesion molecule-1 (ICAM-1), 1 
1. Abbreviations used in this paper: [3-gal, ~-galactosidase; CSA, cyclospo- 
rine A; H&E, hematoxylin and eosin; ICAM-1, intracellular adhesion mol- 
ecule; LFA-1, leukocyte function-associated molecule-l; MHC, major 
histocompatibility complex; X-gal, 5-bromo-4-chloro-3-indolyl-/~-D-galac- 
topyranoside. 
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leukocyte function-associated molecule-1 (LFA-1), and LFA-3 
(Martz, 1987; Waldmarm, 1989; Waldmann and Cobbold, 
1993), which are involved in immune recognition and func- 
tion (Roitt, 1991). Treatment with monoclonal antibodies 
can induce long-term unresponsiveness or tolerance in 
specific immune cells which interact with the target tissue 
early after transplantation. This is termed antigen-specific 
tolerance. 

Transient immunosuppression may be efficacious for long- 
term survival of transplanted myoblasts. The expression of 
class I and II major histocompatibility complex (MHC) mol- 
ecules, which are critically involved in immune rejection, is 
regulated in muscle differentiation. MHC molecules are nor- 
mally expressed by myoblasts (Honda and Rostami, 1989; 
Cifuentes-Diaz et al., 1992; Hardiman et al., 1993a), but 
upon fusion and differentiation, muscle cells generally do 
not express MHC molecules (Ponder et al., 1983; Karpati 
et al., 1988b; Honda and Rostami, 1989; Schubert, 1991). 
Only in diseased and regenerating muscle biopsies are MHC 
molecules expressed by myofibers (Rowe et al., 1983; Ap- 
pleyard et al., 1985; Karpati et al., 1988b; Emslie-Smith et 
al., 1989; McDouall et al., 1989). Within five days of trans- 
plantation, syngeneic and allogeneic myoblasts fuse with en- 
dogenous fibers of the host (Rando and Blau, 1994). Upon 
incorporation into endogenous myofibers, myoblast nuclei 
are subject to trans-activating muscle regulatory factors 
within the differentiated muscle cell (Blau et al., 1983, 1985) 
and may cease expression of MHC molecules. Thus, we 
postulated that if the immune system could be transiently 
suppressed during the period of cell fusion, the foreign myo- 
blasts that fused might be hidden from the immune system 
in the "immunologically silent" myofiber. 

In this study we test the hypothesis that transient immune 
suppression is efficacious for the long-term retention of al- 
logeneic myoblasts in hybrid myofibers. The use of myoblasts 
genetically engineered to express/3-galactosidase (/3-gal) al- 
lowed histological assessment of the fate of the transplanted 
myoblasts after transplantation. Without immunosuppres- 
sion, allogeneic myoblasts were rejected from all host strains 
tested, although the relative time course differed indicating 
the existence of low and high responder strains. Rejection of 
allogeneic myoblasts was successfully overcome with tran- 
sient administration of two immunosuppressive treatments 
with different modes of action: (a) cyclosporine A and (b) 
monoclonal antibodies to ICAM-1 and LFA-1. Hybrid 
myofibers were retained for more than four months after the 
cessation of immune suppressive treatment. These findings 
indicate that transient immunosuppressive treatment is effec- 
tive for long-term retention of allogeneic myoblasts and 
should have practical applications to myoblast-mediated 
gene therapy. 

Materials and Methods 

Animals 

Adult male mice (2.5-5-wk-old) of the BALB/c, C57BL/6, and C3H/Km 
strains were purchased either from the Department of Radiology at Stanford 
University or from Simonsen Laboratories, Inc. (Gilroy, CA) and housed 
in viral- and pathogen-free conditions. The haplotype of the MHC genes 
in the H-2 complex of these strains is H-2 d (BALB/c), H-2 b (C57BL/6), 
and H-2 k (C3H/Km). Donor and recipient pairs were fully mismatched at 
both major and minor histocompatibility loci. All animals were handled in 

accordance with guidelines of the Administrative Panel on Laboratory Ani- 
mal Care of Stanford University. 

Cell Culture 
Primary muscle cultures were derived from neonatal mice (2-5-d-old) of 
all three strains indicated above and myoblasts were purified to >99%, as 
previously described (Rando and Blau, 1994). Cells were grown in Ham's 
F-10 media (GIBCO BRL, Gaithersburg, MD) supplemented with 20% fe- 
tal bovine serum (Hyclone Laboratories, Inc., Logan, UT), 2.5 ng/ml basic 
fibroblast growth factor (Promega Corp., Madison, WI), penicillin G (200 
units/ml), and streptomycin (200/zg/ml) on collagen-coated dishes in a hu- 
midified 5% CO2 incubator at 37°C. Cultures were infected with the repli- 
cation defective retroviruses BAG (Price and Thurlow, 1988) or c~SCG 
(Dhawan et al., 1991) which express B-gal and enriched to >95% /3-gal 
positive either by selection with media containing G418 (for BAG-infected 
cells) or by flow cytometry as previously described (Rando and Blau, 1994). 
Donor myoblasts were 95-99% positive for/3-gai expression at the time of 
transplantation as measured by in vitro staining with 5-bromo-4-chloro- 
3-indolyl-/3-o-galactopyranoside (X-gal) (Sanes et al., 1986). 

