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Abstract

Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using
transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that
nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of
adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-
59-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed
with CD73+/+ and CD732/2 mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of
approximately 25 mM. In contrast, ATP was a less potent inhibitor (IC50 = 100 mM) in slices from mice expressing hENT1 in
neurons. The inhibitory effects of ATP in CD73+/+ and CD732/2 slices were blocked by the adenosine A1 receptor antagonist
8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-
thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar
inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing
CD732/2 and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission
in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory
effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in
slices from CD732/2 mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1
area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of
extracellular adenosine when CD73 is absent.
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Introduction

ATP and adenosine inhibit synaptic transmission in electrically

stimulated hippocampal slices [1]. The inhibitory effect of

adenosine is mediated by adenosine A1 receptors, as determined

through the use of selective antagonists and A1 receptor knockout

(2/2) mice [1]. ATP appears to also act through A1 receptors as its

inhibitory effects are blocked by A1 selective antagonists, but not

by purinergic P2 receptor antagonists [2]. Furthermore, the

inhibitory effects of ATP are not observed in A1 receptor2/2 mice

[1]. Since ATP does not activate A1 receptors directly, this

indicates that ATP is rapidly metabolized to adenosine and its

inhibitory effects are actually mediated by adenosine [3].

Extracellular ATP can be metabolized to adenosine by a

combination of enzymes. Ecto-nucleoside triphosphate dipho-

sphohydrolases (E-NTPDases; ecto-apyrases; CD39), ecto-nucleo-

tide pyrophosphatase/phosphodiesterases (E-NPPs) and alkaline

phosphatases metabolize ATP and ADP to AMP, whereas alkaline

phosphatases and CD73 (ecto-59-nucleotidase; EC 3.1.3.5) can

metabolize AMP to adenosine [4]. However, inhibitors of these

enzymes have modest efficacy to decrease the effects of ATP or

AMP and can have inhibitory effects of their own [3,5–7]. It has

been difficult to demonstrate conclusively that the inhibitory

effects of exogenous adenine nucleotides result from their

metabolism extracellularly to adenosine, in part, because their

slow metabolism of variable efficacy is in contrast to their rapid

inhibition of synaptic activity [2,7].

Recently, we developed transgenic (Tg) mice that express

human equilibrative nucleoside transporter 1 (hENT1) under the

control of a neuron-specific promoter [8]. Radioligand binding

assays showed a 20-fold increase in ENT1 abundance in Tg

hippocampal membranes, relative to membranes from wild type

(Wt) mice [9]. Using hippocampal slice electrophysiology, we

reported that the potency of applied adenosine was decreased in

slices from hENT1 Tg mice, indicating that increased cellular

uptake of adenosine led to decreased adenosine A1 receptor

activation [9]. Furthermore, both hypoxic and oxygen-glucose

deprivation conditions produced less inhibition of synaptic activity
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in slices from hENT1 Tg mice, relative to slices from Wt littermate

controls [9]. From this, we concluded that hypoxic/ischemic

conditions do not trigger equilibrative transporter-mediated

release of adenosine per se from neurons, despite rapid decreases

in neuronal ATP levels. Instead, we proposed that adenosine is

released from another cell type or via another mechanism, or ATP

(or another nucleotide) is released and metabolized extracellularly

to adenosine during hypoxic/ischemic conditions [9].

To address these potential mechanisms, the present study was

performed. As CD73 is a key enzyme for the extracellular

formation of adenosine [4], we used CD73+/+ and CD732/2 mice

to test whether CD73 deficiency affects responses to adenosine,

ATP, hypoxia or oxygen-glucose deprivation in hippocampal slice

preparations. Previous studies have reported that both adenosine

formation and adenosine receptor activity were reduced in

CD732/2 mice [10–13]. In addition, tissue-nonspecific alkaline

phosphatase (TNAP) has been shown to metabolize extracellular

ATP in cultured hippocampal neurons and regulate axonal growth

[14]. Therefore, we also tested whether TNAP affects responses to

ATP, AMP, hypoxia or oxygen-glucose deprivation through the

use of the inhibitor 2,5-dimethoxy-N-(quinolin-3-yl)benzenesulfo-

namide (TNAP-I) [15].

Materials and Methods

Ethics statement
All procedures with animals were in accordance with guidelines

set by the Canadian Council on Animal Care and approved by the

University of Manitoba Animal Protocol Management and

Review Committee.

Mice
CD732/2 mice were obtained from Dr. Linda Thompson [13].

Male CD732/2 and wild type (CD73+/+) C57Bl6 mice were used

at 8 weeks of age. In some experiments male mice expressing

hENT1 under the control of neuron specific enolase promoter,

and wild type littermates, were used at 8 weeks of age [8].

PCR and reverse transcriptase PCR for CD73
Genomic DNA was extracted from tail snips using the WizardH

Genomic DNA Purification Kit (Promega Corporation), following

the manufacturer’s protocol. RNA was isolated from cortex or

hippocampus samples using the TRIzolTM method (Invitrogen).

