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Background. The tumor immune microenvironment (TIME) played an important role in immunotherapy prognosis and
treatment response. Immune cells constitute a large part of the tumor microenvironment and regulate tumor progression. Our
research is dedicated to studying the infiltrating immune cell in lung adenocarcinoma (LUAD) and seeking potential targets.
Methods. The scRNA-seq data were collected from our FDZSH and two public datasets. The code for cell-type mapping
algorithms was downloaded from the CIBERSORTx portal. The bioinformatics data of LUAD patients could be approached
from The Cancer Genome Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) and least absolute
shrinkage and selection operator (LASSO) analyses were performed to construct a risk model. TIMER2 and TIDE helped with
the immune infiltration estimation, while PROGENy helped the cancer-related pathways’ enrichment analysis. GSE31210
dataset and IMVigor ICB therapy cohort validated our findings as the external validation datasets. Results. We clustered the
scRNA-seq dataset (integrating our FDZSH datasets and other public datasets) into 23 subpopulations. After curated cell
annotation, we implemented Cibersort and WGCNA analysis to anchor the brown module and natural killer cell clusterl due
to the most relationship with tumor trait. The overlap of the brown module gene, natural killer cell signature, and DEGs of
tumor and adjacent normal samples was screened by LASSO Cox regression. The obtained 5-gene risk model showed an
excellent prognostic performance in the validation dataset. Furthermore, there was a correlation between risk score and tumor-
infiltrating immune cells and tumor genomics abnormity. Patients with higher risk scores had a significantly lower
immunotherapy response rate. Conclusion. Our observations implied that immune cells played a pivotal role in TIME and
established a 5-gene signature (including IDH2, ADRB2, SFTPC, CCDC69, and CCND2) on the basement of nature killer
markers targeted by WGCNA analysis. The significance of clinical outcome and immunotherapy response prediction was
validated robustly.

1. Introduction

Lung cancer is the most common cancer and the most prev-
alent cause of tumor-related death in the world [1]. Lung
adenocarcinoma (LUAD) accounts for 85% of cases [2, 3].
Despite the significant advance in LUAD multidiscipline
treatment, including surgery, chemotherapy, radiotherapy,
and especially targeted therapy, the five-year survival rate

of patients with LUAD remains discouragingly low. As the
merging therapy, immunotherapy holds tremendous prom-
ise in controlling or even eradicating residual disease and
improving cancer treatment and prognosis [4], but many
patients still do not respond to anti-PD-1/PD-L1 immuno-
therapy. The current opinion is that the reciprocal regulation
between tumor cells and tumor-infiltrating immune cells
shapes the immune status of the TME [5] and may
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F1GURE 1: The landscape of sc-RNA seq cluster and annotation. (a) The Umap plot of three derived datasets of our analysis. (b) The normal
and tumor type of cells. (c) The original Umap plot of the 24 clusters. (d) The cell annotation of the clusters.
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FIGURE 2: The cell annotation and the specially expressed genes in subgroups. The conserved expressed marker genes of cancer cells (a),
epithelial cells (b), fibroblast (c), macrophages (d), myeloid cells (e), nature killer cells (f), and T cells (g).

determine the outcome of cancer progression. Hence, the
comprehensive analysis of the immune cells in LUAD
patients facilitates the exploitation of novel biomarkers to
predict the treatment response and disease prognosis.

With the development of sequencing technology over
the past decade, molecular prognostic markers of tumors
based on RNAseq technology emerged in endlessly. As a
hot new technology in transcriptional analysis, scRNA-seq
technology enables single-cell sequencing technology to
reveal cellular gene expression that cannot be detected by
bulk RNA sequencing [6]. Single-cell sequencing is mostly
used to identify cell subgroups and pedigree analysis ini-
tially. With the maturity of scRNA-seq, single-cell sequenc-
ing technology in analyzing the tumor microenvironment
is starting to become mainstream in oncology research. Cur-
rently, the exploration and in-depth analysis of scRNA-seq
data of tumor specificity are still of great significance for
the mass use of bulk RNA sequencing to characterize differ-
ent cell subsets for using bulk RNA sequencing to character-
ize different cells subsets in large quantities.