Immunosuppression 
Cyclosporine A (CSA). CSA (Sandimmune IV; Sandoz, East Hanover, NJ) 
was administered by daily i.p. injections: 70 mg/kg BALB/c, 75 mg/kg 
C57BL/6, 55 mg/kg C3H/Km. The dose of CSA was empirically deter- 
mined as the highest concentration which resulted in no animal mortality 
in the first week when administered daily. A stock solution of 10 mg/ml in 
sterile PBS was prepared fresh weekly and stored at 4"C. Animals were 
treated with CSA for 2 wk, 6 wk, or continuously as indicated in particular 
experiments. CSA-treated animals were maintained on antibiotic water con- 
taining 1.1 mg/ml neomycin (Sigma Chem. Co., St. Louis, MO) and 850 
units/ml polymixin B sulfate (Pharm-Tek, Huntington, NY). 

Monoclonal Antibodies. Monoclonal antibodies against ICAM-I 
(YN1/I.74, rat IgG2a) (Prieto et ai., 1989) and LFA-1 (FD441.8, rat IgG2b) 
(Sarmiento et ai., 1982) were purified from hybridoma supernatants. The 
hybridomas were obtained from the American Type Culture Collection 
(Rockville, MD) and grown in serum-free HBI01 (Irvine Scientific, Irvine, 
CA) for 6-9 d. The media was concentrated by ultrafiltration using a 
YM100 membrane (Amicon, Beverly, MA) and the antibodies were purified 
using a protein G column (Mab Trap G; Pharmacia, Piscataway, NJ). The 
total protein concentration was determined (Bradford, 1976) and the activ- 
ity of different preparations was standardized using staining of single cell 
suspensions of the spleen from mice and analysis by flow cytometry. 
Animals were injected daily i.p. with a 0.2 ml mixture of the purified anti- 
bodies (140/~g each) in PBS for a total of 6 d starting on the date of myoblast 
transplantation. Peripheral blood ('~0.15 ml) obtained from the tall vein at 
10 and 28 d after transplantation was diluted 1:6 in PBS containing heparin 
and the lymphocytes recovered using Lympholyt¢ M (Accurate Chemicals, 
Westhury, NY). In order to stain and quantitate the cells bearing the 
alCAM-1 and t~LFA-I rat antibodies used for treatment, peripheral blood 
lymphocytes were incubated with fluorescein-conjugated goat antibody to 
rat immunoglobulin (adsorbed with mouse immunogiobulin; Caltag, San 
Francisco, CA) for 30 rain at 4"C in staining buffer consisting of 2% heat- 
inactivated calf serum and 0.1% sodium azide in PBS. The cells were then 
washed two times and resuspended in staining buffer with 1 /zg/ml 
propidium iodide. Samples were analyzed on a FACSCan (Becton Dickin- 
son, Mountain View, CA) flow cytometer equipped with logarithmic am- 
plifiers. Dead cells were identified by their staining with propidium iodide 
and eliminated from the analysis. 

Cell Transplantation 
Cultured cells were trypsinized and washed several times in transplantation 
buffer which consisted of 0.5 % bovine serum albumin in FI0. The cells were 
resuspended in transplantation buffer at a density of 2 × 107 cellsdml and 
kept on ice. Animals were anesthetized with an i.p. injection of sodium pen- 
tobarbital (65-80 mg/kg depending on the age and strain of the mice). Two 
injections of the cell suspension of 5/~I each were made into each tibialis 
anterior muscle as previously described (Rando and Blau, 1994). In the ex- 
periments testing transient immunosuppressive treatment with monoclonal 
antibodies, one 5-/~I injection of the cell suspension was made into the 
lateral muscles of the hind limb through a shaved portion of the intact skin 
without microscopic visualization. 