The concentration of RNA was measured using a GeneQuant Pro

spectrophotometer (Biochrom, Ltd.) and diluted to 1.5 mg/mL

using ddH2O. Reverse transcription (RT) was performed by first

treating 1.5 mg RNA with 1 U DNase (Invitrogen) in 20 mM Tris-

HCl (pH 8.4), 2 mM MgCl2 and 50 mM KCl at room temper-

ature for 15 min. Then, 500 ng olig(dT)12–18 primer and was

added and heated to 65uC for 5 min. The final step consisted of

the addition of Moloney-murine leukemia virus reverse transcrip-

tase (200 U), dNTPs (0.5 mM), dithiothreitol (DTT; 10 mM),

Tris-HCl (50 mM; pH 8.3), KCl (75 mM) and MgCl2 (3 mM) in a

final volume of 60 mL, then incubated at 37uC for 1 h followed by

90uC for 5 min.

Figure 1. Loss of ecto-59-nucleotidase activity in CD732/2 mice.
(a) Genomic DNA was isolated from three CD732/2 (1, 2, 3) and three
CD73+/+ (4, 5, 6) mice. Multiplex PCR was performed using primer set 1,
to amplify exon 10–11, or primer set 2, to amplify from the region of
mutated DNA, together with primers to mouse beta casein. While PCR
amplified the beta casein internal control gene and the 39end of CD73
in all samples, only samples from CD732/2 mice produced a PCR
product from the mutated region of the CD73 gene. (b) Total RNA was
isolated from cerebral cortex from three CD732/2 (1, 2, 3) and three
CD73+/+ (4, 5, 6) mice. RNA was reverse transcribed and cDNA for CD73
exons 3–4 was amplified using primer set 3. A PCR product of the
expected size was obtained with cDNA from CD73+/+ but not CD732/2

mice. (c) Membrane preparations from cerebral cortex from CD73+/+

and CD732/2 mice were incubated with 14C-AMP (100 mM) and
metabolism to adenosine, inosine and hypoxanthine was measured.
AOPCP (50 mM) was added to some samples to inhibit CD73 (ecto-59-
nucleotidase) activity. Data are pmol/mg protein expressed as a
percentage of total 14C-AMP applied, from 3 assays performed in
triplicate. ***p,0.001, one way ANOVA with Tukey’s post-hoc tests. (d)

Hippocampal slices from CD73+/+ and CD732/2 mice were incubated
with 14C-AMP (100 mM) and metabolism to adenosine, inosine and
hypoxanthine was measured before (0–15 min) or during (15–45 min)
electrical stimulation. Data are disintegrations per min from 2 CD73+/+

or 4 CD732/2 slices (1 slice per animal). *p,0.05, **p,0.01, ***p,0.001,
two-tailed t-tests.
doi:10.1371/journal.pone.0039772.g001

Regulation of Adenosine Levels in CD732/2 Mice
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PCR was performed with genomic DNA or cDNA. Primer set 1

was 59-GTGACCCTCCCAAGCTATCTG and 59-

GCTTCCCTGGTAATGACTTGC; these primers span exons

10 and 11 of CD73 and are predicted to amplify a sequence of

1.1 kb. Primer set 2 was 59-AAGGAGGGGTGCATCTTGC-

TATTC and 59-CCAGCTCATTCCTCCCACTCATG; these

primers target intron 2 and the mutated sequence in exon 3 [13]

and are predicted to amplify a sequence of 1 kb only in CD732/2

mice. Primer set 3 was 59-TCAGAAAGTTCGAGGTGTGGA

and 59-GTCCATCATCTGCGGTGACTA; these primers span

exons 3 and 4 of CD73 and are predicted to amplify a sequence of

128 bp in wild type cDNA from cerebral cortex. Multiplex PCR

was performed using CD73 and mouse beta casein gene specific

primers, as described previously [8]. Ready To GoTM PCR beads

(GE Healthcare) and 500 nM of primer mix (forward and reverse)

were used to amplify 1 mL of DNA or cDNA. A PTC-100TM

Programmable Thermal Controller (MJ Research, Inc.) was used

for the amplification. The ‘slowdown PCR’ program [16] was used

with cDNA because it had been found previously to reduce

primer-dimers and give cleaner results.

A 1% agarose gel, containing ethidium bromide for visualiza-

tion, was run in Tris acetate-EDTA (TAE) buffer (40 mM Tris

acetate and 1 mM EDTA) for 30 290 min at 105 V and the PCR

products were cut from the gel while being illuminated by a FBTI-

88 Transilluminator (Fisher Scientific).

Quantitative PCR for TNAP
For quantitative PCR reaction mixtures, with a final volume of

50 ml, consisted of 1 ml reverse transcribed cDNA, 0.5 mM

primers, 2.5 mM MgCl2, 0.2 mM dNTPs, 0.16 SYBR Green I,

0.25 U Platinum Taq polymerase and10 nM fluorescent calibra-

tion dye. The reactions consisted of 4 min at 95uC then 50 cycles

of 95uC for 15 sec, 64uC for 15 sec, 72uC for 30 sec. This was

immediately followed by a melt curve analysis consisting of 95uC
for 1 min, 64uC for 1 min and 64uC for 10 sec, with the latter step

increasing in temperature by 0.5uC per cycle for 63 cycles. Melt

curve analysis confirmed the presence of a single PCR product in

each reaction. A Bio-Rad iCycler iQ Real-Time PCR Detection

System was used for these experiments.