This study integrated scRNA-seq data from our hospital
and two external public databases with curated cell identity
annotations. Furthermore, weighted gene coexpression net-
work analysis (WGCNA) was implanted on the normal
and tumor samples of the TCGA-LUAD cohort to explore
the key module and cluster associated with tumor status.
Consequently, the hub gene was selected to construct a
five-gene risk model by the least absolute shrinkage and
selection operator (LASSO) Cox regression algorithm and
AUC validation. Our downstream analysis proclaimed the
prospect and functionality of the signature in immune infil-
tration, mutational status, oncogenic pathways, and clinical
prognosis; our results provide new sight into the immune
cells in tumor heterogeneity and biomarker mining.

2. Materials and Methods

2.1. Single-Cell RNA Sequencing Data Collection. Fourteen
primary LUAD patients who had received surgical resection
in the Department of Thoracic Surgery in Zhongshan Hos-
pital (FDZSH) were included for scRNA sequencing [7].
The diagnosis of lung adenocarcinoma was confirmed in
each case by histopathological analysis. The other two public
datasets, two independent LUAD patient cohorts, were
downloaded from ArraryExpress (accession numbers E-
MTAB-6149 and E-MTAB-6653) and Human Cell Atlas
Data  Coordination  Platform  (accession  number
PRJEB31843).

2.2. The Process of scRNA Dataset Integration and Cell
Annotation. Preparation for single-cell transcriptomic
sequencing followed the protocol for the 10x Genomics
Chromium Single-Cell platform. Our previous published lit-
erature described the detailed tissue processing, and the
single-cell suspension was described in our previous pub-
lished literature [7].

We followed the Seurat v3 guidelines for the routine pro-
cedure. Cells expressing less than 200 genes or greater than
7000 genes or more than 20% mitochondrial genes were
removed in the cell QC procedure. After normalization
and PCA dimension reduction, the harmony [8] R package
was utilized for removing the batch effect. Cell clustering
was based on PCA dimensionality reduction using the first
20 PCs and a resolution value of 0.4. Marker genes manually
identified cell annotation in the CellMarker database (http://
biocc.hrbmu.edu.cn/CellMarker/) with the assistance of Sin-
gleR [9] and scType [10]. The marker genes of each cluster
were conducted by the function FindAllMarkers() with the
default parameters.
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FIGURE 3: The mining of the hub module in WGCNA analysis. Determination of key module and key cluster in LUAD. (a) The cell
abundance of the 23 clusters in bulk RNA seq of the TCGA-LUAD normal and tumor samples. (b) The sample clustering plot to
remove outlier samples. (c) The scale-free fit index for various soft-thresholding powers. (d) dendrogram based on different metrics
before and after merging small modules. (e) The nine modules, with the number in parentheses, represent the transcript number. Each
row corresponds to a module, and each column corresponds to a cluster cell abundance. The color scale on the right shows module-trait
correlations from 1 (red) to —1 (blue). Each cell at the row-column intersection’s background color represents the correlation coeflicient
between the modules and clusters. The red color indicates a high degree of positive correlation, and the blue indicates a high degree of
negative correlation between each module and the clusters. Each cell also contains the corresponding p signatures (bottom symbols).

2.3. The TCGA Data Collection and Analysis. The bulk RNA
sequencing (RNA-seq), genomics data, and clinical features
of The Cancer Genome Atlas (TCGA)-LUAD tumor and
adjacent normal samples were collected from the UCSC
Xena (https://gdc.xenahubs.net). The differential gene
analysis between the 56 paired tumor and normal sample
of TCGA-LUAD was performed using the R package
limma [11] with the threshold (FDR<0.05 and Log(
Foldchange) > 1).