The Journal of Cell Biology, Volume 127, 1994 1924 



Fate of Implanted Myoblasts 
Mice were sacrificed at different times after transplantation. The injected 
muscles were removed and prepared for histological analyses as previously 
described (Rando and Blau, 1994). Serial cross sections collected at 
400-500-#m intervals along the entire length of the muscle were analyzed 
for/~-gal expression by staining with X-gal or for histology by haematoxylin 
and eosin (H&E) staining. The number of/~-gal-positive muscle fibers in 
an individual leg was scored as the value obtained in the cross section with 
the greatest number of labeled fibers. For all groups (3-10 samples), the 
mean numbers of #-gal-labeled fibers + SEM were calculated. All analyses 
and photography was performed on a Zeiss Axiophot microscope. 

Results 

Fate of Allogeneic Myoblast Transplants without 
lmmunosuppression in Different Host Strains 
The immune response to purified antigens and organ trans- 
plants as well as the efficacy of immunosuppressive treat- 
ments can vary significantly among rodent strains (Butcher 
and Howard, 1982; Stewart et al., 1985; Sprent et al., 1986; 
Rosenberg et al., 1987; Ilano et al., 1989). As a control for 
subsequent studies of transient immunosuppression, the 
time course o f  allogeneic myoblast rejection in different 
strains of mice was first established. We have previously 
shown that/~-gal-labeled primary myoblasts are retained in 
hybrid myofibers for many months in syngeneic or im- 
munodeficient hosts (Rando and Blau, 1994). In contrast, al- 
logeneic myoblasts are rejected by 2-3 wk in the C3H host. 
To extend these observations to other mouse strains, pure 
cultures of myoblasts from different haplotype donors were 
labeled with replication-defective retroviruses expressing 
~-gal and transplanted into three different host strains. The 
retention or rejection of the transplanted cells was deter- 
mined by counting the number of/3-gal-labeled fibers in the 
hosts at different times after transplantation. As controls, the 
cells were also transplanted into the muscles of immuno- 
deficient mice. 

At two and four weeks after transplantation, the number 
of ~-gal-labeled fibers in cryostat sections from the tibialis 
anterior was determined for each donor-host combination. 
Differences were observed in the kinetics of rejection of 
allogeneic myoblasts in different donor-host combinations 
without any immunosuppressive treatment (Table I). Two 
weeks after transplantation in C57 and C3H hosts, only 2 % 
of the number of labeled fibers remained as compared to that 
obtained in immunodeficient hosts. In contrast, in BALB/c 
hosts transplanted with C3H or C57 myoblasts, 5 and 23 % 
of the control number of/3-gal-labeled fibers, respectively, 
were obtained at this time. However, analyses of BALB/c 
hosts 4 wk after transplantation revealed no ~-gal-labeled 
fibers. Histologically, the rejection process of all allogeneic 
myoblasts was similar. First, allogeneic myoblasts fused nor- 
mally with host myofibers by day 5 (Rando and Blau, 1994; 
Fig. 1, top). However, by 10 d, a prominent host mono- 
nuclear cell infiltrate was present (Fig. 1, middle left) which 
destroyed the hybrid muscle fibers leading to disruption of 
the normal architecture of the muscle and a decrease in the 
number of ~-gal-labeled fibers (Fig. 1, middle right). As in 
other situations in which muscle injury occurs, this region 
of muscle fully regenerated (Fig. 1, bottom left) but no 
/3-gal-labeled fibers were present (Fig. 1, bottom right). 
Thus, allogeneic myoblasts were rejected in all donor-host 

Table L Strain-specific Differences in the Rates of Rejection 
of Allogeneic Myoblasts 

Donor Host 

% of ~-gal-expressing fibers remaining 2 wk after 
transplantation 

C57 C3H BALB/c 

C57 NA 2 5- 1 23 5- 7 
C3H 2 5- 1 NA 5 5 - 2  
BALB/c 1 5- 0 2 5- 0 NA 

Without immunosuppresston, the majority of allogeneic myoblasts were re- 
jected in all donor-host combinations by 2 wk after transplantation except that 
in BALB/c hosts the rejection process was slower. No/~-gal--expressing fibers 
remained by 4 wk after transplantation in any of the allogeneic donor-host 
combinations. Data were normalized to the number of/~-gal-expressing fibers 
obtained when myoblasts were transplanted into control immunodeficient 
(nude) mice and are expressed as mean + SEM. The number (mean ± SEM) 
of B-gal-expressing fibers in nude mice for the different donor myoblasts was: 
C57 = 122 ± 11, C3H = 161 + 2, BALB/c = 158 ± 14. For each 
donor-host combination, 3--4 samples were analyzed at each time point. The 
MHC haplotypes are as follows: C57 = H-2 b, C3H = H-2 ~, BALB/c = 
H-2 ~. NA = not applicable, syngeneic transplant. 

combinations, although the relative time course differed 
somewhat. In all strains, the ensuing local destruction of host 
myofibers was followed by normal regeneration. These 
studies indicate, as in transplantation studies of other tissues, 
that "low" and "high" responder rodent strains exist (Butcher 
and Howard, 1982; Stewart et al., 1985; Sprent et al., 1986; 
Rosenberg et al., 1987; Ilano et al., 1989) that mount an im- 
mune response with different time courses. 