Primer sequences for b-actin were 59-

CATGGCTGGGGTGTTGAAGGTTCT and 59- CGAGCCC-

CAGAGCAAGAGAGGT and for TNAP were 59- ACGGA-

CATCATGAGGGTAAGG and 59- CGTGGGAATGATCAG-

CAGTAA. Expected product sizes were 188 bp and 132 bp for b-

actin and TNAP, respectively. For both primer pairs, standard

curves were linear over a range of 5–6 log units and reaction

efficiencies were between 90–110%.

Ecto-59-nucleotidase assays
Cell membranes were isolated from cortex obtained from

CD73+/+ and CD732/2 mice using previously published methods

[8]. Briefly, cortex from each mouse was homogenized in 10

volumes of ice-cold 0.32 M sucrose then centrifuged at 10006 g

for 10 min at 4uC. The pellet was washed twice and pooled

supernatants were centrifuged at 20,0006 g for 30 min at 4uC.

The resulting pellets were resuspended in HEPES buffer

composed of 110 mM NaCl, 25 mM glucose, 68.3 mM sucrose,

5.3 mM KCl, 1.8 mM CaCl2, 1.0 mM MgSO4 and 20 mM

HEPES, pH 7.4. Protein concentrations were determined with a

Bio-Rad dye binding assay.

Ecto-59-nucleotidase assays were performed in triplicate in an

assay volume of 0.3 ml with 100 mM 14C-AMP and 40 mg

membrane protein per assay for 15 min at room temperature.

a,b-methylene ADP (AOPCP; 50 mM) was used to inhibit ecto-59-

nucleotidase and TNAP-I was used to inhibit TNAP (10 mM).

Assays were terminated by centrifugation (14,0006g; 2 min). 14C-

purines (AMP, adenosine, inosine and hypoxanthine) were

separated by thin layer chromatography, using n-butanol, ethyl

acetate, methanol and ammonium hydroxide in a ratio of 7:4:3:4

vol/vol, then quantified by scintillation spectroscopy [17,18]. The

amount of adenosine, inosine and hypoxanthine produced was

expressed as a percentage of the AMP added.

Ecto-59-nucleotidase assays were also performed with hippo-

campal slices, prepared as described below. Hippocampal slices

were kept at 32.5uC with 1 ml of artificial cerebrospinal fluid

(aCSF) containing 10 mM [14C]AMP. Samples (50 ml) were taken

at 5 min intervals for 45 min and analyzed for [14C]adenosine

Figure 2. Inhibition by adenosine of fEPSP recordings in
hippocampal slices from CD73+/+ and CD732/2 mice. (a)
Representative traces of fEPSPs; numbers 1–6 correspond to before
and during superfusion of slices with adenosine (10, 25, 50 or 100 mM)
or adenosine (100 mM) and DPCPX (1 mM) as indicated in (b). (b) The
effect of adenosine on fEPSP slope in hippocampal slices from CD73+/+

and CD732/2 mice. Horizontal lines represent the duration of
superfusion with the indicated adenosine concentrations. (c) Maximum
inhibition of fEPSPs obtained with each concentration of adenosine.
n = 3 CD73+/+ and 3 CD732/2.
doi:10.1371/journal.pone.0039772.g002

Regulation of Adenosine Levels in CD732/2 Mice
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content by thin layer chromatography. After the first 4 sample

collections, slices were electrically stimulated as described below

for the remaining 30 min.

Hippocampal slice preparation
Mice were anaesthetized with isoflurane and decapitated. Each

brain was rapidly removed in ice-cold oxygenated (95% O2/5%

CO2) aCSF of the following composition (mM): 124 NaCl, 3.0

KCl, 1.2 MgCl2, 2.0 CaCl2, 1.25 KH2PO4, 26 NaHCO3, 10 D-

glucose, pH 7.4, adjusted to 285–290 mOsm. Hippocampus was

removed and 350 mm slices were cut using a McIlwain tissue

chopper (Stoelting Co, Wood Dale, IL). The slices were then

allowed to recover in a holding chamber for at least 1 hr at 32.5uC
prior to electrophysiological recording or ecto-59-nucleotidase

assays.

Extracellular recording
Individual slices were transferred to a submerged recording

chamber (Harvard Apparatus, Holliston, MA) and continuously

superfused with oxygenated aCSF at a flow rate of 1.5 ml/min

(32.5uC). Each slice was placed on a suspended nylon net to allow

perfusion and oxygenation of the slice from above and below.