2.4. The CIBERSORTx and WGCNA Analysis. The cell type
abundance of TCGA samples from our scRNA-seq annota-
tion was calculated by CIBERSORTXx [12] using our custom-
ized signature matrix. The customized cell-type-specific
signature genes were created by the creation feature of
CIBERSORTx (https://cibersortx.stanford.edu). WGCNA

was performed using the R package WGCNA [13] (version
1.70). Firstly, we chose both normal and tumor TCGA-
LUAD samples for the analysis; the outlier sample was
removed by setting the cutHeight 140. The soft power was
determined by the pickSoftThreshold() function and setting
the networkTYPE = “unsigned.” Power of 5 was chosen. We
set WGCNA “mergeCutHeight” to 0.25 and merged the
similar small module to identify nine modules. Of the nine
WGCNA modules, the gray module includes genes that do
not coexpress and are unassigned to a coexpression net-
work; therefore, the gray module was excluded from our
analysis.

2.5. LASSO Algorithm Model Construction. LASSO is a
widely used regression method appropriate for analyzing
data with high dimensions and strong relationships like
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FIGURE 4: The construction of the risk model. The volcano plot of DEGs in the TCGA-LUAD cohort (a). The Venn plot identified the two
overlap analyses of upregulated DEGs(b)/downregulated DEGs(c), brown module genes, and NK cell clusterl signature genes. (d) The
LASSO coefficient profile plot shows the correlation between the deviance and log (1). (e) The partial likelihood of deviance for the

LASSO Cox regression analysis.

high-throughput data. We used the R package glmnet to per-
form the LASSO Cox regression analysis as previously
described [14], including a built-in crossvalidation function
to adjust the L1 regularization variable lambda for candidate
feature selection. The R caret package (https://cran.r-project
.org/package=caret) was applied to build the classification of
the TCGA-LUAD cohort and assess machine learning classi-
fiers for the classification task.

2.6. Immune Infiltration Estimation and Genomic Analysis.
The immune infiltration and cell composition estimation
of TCGA patients were based on the TIDE (http://tide
.musc.edu/) and TIMER2 (http://timer.cistrome.org/). The
MAPF file was used to illustrate the distribution of mutation
frequency and status by the R package maftools [15]. Tumor
mutational burden (TMB) was calculated as the number of
somatic base substitutions or indels per megabase (Mb) of
the coding region target territory of the test (currently,
1.11 Mb). The stemness data was from previous researchers’
articles [14, 16, 17].

2.7. Statistical Analysis. The statistical analysis was conducted
using R4.2.0. The Log-rank survival analysis and univariate
and multivariate Cox proportional hazards regression by the
stepwise method were performed using “survival” and “surv-
miner.” The nomogram construction, validation, and calibra-
tion were performed and plotted using “rms” and “Hmisc”
packages. The statistical analysis was performed via unpaired
Student’s t-test analysis or Wilcoxon signed rank test unless
otherwise specified. All p values were two-sided, and p < 0.05
indicated statistical significance (xp value < 0.05, **p value
< 0.01, ***p value < 0.001).

3. Results and Discussion

3.1. The Identification of Cell Type Based on the Integrated
ScRNA-Seq Datasets. First, we performed the routine quality
control and normalization before integrating three datasets’
scRNA-seq data by harmony algorithm. Figures 1(a) and
1(b) show the panoramic integration of three datasets across
normal and tumor samples, demonstrating the robustness of
our batch integration. After performing the PCA and UMAP
dimension reduction, we identified 23 clusters. Using the
FindAllMarkers() function (Threshold: LogFC:1), we defined
the signature genes of each cluster. Each cluster’s label was
firstly annotated by the SingleR and scType automatically.
The final curated annotation was completed via the Cell-
Marker database. The detailed information on cell cluster
identification was demonstrated in Table S1.

During the cell annotation, universal marker genes clas-
sified the main cell type shown in the dotplot in Figure S1.
Some subgroups of cell clusters were also defined. As four
subclusters of cancer cells, clusters 3, 7, 9, and 16
expressed specially SCGB3A1, TMC5, PCP4, and AKRICI
genes. Cluster 14 especially expressed TOP2A, indicating
the proliferation potential of the epithelial cells. Cluster 5
highly expressed the DCN, the main fibroblast marker
gene. The macrophages (Figure 2(d)), myeloid cells
(Figure 2(e)), NK cell (Figure 2(f)), and T cell (Figure 2(g))
also had subgroups illustrated in Figure 2. These
subpopulations provide unique transcriptional signatures
that prompt us to investigate the functional heterogeneity
in further analysis.