The Effect of Continuous CSA on Maintenance 
of Allogeneic Myoblasts 
CSA has been used to block organ allograft rejection in 
numerous experimental and clinical protocols. Similarly, in 
the current experiments daily treatment with CSA prevented 
the rejection of allogeneic myoblasts in all donor-host com- 
binations tested. Hybrid myofibers composed of allogeneic 
myoblasts fused with host myofibers, as evidenced by large 
~-gal-labeled fibers (Fig. 2, top) with normal histology (Fig. 
2, bottom), were maintained in CSA-treated animals for 
more than two months with no evidence of immune rejec- 
tion. To test the efficacy of CSA treatment, we compared the 
number of hybrid fibers formed from the transplantation of 
myoblasts into CSA-treated allogeneic hosts to the number 
formed from the transplantation of the same cells into im- 
munodeficient hosts. There was no significant difference 
(Fig. 3). Thus, CSA efficiently suppressed the immune re- 
sponse to allogeneic myoblasts. 

Others have reported that drugs used for immunosuppres- 
sive treatment may directly effect myoblast fusion in vitro 
(Hardiman et al., 1993b). To study the effect of CSA on myo- 
blasts in vivo independent of its immunosuppressive action, 
/~-gal-labeled myoblasts were transplanted into CSA treated 
and untreated syngeneic hosts. The number of B-gal-labeled 
fibers observed 2 wk after transplantation did not differ be- 
tween control and CSA treated animals (Fig. 4). Therefore, 
in contrast to in vitro results (Hardiman et al., 1993b) CSA 
even at maximally tolerated doses did not appear to inhibit 
myoblast fusion in vivo. 
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Figure 1. Allogeneic myoblasts am rejected without immunosuppressive treatment. /3-gal-labeled myoblasts were transplanted into al- 
logeneic mice and examined at different timepoints thereafter. Muscles were frozen and cryostat sections were prepared for analysis. Adja- 
cent cross sections were stained with H&E to demonstrate histology (left) and with X-gal to identify the location of the hybrid muscle 
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Figure 3. CSA-treated animals exhibit similar retention of hybrid 
myofibers as do immunodeficient animals. 13-gal-labeled C57 myo- 
blasts were transplanted into either immunodeficient scid (D) or 
C3H hosts. C3H hosts transplanted with these allogeneic myoblasts 
received either daily injections of CSA (~a) or were untreated (,,). 
Three and a half to four weeks after transplantation, the number 
of ~-gal-labeled fibers in each injected muscle was determined. 
The mean number of labeled fibers in the scid hosts was defined 
as 100% (79 + 8) and the mean numbers of fibers in CSA-treated 
and untreated C3H hosts were compared to this value. (error bars 
= +SEM; n = 7). 

125 

Figure 2. Continuous immunosuppressive treatment with CSA 
allows long-term retention of allogeneic myoblasts in hybrid 
myofibers. 13-gal-labeled myoblasts were transplanted into al- 
logeneic mice and the hosts treated with CSA daily. The hybrid 
myofibers formed (large diameter/3-gal-labeled fibers) were main- 
tained for more than two months (top). Complete suppression of 
the host immune response observed in untreated controls (Fig. 1) 
was revealed by standard H&E staining of the adjacent cross section 
(bottom). Bar, 60/~m. 
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Transient CSA Treatment: Prevention of  AUogeneic 
Myoblast Rejection 

To test the hypothesis that transient immunosuppression dur- 
ing the initial period of  rnyoblast transplantation, fusion, and 
maturation prevents the rejection of  allogeneic myoblasts, 
~-gal- labeled C57 myoblasts were transplanted into BALB/c 
or  C3H hosts and the animals received daily injections of  
CSA starting on the day of transplantation. Two weeks of 

Figure 4. CSA does not affect the number of 13-gal-labeled fibers 
formed from transplanted myoblasts in syngeneic hosts. 13-gal- 
labeled myoblasts were transplanted into syngeneic hosts. Both 
BALB/c and C57 hosts were used. The animals were either un- 
treated (a) or treated ([]) with CSA. 2 wk after transplantation 
the number of 13-gal-labeled fibers in each injected muscle was de- 
termined. The mean number of labeled fibers in untreated hosts was 
defined as 100% (BALB/c: 141 -1- 19; C57:200 + 14) and the 
mean number of labeled fibers in CSA treated hosts was compared 
to this value. (error bars -- +SEM; n = 4). 