Synaptic responses were evoked by stimulation of the Schaffer

collateral/commissural pathway with a concentric bipolar stimu-

lating electrode with 0.1 millisecond pulse width at 30 second

intervals. Extracellular field excitatory postsynaptic potentials

(fEPSPs) were recorded in stratum radiatum of CA1 hippocampus

using glass microelectrodes (1–2 V) filled with aCSF. Input/output

curves were obtained by gradual increases in stimulus voltage at

the beginning of each experiment, when a stable baseline of fEPSP

response was reached. The baseline recording was established at

40–50% maximal fEPSP response. At least 15 to 20 min of stable

baseline was obtained in each experiment. Data were collected

using an Axopatch 1D amplifier and analyzed using pCLAMP 10

software (Molecular Devices, Sunnyvale, CA).

Application of hypoxia or oxygen-glucose deprivation
In vitro hypoxia, 10 min, was induced by superfusing slices with

aCSF gassed with 95% N2/5% CO2. In vitro oxygen-glucose

deprivation, 3 min, was induced by superfusing slices with aCSF

prepared with sucrose instead of glucose and gassed with 95% N2/

5% CO2.

Drugs
ATP, adenosine, AOPCP, S-(4-nitrobenzyl)-6-thioinosine

(NBTI), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), dimethyl-

sulfoxide (DMSO) were purchased from Sigma-Aldrich Canada

Ltd (Oakville ON). TNAP-I was purchased from Calbiochem

(Mississauga, ON). Adenosine and ATP were prepared in distilled

water then diluted to 10–100 mM in aCSF. A spectrophotometer

was used to ensure the accuracy of final concentrations using the

extinction coefficients at l 259 of 15.1 mm21?cm21 and

15.4 mm21?cm21 for adenosine and ATP, respectively. NBTI,

DPCPX and TNAP-I were dissolved in DMSO, then diluted in

aCSF to obtain DMSO concentrations of 0.01% (NBTI, DPCPX)

or 0.1% (TNAP-I).

Statistical analysis
All numerical data are expressed as means 6 SEM. Data were

tested for statistical significance with two-tailed Student’s t-test or

one way ANOVA with Tukey’s post hoc tests. A value of p,0.05

was considered statistically significant.

Results

Characterization of CD732/2 mouse model
PCR, reverse transcriptase PCR and ecto-59-nucleotidase assays

were performed to verify the absence of CD73 in CD732/2 mice

and its presence in CD73+/+ mouse samples. Primer set 1, which

targets exons 10 and 11, amplified a 1.1 kb sequence from

genomic DNA of both CD73+/+ and CD732/2 mice (Fig. 1A).

Primer set 2, which targets the region of the gene that was mutated

to produce the knock out phenotype, amplified a 1 kb sequence

from genomic DNA isolated from CD732/2 mice. As expected

these primers did not produce a PCR product using CD73+/+

DNA (Fig. 1A). Primer set 3, which targets exon 3–4, the region

disrupted in the genome of the CD732/2 mice, amplified a

128 bp sequence of cDNA from CD73+/+ but not CD732/2

cortex (Fig. 1B) and hippocampus (data not shown). Thus, the

PCR and reverse transcriptase PCR results confirm that the CD73

gene and its expression are disrupted in CD732/2 mice.

Ecto-59-nucleotidase assays were performed with cell mem-

branes isolated from cerebral cortex. Approximately 2164%

(22167.5 pmol/mg protein) of the 14C-AMP was hydrolyzed to

adenosine in assays using samples from CD73+/+ mice. AOPCP

(50 mM) significantly inhibited adenosine formation, with 561%

(6261.3 pmol/mg protein) of the AMP metabolized to adenosine.

In contrast, in parallel assays using samples from CD732/2 mice,

less than 3% (2461.3 pmol/mg protein) of AMP was metabolized

to adenosine and AOPCP had no effect (2660.5 pmol/mg protein)

(Fig. 1C). Inosine and hypoxanthine were also quantified, but their

levels were less than 3% of AMP both with CD732/2 and CD73+/

+ samples and were unaffected by AOPCP.

Conversion of [14C]AMP to [14C]adenosine was also examined

in hippocampal slices. Significantly greater quantities of

[14C]adenosine were detected in superfusate of CD73+/+ slices,

relative to CD732/2 slices (Fig. 1D), both before (0–15 min) and

during (15–45 min) electrical stimulation.

Hippocampal slices from CD73+/+ and CD732/2 mice
show similar responses to adenosine and ATP

Adenosine produced a concentration dependent decrease in

synaptic activity, with an IC50 value of approximately 25 mM and

almost complete inhibition was observed with 100 mM adenosine

(Fig. 2A–B). This inhibitory effect of adenosine was mediated by

adenosine A1 receptors, since the A1 selective antagonist DPCPX

restored synaptic activity to control levels (Fig. 2A). As expected,

no significant differences in the effects of adenosine were observed

between hippocampal slices obtained from CD73+/+ or CD732/2

mice.