3.2. The Anchoring of the Key Module and Genes by WGCNA
Analysis. Under the UMAP dimension reduction and cell-


https://cran.r-project.org/package=caret
https://cran.r-project.org/package=caret
http://tide.musc.edu/
http://tide.musc.edu/
http://timer.cistrome.org/

10

Journal of Immunology Research

Risk score

14 - -
2 _
S
= 10 H
£ 81
ER N
=3 . o o
s 2 'u“?.‘
[ oo ©
T
1]
e Dead
o Alive
ADRB2
SPOCK2
SFTPC
CCDC69
CCND2 |
Type
High
Low

R ° .. °. . .o‘
* e .l N ° ° °
St " ‘ ‘.w‘&“. OQQ
°
e DA
T
100 150 200 2 0
e High risk
o Low risk
3
H ‘ ‘ 2

|| ‘y I Iﬂ v

FiGure 5: Continued.

i

()



Journal of Immunology Research

Risk

Risk

100
>
£ o075
<
M=)
=]
S 050
£
£ 0254
w

0.00

5 6 7 8 9 1011 12 13 14 15

Time (Years)

Highrisk {12685 53 33 23 1411 6 2 2 1 0 0 0 0 0
Lowrisk 412611158 3215 9 6 4 3 2 1 1 1 1 0 0
01 2 3 45 6 7 8 9 1011 12 13 14 15

Time (Years)

1.00
+

ol
= 0.75 A
=
0
<
0
e
2050 4
=
2
>
z " + 4o
5 0.25 A H + f——t
3 p =0.040

0.00

01 23 456 7 8 9101112131415 16 17 18 19 20
Time (Years)

High risk{ 11990 56 3220 1211 9 6 4 4 3 3 3 3 3 3 3 3 1
Low risk 4 13010754 35 20 17 12 42220000000

8 6 5
7 8 9 10 11 12 13 14 15 16 17 18 19 20

001 23 456
Time (Years)

+ High risk
+ Low risk

(b)

Figure 5: Continued.

Sensitivity

Sensitivity

1.0 —7
0.8 + 7

0.6 + pid

0.4 -

0.2 - e
0047 AUC=10.703

T T T T T T

00 02 04 06 08 1.0

1-Specificity

1.0 —
0.8 - s

0.6 - L

0.4 - .
0.2 - s

00 -7 AUC = 0.658
T T T

00 02 04 06 08 1.0

1-Specificity

11



12

Journal of Immunology Research

Risk score
o
(=)}
|

Zf
-

04 4 ¢

20 4 . .

§ s -

?1 L4 °

[

E 104 o .

'—: ¢ ° ° % ® o *

2z 5] e o $ ¢ ey &S . o°

£ o 2ot o _wsed "ol b Lt

3 | QP ocleqg®

I R e Y ek
T T T T T T
0 50 100 150 200 250
e Dead e High risk
e Alive e Low risk

3
ADRB2
2
SPOCK?2 ‘ .
B
CCDC69
-2
CCND2
-3
Type
High
Low

FIGURE 5: The training and validation of the risk model. The distribution of risk scores and survival status (up) and the gene expression
heatmap (down) in training (a) and validating (c) dataset. (b) The survival plot (left) of the high-risk score group vs. low-risk group and

ROC curve plot (right) in the train and validate dataset.

type annotation of our datasets, we formulated the CIBER-
SOT progress to calculate the cell abundance based on the
transcriptome profile of our scRNA-seq. Considering the
heterogeneity of each cluster, we included all the clusters
rather than cell types to establish the signatures. The cell
abundance of tumor and normal samples in the TCGA-
LUAD database showed significant differences among 21 cell
subpopulations (Figure 3(a)) except for myeloid cells and
epithelial cells (clusters 11 and 16). The cell abundance of
effector immune cells like NK cell (cluster 1), B cell (cluster
13), and T cell (cluster 15) in the tumor are lower than in
paratumor tissue. Other immune cells like macrophages
and myeloid cells showed heterogeneity among subclusters.

