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Abstract: The in vitro activity of L. donovani (promastigotes, axenic amastigotes and intracellular
amastigotes in THP1 cells) and T. brucei, from the fractions obtained from the hydroalcoholic ex-
tract of the aerial part of Hypericum afrum and the isolated compounds, has been evaluated. The
chloroform, ethyl acetate and n-butanol extracts showed significant antitrypanosomal activity to-
wards T. brucei, with IC50 values of 12.35, 13.53 and 12.93 µg/mL and with IC90 values of 14.94,
19.31 and 18.67 µg/mL, respectively. The phytochemical investigation of the fractions led to the
isolation and identification of quercetin (1), myricitrin (2), biapigenin (3), myricetin (4), hyperoside
(5), myricetin-3-O-β-D-galactopyranoside (6) and myricetin-3’-O-β-D-glucopyranoside (7). Myricetin-
3’-O-β-D-glucopyranoside (7) has been isolated for the first time from this genus. The chemical
structures were elucidated by using comprehensive one- and two-dimensional nuclear magnetic
resonance (1D and 2D NMR) spectroscopic data, as well as high-resolution electrospray ionization
mass spectrometry (HR-ESI–MS). These compounds have also been evaluated for their antiprotozoal
activity. Quercetin (1) and myricetin (4) showed noteworthy activity against T. brucei, with IC50 and
IC90 values of 7.52 and 5.71 µM, and 9.76 and 7.97 µM, respectively. The T. brucei hexokinase (TbHK1)
enzyme was further explored as a potential target of quercetin and myricetin, using molecular
modeling studies. This proposed mechanism assists in the exploration of new candidates for novel
antitrypanosomal drugs.

Keywords: antitrypanosomal; antileishmanial; hexokinase (TbHK1); docking; flavonoids;
Hypericum afrum

1. Introduction

Trypanosoma and Leishmania parasites are the etiological agents for the Trypanoso-
miasis and leishmaniasis diseases that affect millions of people worldwide [1]. The sand-fly
is the vector for Leishmania donovani, which is the etiological agent of visceral leishmaniasis
in humans, while the tsetse fly transmits trypanosomes of Trypanosoma brucei, which is the
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causative agent of human African trypanosomiasis (HAT), also known as sleeping sickness.
According to the World Health Organization’s (WHO) statistics, there are 12 million people
currently affected by leishmaniasis in 88 countries, and about 350 million people are at
risk. Approximately 500,000 people in sub-Saharan Africa are infected annually with the
African trypanosome (T. brucei), leading to thousands of deaths [1]. The socio-economic
impact of the morbidity and mortality caused by these protozoan parasites is significant,
particularly in tropical and subtropical countries [2,3].

In the last few decades, there has been an increased focus on developing treatments for
African trypanosomiasis. Although several antitrypanosomal agents from plants have been
characterized, great efforts are still needed to search for more antiparasitic compounds that
have been evolutionarily derived from nature.

The bite of a tsetse fly is responsible for the transmission of T. brucei, which quickly
adapts to the mammalian host and becomes the bloodstream form (BSF). The metabolism
of host glucose through glycolysis is essential for the BSF parasite to successfully infect
the host. In BSF parasites, the glycolysis of host glucose provides the sole source of ATP
production. The transfer of a phosphoryl group from ATP to glucose in glycolysis is
catalyzed by hexokinases (HK). T. brucei expresses two hexokinase genes encoding T. brucei
hexokinase 1 (TbHK1) and 2 (TbHK2), enzymes which are essential for the BSF parasite.

The Hypericum genus belonging to the Hypericaceae family has been reported to
be a prolific source of various secondary metabolites, such as flavonoids, prenylated
phloroglucinols, naphthodianthrones, and volatile oils, with a wide range of biological
activities, such as antidepressant, antiseptic, wound-healing, antioxidant, antiviral, anti-
inflammatory and antidiabetic. Recently, studies on several Hypericum species have
reported their antimicrobial activity against a number of bacterial and fungal strains [4–6].