The absence of ecto-59-nucleotidase activity is predicted to

reduce or abolish the effects of ATP that are sensitive to inhibition

by DPCPX. However, ATP produced a concentration dependent

decrease in synaptic activity in both CD73+/+ or CD732/2

hippocampal slices (Fig. 3A). The IC50 value for ATP was

approximately 25 mM, and 100 mM produced almost complete

cessation of synaptic activity (Fig. 3B). As with adenosine, DPCPX

blocked the effects of ATP. While the overall effects of ATP were

very similar to adenosine, one noticeable difference was that there

was a slower response to each individual concentration of ATP

(compare Fig. 2A, 3A), indicating that responses to ATP were

slower to equilibrate. There was a trend for a greater inhibitory

effect of ATP in CD732/2 slices compared to CD73+/+ slices,

which was statistically significant (p,0.05) at 25 mM ATP.

Regulation of Adenosine Levels in CD732/2 Mice
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In contrast to CD732/2 mice, hENT1 transgenic mice
show reduced responses to ATP

Previously, we reported that exogenous adenosine was a more

potent inhibitor of synaptic activity in wild type, compared to

hENT1 transgenic, hippocampal slices [9]. To test whether

enhanced neuronal uptake of adenosine affects hippocampal

responses to ATP, we used slices from hENT1 transgenic and wild

type littermates. Similar to results with adenosine in hENT1

transgenic mice, but in contrast to results with CD73+/+ and

CD732/2 slices, ATP had significantly reduced potency for

inhibiting synaptic activity in hENT1 transgenic slices, relative to

wild type slices (Fig. 4).

Basal adenosine levels are similar in hippocampal slices
from CD73+/+ and CD732/2 mice

DPCPX tended to increase synaptic activity in hippocampal

slices from both CD73+/+ and CD732/2 mice (Fig. 5A), although

a high degree of variability between samples was evident. After

10 min treatment with DPCPX, fEPSP slope values were

11469% and 11568% in CD73+/+ and CD732/2, respectively.

DPCPX prevented the inhibitory effects of ATP (Fig. 5A); after

5 min treatment with ATP in the continued presence of DPCPX,

fEPSP slope remained at 116612% and 11367% in CD73+/+

and CD732/2, respectively.

NBTI, a selective inhibitor of ENT1, produced a slowly

developing inhibition of synaptic activity (Fig. 5B). After 20 min

treatment with NBTI, fEPSP slope was decreased to 8961% in

both CD73+/+ and CD732/2 slices. In the presence of NBTI,

treatment for 10 min with ATP produced a further decrease in

Figure 3. Inhibition by ATP of fEPSP recordings in hippocampal
slices from CD73+/+ and CD732/2 mice. (a) Representative traces of
fEPSPs; numbers 1–6 correspond to before and during superfusion of
slices with ATP (10, 25, 50 or 100 mM) or ATP (100 mM) and DPCPX
(1 mM) as indicated in (b). (b) The effect of ATP on fEPSP slope in
hippocampal slices from CD73+/+ and CD732/2 mice. Horizontal lines
represent the duration of superfusion with the indicated ATP
concentrations. (c) Maximum inhibition of fEPSPs obtained with each
concentration of ATP. n = 4 CD73+/+ and 5 CD732/2.
doi:10.1371/journal.pone.0039772.g003

Figure 4. Inhibition by ATP of fEPSP recordings in hippocampal
slices from hENT1 Tg and Wt mice. (a) Representative traces of
fEPSPs; numbers 1–6 correspond to before and during superfusion of
slices with ATP (10, 25, 50 or 100 mM) or ATP (100 mM) and DPCPX
(1 mM) as indicated in (b). (b) The effect of ATP on fEPSP slope in
hippocampal slices from hENT1 Tg and Wt littermate mice. Horizontal
lines represent the duration of superfusion with the indicated ATP
concentrations. (c) Maximum inhibition of fEPSPs obtained with each
concentration of ATP. n = 4 hENT1 Tg and 4 Wt.
doi:10.1371/journal.pone.0039772.g004

Regulation of Adenosine Levels in CD732/2 Mice
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synaptic activity, to 7163% and 6265% in CD73+/+ and

CD732/2, respectively.

AOPCP, an inhibitor of ecto-59-nucleotidase, had no effect on

synaptic activity in slices from CD73+/+ and CD732/2 (Fig. 5C).

In the presence of AOPCP, treatment for 10 min with ATP

(10 mM), produced a decrease in fEPSP values to 6964% and

6863% in CD73+/+ and CD732/2, respectively. Field EPSP

values returned to 10161 and 9861% in CD73+/+ and CD732/

2, respectively, upon washout of ATP but recovery was

significantly slower in CD732/2 slices (p,0.05).

Hippocampal slices from CD73+/+ and CD732/2 mice
show similar responses to hypoxia and to oxygen-
glucose deprivation

Previous studies have demonstrated hypoxia produces synaptic

inhibition that is caused, in part, by adenosine acting at A1

receptors [19,20]. Our previous study showed that this adenosine

is not released via equilibrative transporters from neurons [9], but

the study did not examine whether it was due to metabolism of

extracellular ATP to adenosine. Using hippocampal slices from

CD73+/+ and CD732/2 mice, hypoxia (10 min) produced a

complete inhibition of synaptic activity in both (Fig. 6A). There

was a trend towards a slower recovery with CD732/2 slices, but

this was not statistically significant. The recovery of synaptic

activity after reoxygenation was similar, reaching 9362% and

9365% in CD73+/+ and CD732/2 slices, respectively.