WGCNA analysis was performed to determine the cor-
relation between gene expression module and cell abun-
dance of specific cell subpopulations. All 585 TCGA-
LUAD samples mingled with 59 adjacent and 526 tumor
samples. The hierarchical clustering results and deleted out-
lier sample are shown in Figure 3(b). Figure 3(c) showed that

the soft threshold selection process and a scale-free network
were successfully conducted (Figure S2). Finally, we
obtained nine modules after merging small modules
(Figure 3(d)). The correlation analysis between WGCNA
modules and tumor phenotype showed that the brown
module was most likely relevant to the tumor.
Correspondingly, the closest cell cluster was the NK cell
(cluster 1). Further investigation of the brown module
genes was conducted. The GO and KEGG enrichment
results are shown in Table S2 and Figure S2.

3.3. Construction and Validation of the Prognostic Value of
the Risk Model. Since the brown module and NK cell cluster
1 were identified in the WGCNA analysis, the further differ-
ential analysis on the expression profile of 56 normal/tumor
paired samples in the TCGA-LUAD cohort. With the
threshold p adjust value < 0.05 and logFC > 1, we obtained
1972 differential expressed genes (DEGs), of which 1048
genes were upregulated and 1048 were downregulated
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(Figure 4(a)). Venn diagram (Figures 4(b) and 4(c)) shows
the intersected genes across the up/downregulated DEGs,
NK cell cluster marker, and brown module’s genes. The
LASSO Cox model was conducted to build a prognostic
model. Figures 4(d) and 4(e) show the selection of optimal
lambda parameters for the LASSO model. The module for-
mula described as follows: RiskScore =—-0.213 * ADRB2 +
—0.241 * IDH2+-0.058 * SFTPC+-0.027 * CCDC69+—
0.138 * CCND2. The expression level of genes was calcu-
lated and normalized to Log2 (FPKM + 1).

The validation of our model was based on the TCGA-
LUAD cohort. The whole cohort was divided into the train
and validated dataset based on the recursive feature elimina-
tion classification algorithm, often used in machine learning.
Figures 5(a) and 5(c) show the risk score distribution of two
datasets. The overall survival plot showed that patients with
high-risk scores are more likely to have a poor prognosis.
The area under this model’s time-dependent ROC curve
(AUC) to predict the 12-month survival in the train and val-
idation dataset was 0.703 and 0.658. Considering the above
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and high-risk score group shows the top differential mutated genes. (e) Violin plot of tumor mutation burden between the two groups.

evidence, our model has a robust and accurate prediction for
the prognosis.

3.4. The Immune Landscape of Different Risk Groups in
LUAD. The immune cells in the tumor microenvironment
play an essential role in tumor prognosis. The association
between the risk score and infiltration of immune cells was
explored. The ESTIMATE formula computed the Immune-
Score and TumorPurity. Corresponding to the above result,
the high risk score tumors had statistically significantly
lower levels of immune infiltration (Figure 6(a)) (Immune-
Score: high vs. low: 1204 vs. 1812, p <0.001) and higher
tumor infiltration (TumorPurity: 0.692 vs. 0.599, p < 0.001
). Additionally, the mRNAsi stemness score in high group
was higher than low group (Figure 6(b)) (0.350 vs. 0.302, p
<0.001). The correlation analysis between the immune cell
abundance and a risk score is shown in Figures 6(c)-6(1).
The risk score was negatively correlated with the abundance
of CD8+ T cell, NK cell, neutrophil cell, macrophage M1,
myeloid dendritic cell, and memory B cell. CD4+ T cell
and macrophage MO positively correlate with a risk score.
The TIDE prediction score in the low-risk group was signif-
icantly lower than in the high-risk group, representing the
positive correlation between risk score and tumor immune
escape (Figure 6(m)). The barplot in Figure 6(n) shows the
predicted response of immunotherapy in the low and high
groups corresponding to the abovementioned results. A con-
clusion could be inferred from the above results that the risk
model could participate in regulating tumor microenviron-
ment via immune cell infiltration and had a predictive value
in immunotherapy response.