fibers by 13-gal activity (right). 5 d after transplantation, no inflammatory cell infiltrate was observed (top, left) and many allogeneic myo- 
blasts had fused into endogenous host myofibers (top, right). 10 d after transplantation, the rejection process was characterized by a host 
mononuclear cellular infiltrate and local tissue destruction (middle, left) in the region of 13-gal-labeled fibers (middle, right). By 4 wk 
after transplantation, the host cellular immune response had abated and the muscle fibers had regenerated (bottom, left). Centrally nucleated 
muscle fibers, a permanent marker of muscle fiber regeneration in rodents, were present. No/3-gal-labeled fibers remained in animals 
without immunosuppression (bottom, right). Bar, 60 t~m. 
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Figure 5. Transient immunosuppressive treatment with CSA leads 
to long-term retention of allogeneic myoblasts in hybrid myofibers 
in BALB/c or C3H hosts. Long-term survival of allogeneic myo- 
blasts is obtained with a short course of CSA treatment during the 
early times after myoblast transplantation and fusion into endoge- 
nous fibers. The persistence of B-gal-labeled fibers with time indi- 
cates the lack of a functional host immune response to the hybrid 
myofibers. B-gal-labeled C57 myoblasts were transplanted into ei- 
ther BALB/c (.) or C3H ([]) hosts. Daily injections of CSA were 
administered starting on the day of transplant, continued for 2 wk 
and then stopped. At different times after stopping CSA treatment, 
the animals were sacrificed and the number of/~-gal-labeled fibers 
was determined for each injected muscle. For each host strain, the 
mean number of fibers in CSA treated animals at the time of CSA 
removal was defined as 100% (BALB/c: 186 5: 33; C3H: 80 4- 19). 
The mean number of fibers at different times after CSA removal 
were compared to this value. (error bars = 4-SEM; n = 4-8). 

CSA administration was chosen as the length of immunosup- 
pressive treatment for two reasons. First, the number of hy- 
brid myofibers formed does not increase significantly beyond 
5 d after transplantation (Rando and Blau, 1994). Second, 
the local muscle regeneration that is a consequence of myo- 
blast transplantation is nearly complete within 2 wk and this 
is accompanied by a corresponding decrease in the expres- 
sion of fetal myosin heavy chain, a marker of regenerating 
muscle fibers (Pavlath and Rando, unpublished observa- 
tions). Treatment with the immunosuppressive drug was 
stopped after 2 wk and the stability of the hybrid B-gal- 
labeled fibers was studied for an additional 14-16 wk. Tran- 
sient treatment with CSA was efficacious for the long-term 
retention of allogeneic myoblasts in both strains (Fig. 5). 
14-16 wk after the cessation of CSA, or 4-4.5 mo after the 
initial transplant, the numbers of fl-gal-labeled fibers in 
BALB/c and C3H hosts were 95 and 80%, respectively, of 
control values (Fig. 5). The histology of the muscle tissue 
at these late time points was indistinguishable from that seen 
with continuous CSA. O-gal expression was found in large 
diameter fibers similar in size to the surI;ounding muscle tis- 
sue (Fig. 6, top) with no mononuclear infiltration present in 
the muscle (Fig. 6, bottom). Thus, transient immunosup- 
pressive treatment with CSA resulted in long-term retention 
of fully MHC mismatched myoblasts in BALB/c and C3H 
hosts with no evidence of a host cellular immune response. 

Figure 6. Long-term retention of hybrid myofibers with transient 
CSA treatment is accompanied by normal muscle histology. Serial 
cross sections analyzed for B-gal expression (top) and histology 
(bottom) are shown from animals transplanted with allogeneic 
~-gal-labeled myoblasts, treated with CSA for 2 wk and sacrificed 
16 wk after cessation of CSA treatment./3-gal expression is found 
in large diameter, mature muscle fibers. No host cellular immune 
response is present. Bar, 60/~m. 