Hippocampal slices from CD73+/+ and CD732/2 mice were

also exposed to oxygen-glucose deprivation (3 min); a pronounced

decrease in synaptic activity was observed and no differences

between CD73+/+ and CD732/2 in inhibitory response or

recovery were detected (Fig. 6B).

Figure 5. DPCPX and NBTI, but not AOPCP, affect inhibition of
fEPSPs by ATP. Hippocampal slices from CD73+/+ and CD732/2 mice
were superfused with (a) 1 mM DPCPX, (b) 100 nM NBTI or (c) 50 mM
AOPCP as indicated by the horizontal lines. After 10 min (a, c) or 20 (b)
min, 100 mM ATP was applied as indicated by second horizontal line.
n = 3–4 CD73+/+ and 3–4 CD732/2. *p,0.05; two tailed t-test.
doi:10.1371/journal.pone.0039772.g005

Figure 6. Effect of hypoxia or oxygen-glucose deprivation
(OGD) on fEPSP recordings. (a) Slices were superfused with hypoxic
aCSF for 10 min as indicated by the horizontal bar. n = 7 CD73+/+ or 9
CD732/2 mice. (b) Slices were superfused with hypoxic glucose-free
aCSF for 3 min as indicated by the horizontal bar. n = 5 CD73+/+ or 4
CD732/2 mice. There were no significant differences between
genotypes.
doi:10.1371/journal.pone.0039772.g006

Regulation of Adenosine Levels in CD732/2 Mice
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TNAP is an important source of adenosine in CD732/2

but not CD73+/+ mice and contributes to adenosine
production during oxygen-glucose deprivation

Similar to adenosine and ATP, AMP (10 mM) inhibited synaptic

transmission in hippocampal slices from both CD73+/+ and

CD732/2 mice; after 10 min, fEPSP values were 7862 and

7361, respectively (Fig. 7A). For CD732/2, but not CD73+/+,

slices, this inhibition was attenuated by the application of TNAP-I

(10 mM); after 10 min, fEPSP values were 9761 and 6863,

respectively (Fig. 7A). TNAP-I produced a significant increase in

fEPSPs in CD732/2 hippocampal slices, consistent with a

decrease in basal adenosine production; after 10 min fEPSPs

were 11362 and 9961 for CD732/2 and CD73+/+, respectively

(p,0.05). Selectively in CD732/2 slices, pre-treatment with

TNAP-I abolished the inhibitory effects of 10 mM ATP (Fig. 7B).

Nucleotidase assays were performed to test the effect of TNAP-

I. As shown in Fig. 7C, no effect of TNAP-I was observed in

CD73+/+ cortical membranes, but a significant inhibition of

adenosine production, from 360.2 to 0.760.1 pmol/mg protein,

was observed in CD732/2 samples.

To test the contribution of TNAP to inhibition of fEPSPs by

hypoxia or oxygen-glucose deprivation, slices were superfused with

TNAP-I prior to, during and following hypoxia (10 min) or

oxygen-glucose deprivation (3 min) (Fig. 8A–B). In slices from

CD732/2 mice, TNAP-I produced an increase in basal synaptic

transmission and decreased synaptic inhibition produced by

transient oxygen-glucose deprivation (Fig. 8B) but not hypoxia

(Fig. 8A).

TNAP expression is unchanged in CD73 2/2 mice
Since TNAP-I selectively enhanced synaptic transmission in

slices from CD732/2 and not CD73+/+ mice, RT-PCR and

quantitative PCR were performed to examine for a genotype

difference in expression of TNAP. RT-PCR indicated that TNAP

was similarly expressed in hippocampus from CD73+/+ and

CD732/2 mice (data not shown). PCR data from CD73+/+ and

CD732/2 cortex cDNA were normalized to their respective b-

actin values and expressed relative to CD73+/+ TNAP gene

expression using the 22DDCT method [21]. No significant

difference in TNAP expression was detected: means and 95%

confidence intervals were 1.00 (0.70–1.42) and 0.76 (0.52–1.13) for

CD73+/+ and CD732/2, respectively.

Discussion

For the present study, we used CD732/2 mice and tested the

hypothesis that CD73 is required for basal and hypoxic/ischemic

adenosine production in the CA1 region of the hippocampus. The

main findings were that (1) CD73 metabolizes AMP to adenosine

in cortical membranes and hippocampal slices; (2) CD73 is not

required for the inhibitory effects of ATP in hippocampal slices;

and (3) CD73 is not required for the inhibitory effects of adenosine

observed in hypoxia or OGD. These data indicate the presence of

another enzyme involved in the metabolism of extracellular ATP

to adenosine. We show that TNAP-I inhibits responses to ATP

and AMP selectively in CD732/2 hippocampal slices but it has

only a modest effect to attenuate synaptic inhibition in OGD.

Therefore, the effects of exogenous ATP and endogenous

adenosine are largely independent of both CD73 and TNAP in

wild type mice.