3.5. The Correlation between Risk Score and Genomic
Features. The investigation of the genomic features was con-
ducted to reveal the tumor characteristics in TIME. The dis-
tribution of variants and somatic interactions of the low-

and high-risk groups was shown in Figure 7(a) and
Figure S3. The commonly driven genes like EGFR, KRAS,
and KEAP1 mutated in a mutually exclusive manner. The
differentially mutated oncopathways between low- and
high-risk groups are shown in a forest plot in Figure 7(b).
The pROGENY analysis also revealed that many
oncopathways were enriched in the high-risk group. Drive
gene KEAP1 has a significantly higher mutation frequency
in the high-risk group (28% vs. 9%, p <0.001). Consistent
with the analysis above, the patients in the high-risk group
hold an elevated tumor mutation burden (6.13 vs. 4.58, p
<0.001). The above results suggested that this model
revealed that immune cell infiltration in the TIME affects
the tumor’s genomics status and mutation load.

3.6. The Analysis of Clinical Characteristics and Construction
of Nomogram. As Table S3 and Figures 8(a)-8(e) show, the
risk score has no connection to the age, but the base
characteristics between the two groups are not balanced.
The overall survival (OS) results revealed that patients with
lower risk scores exhibited better survival prognoses
(Figure 8(f)). The median time of survival in the low-risk
score group was 50.5 (95% CI: 40.9-NA) months, whereas
high-risk score patients had a considerably shorter median
survival time (37.83 [32.5, 48.4] months, p < 0.0001). Due
to the baseline imbalance and confounding factors. We
identified that the risk score group was a crucial
independent prognostic factor by univariate and
multivariate Cox  regression analysis (Table S3,
Figure 8(g)). The nomogram was established based on the
significant factors, including group, age median group,
smoke, and pathologic stage (C-index: 0.687). The
validation of the nomogram was implemented through 1-,
3-, and 5-year calibration curve plots (Figure 8(i)), which
demonstrated that our nomogram model performed well
on the robustness and efficacy.
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3.7. The External Validation in Prognostic Value and
Potential to Predict Response Rate of Immunotherapy. To
verify the robustness of our findings, we performed two fur-
ther validation analyses. First, we used the independent
external GSE31210 LUAD dataset to validate the prognostic
value of our 5-gene model. The AUC value at one-, three-,
and five-year time point is 0.59, 0.7, and 0.68
(Figures 9(a)-9(c)). Patients accepted ICB treatment in
high-risk score group showed a significantly poorer outcome
and a lower response rate in IMVigor 210 cohort
(Figures 9(d)-9(f)). Moreover, we also collected other three
immuned related signature models [18-20], the comparison
of the four model was conducted in the independent GEO-
dataset because the training dataset of four models was
TCGA-LUAD cohort; Figures 9(g) and 9(h) showed that
the AUC value of our model was significantly higher than
other models in various time points.

4. Discussion

Our research merged multiple single-cell datasets, annotated
the main cell type, and identified their cluster-specific
marker genes. A five-gene risk model was obtained by the
NK cell cluster marker gene screened in WGCNA analysis
due to the closest relationship to tumor traits. Subsequent
analysis validated the independent predicted value and well
performance in immunotherapy response and revealed the
crucial role of immune cells within the TME in tumor pro-
gression and metastasis.

Since the rapid development and accessibility of scRNA-
seq in cancer research, promising findings in cancer evolu-

tion, metastasis, and TME have been reached [21, 22]. Previ-
ous studies have demonstrated that single-cell transcriptome
analysis could apply specific signature genes to estimate cell
type abundances of bulk transcriptome [23]. Schaum et al.
[24] performed the CIBERSORTx deconvolution algorithm
on annotated scRNA-seq to quantify the abundance of
immune cells in 17 organs at ten ages based on their massive
bulk RNA seq data which confirmed her findings with
scRNA-seq. Recent studies reported applying scRNA-seq
and bulk RNA seq data to analyze the tumor heterogeneity
and immune cells in ovarian cancer [25], glioma [26], and
esophageal squamous cell carcinoma [27]. Jerby-Arnon
et al. [28] identified a cancer cell-related T resistance pro-
gram to predict the immunotherapy response in melanoma
patients. Here, we merged our dataset with two other inde-
pendent datasets to expand the applicability of our signature
in LUAD and targeted the NK cell cluster 1 as the essential
signature by the linkage of CIBERSORTx and WGCNA
analysis. Interestingly, the cluster 1 special expressed gene
SFTPC was identified as one of the 5-gene risk models, dem-
onstrating the findings’ sturdiness. Altogether, the develop-
ment of scRNA-seq data promoted the investigation of
novel biomarkers in the specific cancer type.