Transient CSA Treatment: Delay of  Rejection vs. 
Long-term Maintenance 

Transient CSA treatment was also tested in the C57 strain. 
The efficacy of transient CSA treatment, however, differed in 
this host. O-gal-labeled C3H myoblasts were transplanted 
into C57 hosts and the animals treated with daily injections 
of CSA for 2 wk. Unlike the success of transient CSA im- 
munosuppressive treatment for the long-term retention of al- 
logeneic myoblasts in the BALB/c and C3H hosts, 2 wk was 
not sufficient in the C57 strain (Fig. 7, black bars). Only 8 % 
of/3-gal-labeled fibers remained 2-5 wk after the cessation 
of CSA treatment. We hypothesized that a longer period of 
CSA treatment might be necessary in this host. However, 6 
wk of CSA (Fig. 7, hatched bars) delayed, but did not elimi- 
nate the rejection of allogeneic myoblasts. Following 6 wk 
of CSA treatment, the number of fl-gal-labeled fibers 
declined to 38% 2-5 wk later and to 15% 8-12 wk later. 
Thus, transient immunosuppression with CSA did not lead 
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Figure 7. Transient CSA treatment does not lead to long-term reten- 
tion of hybrid myofibers in C57 hosts. Persistent survival of al- 
logeneic myoblasts (C3H) was not obtained in C57 hosts with tran- 
sient CSA treatment. One group of animals was treated with CSA 
for 2 wk (=). 2 wk after CSA removal, a low frequency of B-gal- 
labeled fibers was obtained and no fibers were detected 8-12 wk 
after CSA removal. Another group of animals was treated with CSA 
for six weeks ([]). The longer treatment period delayed rejection 
but did not eliminate it. The data are normalized to the number of 
B-gal-labeled fibers obtained at the time of CSA removal (2 wk: 
156 + 22; 6 wk: 194 5: 10) and presented as the mean + SEM. 
A total of four to eight samples were analyzed for each time point. 
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Figure 8. Transient treatment with odCAM-1 and c~LFA-1 monoclo- 
nal antibodies leads to long-term retention of hybrid myofibers in 
C3H and C57 hosts. Systemic monoclonal antibody treatment with 
monoclonal antibodies (cxICAM-1 and o~LFA-1, 140/~g each) for 
6 d starting on the day of transplant maintained allogeneic myoblast 
transplants in C3H (I) and C57 ([]) hosts. Transient antibody 
therapy was as efficacious as continuous CSA treatment, fl-gal- 
labeled C57 myoblasts were transplanted into C3H hosts and 
B-gal-labeled C3H myoblasts were transplanted into C57 hosts. 
The number of/~-gal-labeled fibers in each injected muscle was de- 
termined 7 wk (C3H) and 4 wk (C57) after transplantation. Three 
to four samples were analyzed for each condition at each time 
point. The data are normalized to the number of fl-gal-labeled 
fibers obtained in CSA treated controls (C3H: 39 + 6; C57:36 
+ 18) and presented as the mean 5: SEM. 

to long-term retention of fully MHC mismatched myoblasts 
in the C57 strain, but delayed the usual rejection. 

Imraunosuppression with Monoclonal Antibodies 
to T Cell Molecules 

Accessory molecules, such as ICAM-1 and LFA-1, increase 
the adhesion between T cells and their target cells and pro- 
vide necessary co-stimulatory signals for T cell activation 
(Springer et al., 1987; Springer, 1990). Limited treatment 
of the host (6-12 d) with monoclonal antibodies against 
ICAM-1 and/or LFA-1 leads to prolonged survival of organ 
and bone marrow aUografts in animals (Heagy et al., 1984; 
Benjamin et al., 1988; Cosimi et al., 1990; Charlton et al., 
1991; Isobe et al., 1992) and humans (Fischer et al., 1986; 
Haug et al., 1993). We tested whether transient treatment 
with antibodies against ICAM-1 and LFA-1 was more effec- 
tive than transient CSA treatment in preventing rejection of 
allogeneic myoblasts in C57 hosts. For comparison, we 
tested transient antibody treatment in a strain (C3H) in 
which transient CSA treatment had led to long-term reten- 
tion of allogeneic myoblasts. For both groups we used con- 
tinuous CSA treatment as a control. For the antibody treat- 
ment groups, the animals were injected daily with 140 #g 
each of antibodies to ICAM-1 and LFA-1 for 6 d beginning 
on the day of transplantation. The levels of the injected rat 
antibodies on the peripheral blood lymphocytes were moni- 
tored by flow cytometry. Saturating levels of antibodies were 
observed up to 10 d, with intermediate levels t~16 d, but 
were undetectable by ~ 3  wk after transplantation. 

In C3H hosts, transient treatment with the antibodies, like 

transient CSA treatment, was as effective as continuous CSA 
treatment in preventing the rejection of allogeneic myoblasts 
(Fig. 8 A). In C57 hosts, in which transient CSA treatment 
was ineffective, transient treatment with antibodies against 
ICAM-1 and LFA-1 was as effective as continuous CSA al- 
lowing long-term retention of allogeneic myoblasts (Fig. 
8 B). These studies indicate that maintenance of allogeneic 
myoblasts in hybrid myofibers using transient immuno- 
suppressive treatments is a generalized phenomenon. The 
efficiency in different genetic backgrounds may depend on 
the specific mode of treatment. 

