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ABSTRACT Inferring and understanding changes in effective population size over time is a major challenge for population genetics.
Here we investigate some theoretical properties of random-mating populations with varying size over time. In particular, we present an
exact solution to compute the population size as a function of time, NeðtÞ; based on distributions of coalescent times of samples of any
size. This result reduces the problem of population size inference to a problem of estimating coalescent time distributions. To illustrate
the analytic results, we design a heuristic method using a tree-inference algorithm and investigate simulated and empirical population-
genetic data. We investigate the effects of a range of conditions associated with empirical data, for instance number of loci, sample
size, mutation rate, and cryptic recombination. We show that our approach performs well with genomic data ($ 10,000 loci) and that
increasing the sample size from 2 to 10 greatly improves the inference of NeðtÞ whereas further increase in sample size results in
modest improvements, even under a scenario of exponential growth. We also investigate the impact of recombination and characterize
the potential biases in inference of NeðtÞ: The approach can handle large sample sizes and the computations are fast. We apply our
method to human genomes from four populations and reconstruct population size profiles that are coherent with previous finds,
including the Out-of-Africa bottleneck. Additionally, we uncover a potential difference in population size between African and non-
African populations as early as 400 KYA. In summary, we provide an analytic relationship between distributions of coalescent times and
NeðtÞ; which can be incorporated into powerful approaches for inferring past population sizes from population-genomic data.
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NATURAL populations vary in size over time, sometimes
drastically, like the bottleneck caused by the domestica-

tion of the dog (Lindblad-Toh et al. 2005) or the explosive
growth of human populations in the past 2000 years (Cohen
1995). Inferring population size as a function of time has
many applications, for instance, better understanding of
major ecological or historical events’ impact on humans
such as glacial periods (Lahr and Foley 2001; Palkopoulou
et al. 2013), agricultural shifts or technological advances
(Boserup 1981), and colonization of new areas (Ramachandran
et al. 2005; Jakobsson et al. 2008). Knowledge about the
demographic history is also important for studies of

natural selection to avoid spurious finds (Nielsen 2005;
Li et al. 2012).

Estimating past effective population size has gained con-
siderable interest in recent years, in particular with the de-
velopment of methods such as the Bayesian skyline plots
implemented in BEAST (Drummond et al. 2012); see Ho
and Shapiro (2011) for a review of this school of methods.
More recently, methods based on the sequentially Markovian
coalescent [SMC and its refined version SMC9 (McVean and
Cardin 2005; Marjoram and Wall 2006)], such as PSMC
(Pairwise Sequentially Markovian Coalescent, Li and Durbin
2011), MSMC (Multiple Sequential Markovian Coalescent,
Schiffels and Durbin 2013), DiCal (Demographic Inference
using Composite Approximate Likelihood, Sheehan et al.
2013), and Bayesian approaches (Palacios et al. 2015), have
advanced our ability to infer past population sizes. The
former type of methods can use relatively large sample sizes,
but can handle only modest numbers of loci, and these meth-
ods have often been used for analyzing mitochondrial DNA.
The latter group of methods can handle genome-wide data
and explicitly model recombination, using a Markovian
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assumption for neighboring gene genealogies (McVean and
Cardin 2005). PSMCworks with a single (diploid) individual,
which leads to simple underlying tree topologies without re-
quiring phase information. However, the inference power is
limited, in particular in the recent past, as most coalescences
in a sample of size 2 are not expected to occur in that period (Li
and Durbin 2011). MSMC and DiCal extend this approach by
using information frommultiple samples.MSMC focuses on the
first coalescence event in the sample at each locus and ignores
the remaining coalescence events. The algorithm can deal with
genome-wide data in a computationally efficientway. DiCal, on
the other hand, uses all coalescent events in the gene geneal-
ogies to provide estimates of the population size, assuming a
Markov property between sites as well (Sheehan et al. 2013).
The algorithm quickly becomes computationally intensive as
the sample size increases and analyzing genome-wide data
are challenging. Palacios et al. (2015) develop an interesting
Bayesian nonparametric approach building on the SMC9model
and assuming known gene genealogies, which shows promising
accuracy for inferring relatively simple past population
sizes using a moderate number of loci.

There are two important steps for most of these types of
approaches: the inference of the underlying gene genealogies
and the inference of population size as a function of time from
the inferred genealogies. In this article we introduce the
Population Size Coalescent-times-based Estimator (Popsicle),
an analytic method for solving the second part of the problem.
We derive the relationship between the population size as a
function of time, NeðtÞ; and the coalescent time distributions
by inverting the relationship of the coalescent time distributions
and population size that was derived by Polanski et al. (2003),
where they expressed the distribution of coalescent times as
linear combinations of a family of functions that we describe
below. The theoretical correspondence between the distribu-
tions of coalescent times and the population size over time im-
plies a reduction of the full inference problem of population size
from sequence data to an inference problem of inferring gene
genealogies from sequence data. This result represents a theo-
retical advancement that can dramatically simplify the compu-
tation of NeðtÞ for many existing and future approaches to infer
past population sizes from empirical population-genetic data.