The present study investigates the antileishmanial activity against L. donovani (pro-
mastigotes, axenic amastigotes and intracellular amastigotes in THP1 cells), and the antitry-
panosomal activity against T. brucei, of the fractions and isolated compounds of Hypericum
afrum Lam. Quercetin (1) and myricetin (4) were discovered to have higher activity against
T. brucei. Further virtual studies were carried out on TbHK1 as a target enzyme for in-
vestigating the probable mechanism of quercetin’s and myricetin’s inhibition of parasitic
growth. Quercetin and myricetin bind to TbHK1 proximal to the active site, and could be
cytotoxic to the African Trypanosoma parasite as a result of TbHK1 inhibition.

2. Results
2.1. Chemistry

Compounds 1–7 were identified as quercetin (1), myricitrin (2), biapigenin (3), myricetin
(4), hyperoside (5), myricetin-3-O-β-D-galactopyranoside (6) and myricetin-3’-O-β-D-
glucopyranoside (7) [7–13]. Compound 7 was isolated from the genus hypericum for
the first time. All the compounds were tested in vitro for their antiprotozoal activity. Pen-
tamidine was used as a positive control drug in the antileishmanial assays, while DMFO
(α-difluoromethylornithine) was used as the positive control drug in the antitrypanosomal
assay, which showed IC50 and IC90 values of 3.634 and 8.804 µM, respectively.

2.2. Antiprotozoal Activity

In this study, the in vitro antiprotozoal activities were evaluated for the Hypericum afrum
aerial parts’ fractions (CHCl3, EtOAc and n-butanol) and isolated pure compounds 1–7
(Figure 1; see also Supplementary Materials) against T. brucei. The fractions and pure
compounds were also tested against L. donovani promastigotes, axenic amastigotes and
intracellular amastigotes in THP1 cells, for the determination of general toxicity using
standard experimental procedures.
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Figure 1. Structure of isolated compounds (1–7).

None of the fractions or pure compounds showed in vitro antileishmanial activities
(Tables 1 and 2). Regarding the antitrypanosomal activity, the chloroform, ethyl acetate
and n-butanol fractions of H. afrum showed significant inhibitory activity against T. brucei
culture, with IC50 values of 12.35, 13.53 and 12.93 and with IC90 values of 14.94, 19.31
and 18.67 µg/mL, respectively. Only compounds 1 and 4 from the ethyl acetate fraction
were found to have antitrypanozomal activity. All the samples were simultaneously tested
against THP1 cell for the determination of general cytotoxicity.

Compounds 1 and 4 showed potent activity against T. brucei at IC50 values of 7.52 and
5.71 and IC90 values of 9.76 and 7.97 µM, respectively (Table 1).

2.3. Molecular Modeling Study

It is worth noting that the bloodstream form of T. brucei is reliant on the glycolytic
pathway to generate energy using host glucose as a sole source. Due to the limited
homology between the host and T. brucei glycolytic enzymes, this makes Hexokinase
(TbHK1) a good drug target. Inhibitors of TbHK1 are trypanocidal, with low expected
side effects.

A BLAST homology search identified Hexokinase KlHxk1 of the Kluyveromyces lactis
(PDB Accession code: 3O08) as the most suitable template. KlHxk1 was crystalized with
a high resolution of 2 Å. The target and template share 31% sequence identity and 51%
similar amino acids, and only 3% gaps were detected. Using protein family information
from PFAM, 14 amino acids were identified as having strictly conserved aligned positions
of the Hexokinase family, with E-values of 1.7 × 10−60, including Thr60, Gly84, Gly92,
Arg97, Gly157, Phe158, Phe160, Ser161, Pro163, Leu174, Trp177, Lys179, Asp214 and
Gly217 (Figure 2). Three major pockets were detected by Fpocket, one of which overlaps
with the possible sugar binding site (Figure 3). This site was selected for the docking of
the compounds. Myricetin showed a docking score of −8.31 (and IFD score: −743.41),
compared to −6.62 (IFD score: −735.48) for quercetin. The two compounds occupied the
same pocket with very similar conformation (Figure 4).