Discussion 

Gene delivery by the transplantation of normal and geneti- 
cally engineered myoblasts is the basis of a new experimental 
approach to the therapy of muscle and nonmuscle diseases. 
Ideally, the myoblasts used for gene delivery should have ex- 
tensive proliferative capacity in culture, be readily available 
in large quantities and be nontumorigenic. As we have shown 
previously, these requirements can be met (Webster et al., 
1988; Rando and Blau, 1994). Two possibilities exist as 
sources of myoblasts for transplantation: autologous or bet- 
erologous donors. Generating autologous myoblasts for each 
patient severely limits this therapeutic approach because it 
is slow and labor intensive. Furthermore, myoblasts isolated 
from patients affected with Duchenne muscular dystrophy 
have a limited proliferative capacity in culture (Blau et al., 
1983; Webster and Blau, 1990). Alternatively, the use of a 
normal identical twin as a donor for a sibling with muscle 
disease is limited to only a few special circumstances (Trem- 
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blay et al., 1993a). Thus, the ability to use myoblasts from 
a "universal donor" would increase the general utility of myo- 
blast transplantation. 

Heterologous myoblasts, like organ transplants, are rap- 
idly rejected unless immunosuppressants are administered 
(Rando and Blau, 1994). CSA is the most prevalent im- 
munosuppressive drug used in tests of allogeneic myoblast 
transplants in animals (Watt et al., 1981, 1984; Salminen et 
al., 1991; Labrecque et al., 1992; Huard et al., 1994) and 
humans (Gussoni et al., 1992; Law et al., 1992). However, 
continuous administration of the drug results in significant 
animal mortality (Watt et al., 1981, 1984; Huard et al., 
1994) which is host strain and age specific (Pavlath and 
Rando, unpublished observations). Furthermore, chronic 
administration of immunosuppressive drugs may affect the 
clinical course of the muscle disease for which myoblast- 
mediated gene therapy is intended (Brooke et al., 1987; 
DeSilva et al., 1987; MendeU et al., 1989; Fenichel et al., 
1991; Griggs et al., 1993; Sharma et al., 1993) or affect the 
properties of myoblasts such as their ability to fuse (Hardi- 
man et al., 1993b). In addition, the lifelong administration 
of CSA and other immunosuppressive drugs in humans to 
prevent rejection of foreign organ transplants is associated 
with toxic side effects including depression of the immune 
system thereby increasing the risk of life threatening infec- 
tion or cancer. Alternate strategies of immunosuppression 
which are transient but lead to the long-term maintenance of 
heterologous myoblasts are needed. 

Myoblast transplantation poses unique challenges in com- 
parison to organ transplants. In contrast to organs, trans- 
planted myoblasts rapidly fuse into endogenous muscle 
fibers of the host by day 5 after transplantation. Interestingly, 
ailogeneic myoblasts, like syngeneic myoblasts are also nor- 
maily incorporated into the fibers of the host (Rando and 
Blau, 1994). Around day 7, the two types of cell transplants 
can be distinguished histologically. With allogeneic trans- 
plants, a massive mononuclear cellular infiltrate appears 
which attacks the hybrid myofibers leading to segmental 
muscle degeneration. In the studies presented here, the 
majority of the hybrid myofibers identified by histological 
staining for B-gal activity were destroyed by 2 wk after trans- 
plantation, although rejection was somewhat slower in one 
donor-host combination. However, in all host strains, the de- 
stroyed region of the myofiber segment regenerated resulting 
in normally sized, centrally nucleated myofibers, a hallmark 
of muscle regeneration (Karpati et al., 1988a). Thus, in con- 
trast to allograft rejection of organs, the rejection of al- 
logeneic myoblasts not only results in loss of the transplanted 
cells but also induces tissue damage and degeneration of pre- 
viously healthy muscle fibers in the host. 

The rapid rejection of aUogeneic myoblasts was overcome 
using transient immunosuppressive treatments in mice, Two 
different transient treatments, CSA and monoclonal antibod- 
ies to ICAM-1 and LFA-1, led to persistent survival of al- 
logeneic myoblasts in hybrid myofibers. However, strain 
differences among hosts were observed in the efficacy of 
these two treatments. The robust cell survival in BALB/c and 
C3H hosts treated with CSA for only 2 wk after transplanta- 
tion contrasted with the limited survival of allogeneic myo- 
blasts in C57 mice even with 6 wk of CSA treatment. How- 
ever, administration of monoclonal antibodies starting on the 
day of transplantation and continuing for 5 d afterwards in 

C57 mice resulted in the same level of retention of allogeneic 
myoblasts as with continuous daily CSA administration. 
Therefore, the ability of transient immunosuppression to in- 
duce prolonged survival of allogeneic myoblasts in hybrid 
myofibers occurred in all strains tested. Although the method 
of transient immunosuppressive treatment differed, the out- 
come was the same. Other studies have noted strain differ- 
ences in the efficiency of immunosuppressive treatments in 
rodents (Ilano et al., 1989) leading to the concept of low and 
high responder strains in different experimental paradigms 
of transplant immunology. Elucidation of the cellular and 
molecular bases for such genetic differences (Butcher and 
Howard, 1982; Stewart et al., 1985; Sprent et al., 1986; 
Rosenberg et al., 1987; llano et al., 1989) may contribute 
to an understanding of human variabilities in response to im- 
munosuppressive drugs. 