We recently reported that transgenic mice expressing bidir-

ectionalhENT1 in neurons showed decreased adenosine A1

receptor-mediated effects during basal conditions as well as during

hypoxia and oxygen-glucose deprivation [9]. From these data we

concluded that neuronal ENTs were more important for

adenosine uptake than release and suggested that ATP released

as a gliotransmitter from astrocytes may be an important source of

adenosine during basal conditions as well as during conditions of

hypoxia and oxygen-glucose deprivation. To follow up on these

findings, we performed the experiments described here, with

Figure 7. Inhibition of fEPSPs by AMP or ATP is reduced by
TNAP-I selectively in CD732/2 slices. (a) Hippocampal slices from
CD73+/+ and CD732/2 mice were superfused with 10 mM AMP as
indicated by the horizontal bar. After 15 min recovery, slices were
superfused with 10 mM AMP plus 10 mM TNAP-I as indicated by the
second horizontal bar. n = 3 CD73+/+ and 3 CD732/2. Significant
differences between genotypes are indicated by dashed lines;
p,0.05; unpaired t-tests. (b) Hippocampal slices from CD73+/+ and
CD732/2 mice were superfused with 10 mM TNAP-I and, after 10 min,
with 10 mM ATP as indicated by the horizontal bars. n = 3 CD73+/+ and 3
CD732/2. Significant differences between genotypes are indicated by
dashed lines; p,0.05; unpaired t-tests. (c) Inhibition of metabolism of
[14C]AMP to [14C]adenosine, [14C]inosine and [14C]hypoxanthine by
TNAP-I was determined using membrane preparations from cerebral
cortices. n = 4 CD73+/+ and 4 CD732/2. *p,0.05, relative to absence of
TNAP-I; unpaired t-test. Ado, adenosine; Ino, inosine; HX, hypoxanthine.
doi:10.1371/journal.pone.0039772.g007
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CD732/2 mice. Our results do not provide support for an

important role of CD73 in metabolizing extracellular ATP to

adenosine during basal or hypoxic/ischemic conditions, but do

point to TNAP as a potential source of extracellular adenosine

when CD73 is absent.

Our electrophysiology data could suggest that ecto-59-nucleo-

tidase activity was still present in CD732/2 mice. We confirmed

the absence of CD73 using both PCR and reverse transcriptase

PCR. In addition, we performed nucleotidase assays and found

that CD73+/+ mouse brain samples clearly exhibited this activity,

and at least 90% of this activity was lost in samples from CD732/2

mice. Furthermore, AOPCP inhibited adenosine production from

AMP only in samples from CD73+/+ mice. Metabolism of

[14C]AMP to adenosine was also examined using hippocampal

slices and electrical stimulation was applied to reproduce the

conditions of slice electrophysiology. [14C]Adenosine was pro-

duced by slices from CD73+/+ mice but was very low in slices from

CD732/2 mice. Thus, CD73 is an important enzyme that

produces adenosine from exogenously applied AMP, both in

hippocampal slices and brain membrane preparations; however, it

is possible that another enzyme is important in the membrane

microdomains that contain A1 receptors.

The importance of CD73 for synaptic inhibition produced with

ATP was examined. Although we hypothesized that the inhibitory

effects of ATP, on synaptic transmission in hippocampal slices,

would be abolished or significantly attenuated in slices from

CD732/2 mice, this was not the case. Not only was the potency of

ATP similar between CD73+/+ mice and CD732/2 mice, the

potency was similar to the potency of adenosine, as shown here

and as previously reported [1–3]. Previous studies have reported

that the inhibitory effects of ATP are mediated by adenosine

acting at A1 receptors, as they are blocked by A1 receptor

antagonists and are not evident in adenosine A1 receptor2/2 mice

[1]. ATP analogues such as ATPcS, b,c-imido-ATP, and b,c-

methylene-ATP have similar potency for inhibiting fEPSPs as

adenosine and ATP [1,2,5]. As the effects of these analogues are

inhibited by adenosine deaminase and DPCPX, and potentiated

by the nucleoside transport inhibitor dipyridamole, it was

concluded that these ATP analogues require metabolism to

adenosine and activation of A1 receptors for their effects [1,2].

The availability of CD732/2 mice allowed a new approach to

evaluate the role of CD73 in regulating adenosine levels. However,

instead of establishing the importance of CD73 for the inhibitory

effects of ATP, our results support the opposite conclusion.

In the present study, DPCPX increased synaptic activity by

blocking A1 receptor activity mediated by basal adenosine levels.

DPCPX was effective in both preventing (Fig. 5) and blocking

(Fig. 4) the inhibitory effects of ATP, as has been reported

previously using theophylline [3] or 8-cyclopentyltheophylline [1].

NBTI, which decreased synaptic transmission by reducing cellular

uptake of adenosine and enhancing basal adenosine levels, added

to the inhibitory effect produced by ATP. AOPCP had no effect

on synaptic transmission, indicating that CD73 was not involved

in regulating basal adenosine levels. Attenuation of the effects of

AMP by AOPCP has been reported previously by some [6] but

not by others [3]. The effects of DPCPX, NBTI and AOPCP were

similar in CD73+/+ and CD732/2 slices, indicating that CD73 is

not required for basal adenosine formation or adenosine formation

from exogenous ATP.