Quercetin exhibited hydrogen bonds with Ser161, Arg176, Thr178, Thr215 and Glu269,
and π–π interaction with Phe162. The additional hydroxyl group in myricetin did not
provide extra important interaction with the surrounding amino acids. On the other
hand, some of the interactions were lost, which could be attributed to a slight shifting
of the interacting functional groups of myricetin to allow for a proper placement of the
additional hydroxyl group inside the binding site. Molecular dynamics (MD) simulations
were conducted for 50 ns to study the stability and strength of ligand binding. The root
means square deviation (RMSD) is used as an indicator for interaction stability.
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Table 1. Antiprotozoal activity and cytotoxicity of isolated compounds of H. afrum.

Compounds
Codes Compounds Names

L. Donovani
Promastigote

IC50 (µM)

L. Donovani
Promastigote

IC90 (µM)

L. Donovani
Amastigote
IC50 (µM)

L. Donovani
Amastigote
IC90 (µM)

L. Donovani
Amastig-
ote/THP1
IC50 (µM)

L. Donovani
Amastig-

ote/THP1 IC90
(µM)

T. Brucei
IC50 (µM)

T. Brucei
IC90 (µM)

THP1
Cytotoxicity

IC50 (µM)

THP1
Cytotoxicity

IC90 (µM)

AMB Amphotericin 0.136 0.215 0.211 0.374 0.188 0.421 NT NT >2 >2
PENT Pentamidine 1.478 2.382 9.581 >10 1.157 5.587 0.001 0.002 >10 >10
DFMO difluoromethylornithine NT NT NT NT NT NT 3.634 8.804 NT NT

1 Quercetin >10 >10 >10 >10 >10 >10 7.52 9.76 >10 >10
2 Miricitrin >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
3 Biapigenin >10 >10 >10 >10 >10 >10 >10 >10 >10 >10
4 Myricetin >10 >10 >10 >10 >10 >10 5.71 7.97 >10 >10
5 Hyperoside >10 >10 >10 >10 >10 >10 >10 >10 >10 >10

6 Myricetin-3-O-β-D-
glucopyranoside >10 >10 >10 >10 >10 >10 >10 >10 >10 >10

7 Cannabiscitrin >10 >10 >10 >10 >10 >10 >10 >10 >10 >10

NT, not tested; IC-50 and IC-90 values are expressed as µM and are the mean ±S.D. of duplicate observations. Tested concentrations range: 0.4–10 ug/mL.

Table 2. Antiprotozoal activity and cytotoxicity of H. afrum fractions.

Fractions

L. Donovani
Promastig-

ote
IC50

(µg/mL)

L. Donovani
Promastig-

ote
IC90

(µg/mL)

L. Donovani
Amastigote

IC50
(µg/mL)

L. Donovani
Amastigote

IC90
(µg/mL)

L. Donovani
Amastig-
ote/THP

IC50
(µg/mL)

L. Donovani
Amastig-
ote/THP

IC90
(µg/mL)

T. Brucei
IC50

(µg/mL)

T. Brucei
IC90

(µg/mL)

THP1
Cytotoxicity

IC50
(µg/mL)

THP1
Cytotoxicity

IC90
(µg/mL)

Test conc.
(µg/mL)

CHCl3 >20 >20 >20 >20 >20 >20 12.35 14.94 >20 >20 20–0.8
EtOAc >20 >20 >20 >20 >20 >20 13.53 19.31 >20 >20 20–0.8
BuOH >20 >20 >20 >20 >20 >20 12.93 18.67 >20 >20 20–0.8
AMB 0.138 0.188 0.304 0.362 0.187 0.264 NT NT >2 >2 2.0–0.08
PENT 1.478 2.382 9.581 >10 1.157 5.587 0.001 0.002 >10 >10 0.02
DFMO NT NT NT NT NT NT 3.634 8.804 NT NT 20–0.8

NT, not tested; IC50 and IC90 values are expressed as µg/mL.
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RMSDx =

√√√√ 1
N

N

∑
i=1

(r′i(tx)− ri

(
tre f

)
)

2

N is the number of atoms in the system,
tref is the reference time,
r′i is the position of the selected atoms (i) in frame x,
tx is the record time of frame x.