Our research also showed that immune cells are TIME’s
backbone in LUAD. In our silicon analysis, NK cell signature
and its subsequent LASSO selection constructed the 5-gene
risk model, which had a significant negative correlation with
the NK cell abundance. We inferred that the risk score rep-
resents the exclusion of NK cells. A previous study illus-
trated that NK cells were lower in NSCLC than in
noncancerous lung tissue [29], holding the bridge of innate
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GSE31210 dataset and the potential predictivity of immunotherapy response in IMVigor cohort (d-f). The AUC curve plot with pointwise

confidence intervals (g) and ROC curve plot (h) of our signature and other researchers’ signature for comparison.

and adaptive immune responses via interaction with other
immune cells [30-32]. However, cancer cells could utilize
immune escape mechanisms like expressing PD-L1 to
impair the NK cell function in LUAD [33, 34].

On the contrary, NK cell infiltration could also generate
durable and long-lasting antitumor immune responses
against lung cancer. Our results showed that the lower risk
score had a significantly higher immunotherapy response
rate, a lower activated oncogenic pathways rate, and flat
genomic abnormity. Generally, we suggested that our risk
score inferred the infiltration of NK cells in the TIME of
lung cancer.

Our research consequently identified the overlap of DEGs
and NK cell cluster markers as the candidate for the risk
model, and LASSO Cox regression helped us determine isoci-
trate dehydrogenase (NADP(+))2(IDH2), adrenoceptor beta
2(ADRB2), surfactant protein C (SFTPC), coiled-coil domain
containing 69 (CCDC69), and cyclin D2 (CCND2). IDH2 is
often considered to have a similar prognostic effect to IDH1
in glioma [35]. Li et al. [36] reported IDH2’ as an indicator
of poor prognosis and concluded that IDH2 promotes the
Warburg effect and tumor proliferation through HIFle in
lung cancer. SFTPC encodes the pulmonary-associated sur-
factant protein C, a hydrophobic surfactant protein for
maintaining stable pulmonary tissue. Moreno-Rubio et al.
[37] reported the overexpression of SFTPC in long-term
survival NSCLC patients, while a Norwegian group
reported similar findings. They found that SFTPC and
SFTPA mRNAs could be potential markers in regional
nodes and peripheral blood in lung cancer [38]. In sum-
mary, we believe that the deep exploration of the molecular
mechanism of the five gene model in TIME would facilitate
the development of novel diagnostic biomarkers.

This study provides a new perspective on understanding
the immune cells in TIME and sets a novel risk model; lim-
itations to our research highlight the need for further work
to optimize our work. Firstly, the internal validation of the
model showed a good performance, and further external
real-world validation is needed. Downstream and functional
experiments underlying the mechanism of immune cells and
model genes could help discover potential therapeutic tar-
gets. We plan to pursue applying the risk model to the diag-
nosis of early-rate LUAD.

5. Conclusions

Our study utilized the scRNA-seq data to identify the het-
erogeneous cell population in LUAD, applied the CIBER-
SORTx algorithm to map the cell type into the bulk
RNAseq, revealed the key role of immune cells, especially
natural killer cells, in TIME, and constructed the 5-gene
model with the robust prognostic prediction and potential
to evaluate immunotherapy response.
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Figure S1: the cell annotation dot plot. The dot plot shows
the percentage of clusters expressing marker genes (dot size)
and the expression level (dot color). Figure S2: the GO and
KEGG dot plot of brown module genes. The dot plot of
KEGG (A) pathway and GO (B) enrichment terms. Figure
S3: the summary and comparison of genomic analysis in
the low- and high-risk groups. The low-risk (A) and high-
risk groups (B) of patients’ somatic mutation summary.
The plots displayed the number of variants in each sample
as a stacked bar plot and variant types as a boxplot summa-
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