The mechanisms by which transient treatment with CSA 
or monoclonal antibodies to ICAM-1 and LFA-1 lead to per- 
sistent survival of allogeneic myoblasts in hybrid myofibers 
is unknown. Two mechanisms have been proposed for the 
ability of transient immunosuppressive treatment to prolong 
allograft survival: (a) changes in the immunogenicity of the 
graft (Auchincloss and Wirm, 1989; Ortega et ai., 1992) and 
(b) changes in the immune system leading to the develop- 
ment of peripheral tolerance (Hall, 1989; Waldmann, 1989; 
Waldmann and Cobbold, 1993). These two mechanisms 
have different implications for the fate of the original trans- 
planted myoblasts after muscle injury as well as for the sur- 
vival of subsequent myoblast transplants without further im- 
munosuppressive treatment. These different mechanisms are 
directly testable in our system. 

According to a mechanism based on altered immunogenic- 
ity of the transplant, the role of transient immunosuppres- 
sion during early times after transplantation is to protect the 
myoblasts until they fuse into host myofibers and downregu- 
late the expression of molecules involved in graft rejection. 
The immunogenicity of transplanted myoblasts is likely to 
change because the expression of molecules with critical 
roles in immune recognition of allografts declines during 
muscle differentiation (Ponder et al., 1983; Karpati et al., 
1988b; Honda and Rostami, 1989; Schubert, 1991). Gen- 
erally, the undifferentiated myoblast expresses molecules 
important in immune recognition but the differentiated myo- 
fiber of the host does not. After transplantation and subse- 
quent fusion into endogenous myofibers, allogeneic myoblast 
nuclei may differentiate in response to regulatory factors pro- 
vided by the mature myofiber (Blau et al., 1983, 1985) and 
may cease expression of foreign MHC molecules. Changes 
in the expression of these molecules would affect the cellular 
interactions between transplanted myoblasts and immune 
cells. An altered immunogenicity mechanism predicts any 
condition which induces MHC expression such as muscle 
damage (Rowe et al., 1983; Appleyard et al., 1985; Karpati 
et al., 1988b; Emslie-Smith et al., 1989; McDouall et al., 
1989) would lead to rejection of the foreign cells. Further- 
more, subsequent myoblast transplants would still require 
immunosuppression for long-term cell survival. 

Alternatively, changes in the immune system may have 
also played a role in the success of transient immunosuppres- 
sion in these studies. CSA is not ordinarily associated with 
the development of tolerance, but immunosuppressive tech- 
niques based on monoclonal antibodies specific to T cell 
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molecules are. Monoclonal antibody therapy with cdCAM-1 
and/or otLFA-1 has led to the development of tolerance in an- 
imal models (Benjamin et al., 1988; Charlton et al., 1991; 
Isobe et al., 1992). If long-term survival of allogeneic myo- 
blasts is due to the development of tolerance, induction 
of foreign MHC expression by damaged hybrid myofibers 
should not affect retention of the original myoblasts. More- 
over, if haplotype-specific tolerance was induced, a predic- 
tion would be that future transplants of the same donor type 
as the original transplant should be retained but those of a 
different haplotype will be rejected. 

Methods for achieving long-term survival of allogeneic 
myoblasts in hybrid myofibers without continuous im- 
munosuppression and its associated toxicity are important 
for the use of myoblast transplantation for therapeutic pur- 
poses (Blau et al., 1993; Partridge, 1994). We have shown 
that transient immunosuppressive treatments lead to the 
long-term maintenance of allogeneic myoblasts. Elucidation 
of the mechanisms involved may offer new insights and new 
directions into better immunosuppressive treatments. Ulti- 
mately, it may be possible to engineer a universal donor 
strain of nonimmunogenic myoblasts deficient in the function 
(Faustman and Coe, 1991) or expression (Arbonts et al., 
1994) of the molecules that mediate myoblast rejection. 
Transient immunosuppressive techniques coupled with fu- 
ture advances in rendering cells nonimmunogenic should 
broaden the scope of myoblast-mediated gene therapy for the 
treatment of disease. 
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