Myricetin showed a stable pose in the binding pocket over the course of the MD
time. It showed an RMSD value of ~3.0 Å, which is comparable to the 2.4 Å of the protein
backbone, while quercetin showed a high RMSD value of ~15.0 Å compared to that of
the protein backbone (2.9 Å). The binding mode of quercetin required the first 10 ns to
adopt the most stable pose in the binding pocket (Figure 5). The reference interaction site
model (RISM) solvation approach was used to investigate the location and stability of
water molecules (Figures 6 and 7).
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Possible water molecule locations were computed and thermodynamically analyzed.
The absolute protein–ligand binding free energies were then calculated using the water
swap method to rank quercetin and myricetin, by relying on the fact that protein–ligand
binding is a competition between ligand and water for binding to the pocket (Figure 8).
Because this approach allows for the decomposition of ∆G on a per-residue basis, it permits
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the identification of which amino acid residues favor binding to ligand or water (Figure 9).
The free energy of binding is calculated in kcal/mol for each ligand with different methods,
including Bennett, thermodynamic integration (TI), free energy perturbation (FEP) and
TI Quadrature. The results in kcal/mol for myricetin are as follows: Bennett, −15.34;
TI, −14.15; FEP, −14.14; and TI Quadrature, −14.23. Those of quercetin are Bennett, −9.92;
TI, −9.28; FEP, –8.84; and TI Quadrature, −9.6. Then, a consensus-calculated free energy
of binding was defined from a weighted arithmetic mean of the Bennett (50%), TI (30%),
and FEP (20%) free energy estimators. The consensus is −14.74 for myricetin and −9.51
for quercetin.
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3. Discussion

Flavonoids isolated from different natural resources were reported to exhibit moder-
ate to high in vitro antitrypanosomal activity against T. brucei. Our results showed that
the chloroform, ethyl acetate and n-butanol fractions of H. afrum exhibited potent antitry-
panosomal activity against T. brucei, with IC50 values of 12.35, 13.53 and 12.93 and with IC90
values of 14.94, 19.31 and 18.67 µg/mL, respectively. Quercetin and myricetin were isolated
from the EtOAc fraction, and showed good activity towards T. brucei, with IC50 values of
7.52 and 5.71, and IC90 values of 9.76 and 7.97 µM, respectively. A future examination of
the chloroform and n-butanol fractions might yield bioactive molecules.

Quercetin and structurally related flavonoids possess several biological and phar-
macological activities. Quercetin and myricetin are dietary flavonoids with promising
activities, including antioxidant, anti-inflammatory, cardiovascular, and others [14,15]. The
mechanism of action for quercetin and myricetin as antiparasitics has been postulated as
follows: these flavonoids can disrupt the mitochondrial function on the parasites, and most
likely inhibit different enzymes, including shock proteins, topoisomerases and kinases,
among others. They could also show indirect activity through the induction of microbicidal
responses, for example, the production of various cytokines and the production of nitric
oxide [16]. Hexokinase (TbHK1) enzymes have been shown to be promising targets on
T. brucei [17,18]. Quercetin and myricetin were identified as inhibitors of TbHK1, and
showed IC50 values of 4.1 and 48.9 µM, respectively [16]. These results support the idea
of considering TbHK1 as a target for antiparasitic activities. These results were further
confirmed by our computational studies.

Quercetin has been reported as a potent antileishmanial agent; however, in our study,
we did not find it [19].