Both hypoxia and oxygen-glucose deprivation decrease synaptic

transmission, which is, in part, mediated by adenosine acting at A1

receptors [22,23]. It has been reported that this adenosine is

formed extracellularly, subsequent to release of ATP from glia

[24]. However, from the data presented here, CD73 is not a key

enzyme required for extracellular adenosine formation during

these conditions.

One explanation for these data is that an enzyme other than

CD73 is responsible for the very rapid generation of adenosine

from released or exogenous ATP. TNAP is an enzyme that

metabolizes extracellular ATP and reduces ATP-dependent

inhibition of axonal growth in cultured neurons [14]. We

examined the effect of TNAP-I, reported to inhibit TNAP with

an inhibitory constant (Ki) of 600 nM [15]. Interestingly, the

inhibitory effects of AMP were significantly reduced by TNAP-I,

but only in slices from CD732/2 mice. Furthermore, synaptic

inhibition produced by oxygen-glucose deprivation was attenuat-

ed, but only in slices from CD732/2 mice. These data indicate

that TNAP is a significant contributor to adenosine production

when CD73 is absent. From quantitative PCR of cDNA samples,

we found similar expression of TNAP in CD73+/+ and CD732/2

brain samples, yet formation of [14C]adenosine from [14C]AMP

was significantly inhibited by TNAP-I in CD732/2 but not

CD73+/+ samples. Therefore, in the absence of CD73, TNAP had

a measurable effect on adenosine production, but this was not

evident in samples that contain CD73, likely because the abundant

CD73 activity masked the small contribution of TNAP. TNAP-I is

a selective inhibitor of TNAP [15] and TNAP expression was

similar in CD73+/+ and CD732/2 mice; however, it remains

possible that adaptive changes occurred as a result of the loss of

Figure 8. TNAP-I reduces oxygen-glucose deprivation (OGD)-
induced decreases in fEPSP recordings from CD732/2 mice.
Slices were superfused with TNAP-I as indicated by the horizontal bar
and were superfused with (a) hypoxic aCSF for 10 min or (b) hypoxic
glucose-free aCSF for 3 min as indicated by the second horizontal bar.
n = 6 CD73+/+ or 7 CD732/2 mice (a) or from n = 5 CD73+/+ or 8 CD732/2

mice (b). Significant differences between genotypes are indicated by
dashed lines. p,0.05; unpaired t-tests.
doi:10.1371/journal.pone.0039772.g008
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CD73 in CD732/2 tissues and these may underlie the different

effects of TNAP-I between the two genotypes.

The results reported here are in contrast to our previous

findings with cultured rat cortical neurons, astrocytes and co-

cultures of neurons and astrocytes [18,25] in which we found that

astrocytes and co-cultures, but not neuron cultures, produced

extracellular adenosine via a mechanism that was inhibited by

AOPCP. Similarly, several studies report that CD73 is important

for regulating adenosine levels in peripheral tissues during hypoxia

and inflammation [11,13,26]. These studies led us to propose that

ATP, released as a gliotransmitter, was an important source of

adenosine during basal conditions, hypoxia/ischemia and treat-

ment with the ionotropic glutamate receptor agonist N-methyl-D-

aspartate. It has previously been reported that the gliotransmitter

ATP is important for adenosine production during basal

conditions and theta burst stimulation used to produce long term

potentiation, but not during hypoxic conditions [27,28]. It has also

been reported that adenosine is released directly and not produced

from extracellular ATP [29–32]. Thus, while several lines of

investigation indicate that cellular release of ATP and CD73

activity are important for producing extracellular adenosine, other

mechanisms for adenosine regulation are also evident. From the

studies reported here, we conclude that CD73 is not a key enzyme

for regulating extracellular adenosine levels, or adenosine A1

receptor activity, in basal or hypoxic/ischemic conditions in

hippocampal slices during low frequency stimulation.

Previously, we reported that neuronal ENTs are more

important for adenosine uptake than adenosine release during

low frequency stimulation of normoxic, hypoxic or ischemic

hippocampal slices [9]. Interestingly, a recent report [32]

concluded that ENTs were responsible for adenosine release from

hippocampal CA1 neurons during high frequency stimulation.

These experiments used intraneuronal delivery of inosine to

competitively inhibit ENT-mediated adenosine release and

attenuate the inhibitory effect of adenosine at its receptors.

Further research is required to reconcile these contrasting findings.

In conclusion, this study shows that CD73 is active in brain of

Wt mice but the absence of CD73 does not reduce the activation

of adenosine receptors that occurs in response to exogenous

application of ATP or in response to hypoxia or OGD. TNAP

activity was only evident when CD73 was absent and does not

appear to provide a significant contribution to adenosine

production in Wt mice. Whether another enzyme, perhaps

restricted to the membrane microdomains containing adenosine

A1 receptors, contributes to adenosine production in physiological

and pathological conditions remains to be determined.
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