4. Material and Methods
4.1. General Experimental Procedures

Melting points were determined on an Opti-Melt automated melting point system
(Stanford Research Systems), and were uncorrected. IR spectra were recorded using an
Agilent model Cary 630 FT-IR. Optical rotations were recorded using a Rudolph Research
Analytical Autopol V Polarimeter. UV was obtained using a Perkin–Elmer Lambda 3B
UV/vis spectrophotometer. 1H- and 13C-NMR spectra were obtained on Bruker model
AMX 500 and 400 NMR spectrometers with standard pulse sequences, operating at 500
and 400 MHz in 1H and 125 and 100 MHz in 13C. The coupling constants were recorded
in Hertz (Hz). Standard pulse sequences were used for COSY, HMQC, HMBC and DEPT.
All spectra were run at 25 ◦C. High-resolution mass spectra (HRMS) were measured on
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a Micromass Q-Tof Micro mass spectrometer with a lock spray source. Column chro-
matography was carried out on silica gel (70–230 mesh, Merck, Darmstadt, Germany),
C18 SPE (500 mg Bed, Thermo scientific, Waltham, MA, USA), Diaion HP-20 (Sorbetch
technologies, Norcross, GA, USA), MN-polyamide-SC-6 (Sigma Aldrich, St Louis, MO,
USA) and Sephadex LH-20 (Sigma Aldrich, St Louis, MO, USA). TLC (silica gel 60 F254,
EmD Millipore Sigma, Darmstadt, Germany) was used to monitor the fractions from
column chromatography. Preparative TLC was carried out on silica gel 60 PF254 + 366
plates (20 cm × 20 cm, 1 mm thick). Visualization of the TLC plates was achieved with
a UV lamp (λ = 254 and 365 nm) and an anisaldehyde/acid spray reagent (MeOH-acetic
acid-anisaldehyde-sulfuric acid, 85:9:1:5). The absolute configurations of the sugar moieties
of all tested flavonoid glycosides have been identified by the UPLC-UV/MS method [20].

4.2. Plant Material

The aerial parts of Hypericum afrum (Lam.) were collected from the El Kala region,
El Tarf, in northeastern Algeria, in July 2011. A voucher specimen (UM-10012014) was
deposited in the culture collection of the Department of BioMolecular Sciences, University
of Mississippi.

4.3. Extraction and Isolation

Extraction and isolation. Dried powdered aerial parts (1000 g) of H. afrum were
macerated at room temperature with EtOH–H2O (80:20, v/v) over 24 h, three times. The
filtered solvents were combined and evaporated under vacuum at a temperature of 40 ◦C
to give a residue (30 g). The obtained extract was suspended in water (800 mL) and
successively partitioned with CHCl3, EtOAc and n-butanol, yielding 500 mg (CHCl3), 7g
(EtOAc) and 12g (n-butanol) fractions, respectively.

The EtOAc fraction (7 g) was chromatographed on a silica gel column and eluted with
a CH2Cl2–MeOH solvent system of increasing polarity to yield 10 subfractions (E-1–10)
according to their TLC behavior. The subfraction E-3 (115mg) was further chromatographed
on the column of a Sephadex LH-20 with CH2Cl2–MeOH (1:1) as the eluent yielding
compound 1 (16 mg) as a yellow precipitate. A yellow precipitate was obtained from the
subfraction E-7 (40% MeOH in CH2Cl2). The solid was combined and subjected to a column
of Sephadex LH-20 eluted with methanol to furnish compound 2 (7 mg). The subfraction E-
4 (10% MeOH) (423 mg) was chromatographed on Sephadex LH-20 eluted with methanol
to furnish compound 3 (10 mg). Subfraction E-5 (125 mg) was chromatographed on a
Sephadex LH-20 column with Methanol and further purified by preparative TLC eluted
with CHCl3–MeOH (10:1) to afford compound 4 (15 mg).

The n-butanol fraction (12 g) was subjected to column chromatography over Diaion
HP-20 to afford three subfractions: A (H2O 100%), B (50% Me0H in water) and C (100%
MeOH). Subfraction C (8 g) was subjected to polyamide column chromatography to
give 13 subfractions (C-I to C-XIII). Then, 5 g of the subfraction C-X (100% methanol) was
chromatographed on MN-polyamide-SC-6 CC (250 g), eluted with water to equilibrate, then
with gradient–decreased polarities with a water–methanol system to yield 8 subfractions
(C-X-1 to C-X-8). Subfraction C-X-4 (50 mg) was further subjected to a column of Sephadex
LH-20 (20 g) eluted with MeOH-CH2Cl2 (1:1) to afford compound 5 (4.0 mg). C-X-5 (70
mg) was subjected to a column of Sephadex LH-20 (30 g) eluted with MeOH-CH2Cl2 (1:1)
to afford compounds 6 (5.0 mg) and 7 (10.6 mg).

4.4. In Vitro Antileishmanial and Antitrypanosomal Assays

The in vitro antileishmanial and antitrypanosomal assays were performed on cell cul-
tures of L. donovani promastigotes, axenic amastigotes, THP1-amastigotes, and Trypanosoma
brucei trypomastigotes, by Alamar Blue assays [21]. The conditions for seeding the THP1
cells, the exposure to the test samples and the evaluation of cytotoxicity were the same as
described in the parasite rescue and transformation assay [22]. IC50 and IC90 values were
computed from the dose–response curves using XLfit software. DFMO (difluoromethy-
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lornithine) was used as the positive control. The antiprotozoal activities of the H. afrum
fractions and isolated compounds were evaluated in vitro against L. donovani promastig-
otes, axenic amastigotes and intracellular amastigotes in THP1 cells. The fractions and
some isolated compounds were also evaluated against T. brucei trypomastigote forms.
All the fractions and compounds were simultaneously tested against THP1 cell for the
determination of general cytotoxicity [22].

4.5. Methods: Molecular Modeling

The amino acid sequence of TbHK1 was downloaded from the Uniprot database
(www.uniprot.org)(accessed on 1 December 2019). Prime was used to build the 3D model
of the target [23–25]. To find the appropriate template, a BLAST homology search was
initiated with default options. The globally conserved residues were also identified through
the standard Prime search algorithm. The alignment between the target sequence and the
template was calculated to define the complementary secondary structure information
using the Prime STA option. An all-atom model was constructed using the knowledge-
based method. Hydrogen bond assignment and restrained minimization options were used
to fix and relax the generated model. Loop refinement was performed for the model to
optimize the loops’ conformation. Fpocket [26] was then used to detect the ligand binding
sites in the model. We used Glide for the molecular docking step. The receptor grid was
prepared by selecting the amino acids defining the pocket detected by Fpocket. To allow
for more space for the ligands in the binding pocket, scaling of the van der Waals radii by a
factor of 0.8 was employed to soften the potential of the nonpolar parts of the receptor. The
prepared ligands were docked using Glide SP docking precision [27–31]. The best-docked
pose was saved for each ligand. Then, these poses were used for the molecular dynamics
simulation [32,33], 3D-RISM [34–37] and WaterSwap [38,39] steps. The two complexes were
solvated in an orthorhombic box using a TIP4P water solvation model in Desmond System
Builder. Appropriate numbers of sodium ions were added to the system to neutralize the
net charge on the protein. The OPLS3 force field was selected for the simulation run. After
a series of energy minimizations and short simulations, the NPT ensemble was set for the
MD production step. Intervals of 25 ps were used to save the coordinates and the MD
simulations were set for 50 ns. The protein–ligand complex was prepared as recommended
for the 3D-RISM calculation. The grid was defined for the whole protein and the calculation
was performed using the XED force field. We used a grid spacing of 0.3 Å with a grid
external width of 14.0 Å. The convergence tolerance was set to 10−8 and the total formal
charge was neutralized with counter ions. A WaterSwap calculation was conducted for
the ligands. The normal calculation method was chosen. The charge method was set to
Gasteiger, and the solvation box buffer dimension was defined as 10.0 Å. The system was
equilibrated for 100 ps using OpenMM.

5. Conclusions

The in vitro antitrypanosomal evaluation of the Hypericum afrum Lam. species against
T. brucei revealed that the CHCl3, EtOAc and BuOH fractions possess potent antitrypanoso-
mal activity. Furthermore, the fractionation of these fractions led to the isolation and
characterization of quercetin and myricetin as the potent components. Quercetin (1) and
myricetin (4) showed good antitrypanosomal activity towards T. brucei, with IC50 and IC90
values of 7.52 and 5.71, and 9.76 and 7.97 µM, respectively.

The present study reports for the first time the antiprotozoal properties of the Algerian
species Hypericum afrum Lam., contributing to the phytochemical and pharmacological
knowledge of this species. Moreover, this species could be a source of new antitrypanoso-
mal agents.

The mechanism of antitrypanosomal activity was investigated using molecular dock-
ing studies on the potential target enzyme T. brucei Hexokinase (TbHK1). Docking studies
of molecules (1) and (4) revealed their strong affinity towards Hexokinase (TbHK1) as a
target of T. brucei.

www.uniprot.org
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