In this article, we first present the core theoretical result:
the exact correspondence between the set of distributions of
coalescent times for samples of any size and the population
size as a function of time. We then provide an illustration of
the performance of the theoretical result on simulated gene
genealogies, including several assessments of how different
factors (numberof loci, sample size, presenceof recombination)
canaffect theperformanceofourapproach.Finally,we illustrate
how our theoretical result could be used to estimate population
size over time from sequence data (simulated and experimen-
tal). Since this latter part necessitates a method to infer gene
genealogies from sequence data,we provide a simple algorithm
to perform this particular task, based on the UPGMA (Un-
weighted Pair GroupMethodwith ArithmeticMean) algorithm
and properties of the mutation process for the coalescent.

Model and Methods

Distributions of coalescent times and NðtÞ
Under the constant population size model, the waiting times
Tn;Tn21;⋯;T2 between coalescent events are independent
exponentially distributed random variables. In particular,
the time Tk during which there are exactly k lineages follows

an exponential distribution with rate
�

k
2

�.
N generations.

When population size varies as a function of time
(N ¼ NðtÞ), the waiting times to coalescence are no longer
independent of each other. Specifically, for k 2 ½2; n2 1�; Tk
depends on all the previous coalescent times from Tkþ1 to Tn

(see, e.g., Wakeley 2009 for an extensive description of the
coalescent).

In this article, we derive a relationship between NðtÞ and
the distributions of the cumulative coalescent times, which
we denote by V. More specifically, for k 2 ½2; n�;

Vk ¼ Tn þ⋯þ Tk: (1)

The Vk variables represent the sum of times from the present
to each coalescent event. Because we use only the cumulative
coalescent times Vk and not the individual times Tk; we refer
to the times Vk for k 2 ½2; n� as coalescent times, omitting the
term cumulative for convenience. For example, the random
variable V2 represents the time to the most recent common
ancestor (TMRCA). All coalescent times Vk are expressed in
generations. We denote by pk the density function of Vk:

Polanski et al. (2003) derived the density function of co-
alescent times under varying population size as linear com-
binations of a set of functions ðqjÞ2# j#n; where

qjðtÞ ¼

�
j
2

�
NðtÞ exp

�
2

�
j
2

�Z t

0

1
NðsÞ ds

�
: (2)

Similar functions have previously been used in a context of
varying population size (Griffiths and Tavare 1994). For
k 2 ½2; n�; the relationship between the density function pk

and ðqjÞ2# j# n is

pkðtÞ ¼
Xn
j¼k

Ak
j qjðtÞ; (3)

with

Ak
j ¼

Yn

l¼k;l 6¼j

�
l

2

�
Yn

l¼k;l 6¼j

"�
l

2

�
2

�
j

2

��; for  k# j;

An
n ¼ 1

Ak
j ¼ 0 for  k. j:

(4)

We also define the integral of qj with respect to t as
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QjðtÞ ¼
Z t

0
qjðuÞdu ¼ 12 exp

�
2

�
j
2

�Z t

0

1
NðsÞ ds

�
: (5)

From Equations 2 and 5 we can derive that

NðtÞ ¼
�

j
2

�
12QjðtÞ
qjðtÞ : (6)

The principle of our method is to use the distributions of the
coalescent times to get to the qj functions. In other words, we
invert the result of Polanski et al. (2003).

Theorem. Given a sample of size n,

qjðtÞ ¼
Xn
k¼j

B j
kpkðtÞ;

with

Bj
k ¼

�
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1CCCCA; for  k, n; k# j;

B j
k ¼

�
j

2

�
�

k

2

�; for  k ¼ n;

Bj
k ¼ 0 for  k, j:

Corollary.

QjðtÞ ¼
Z t

0
qjðuÞdu ¼

Xn
k¼j

B j
k

Z t

0
pkðuÞdu ¼

Xn
k¼j

B j
k

Y
k
ðtÞ:

(7)

The proof of the Theorem is given in the Appendix. This Theorem
implies that for any time t generations in the past, qjðtÞ andQjðtÞ
canbe obtainedusing the distributions of coalescent times. From
each qj (and its integral Qj), the function NðtÞ can be obtained
using Equation 6. In contrast to the Ak

j coefficients (Equation 4)
that can become very large as n increases and are of alternate
signs (Polanski et al. 2003), the Bj

k coefficients introduced in the
Theorem are all positive and take values between0 and1 (Figure
1). Thus, our formula is not constrained by numerical limitations
and can be used for very large sample sizes.

Finite number of observed gene genealogies:
adaptation of the theorem to time intervals,
the “Popsicle”

The Theorem states that the population size can be computed
at any time in the past, provided that we know all the n2 1
distributions of coalescent times for any time in the past.
However, this knowledge would require us to observe the

genealogies of an infinite number of independent loci evolv-
ing under the same N function over time. In practice, ge-
nomes are finite so we have access to only a finite number
of loci to estimate the coalescent time distributions. We use
empirical distribution functions bQ

kðtÞ to estimate the cumu-
lative distribution functions

Q
kðtÞ of the coalescent times as

these estimators have good statistical properties: They are
unbiased and asymptotically consistent (Van der Vaart
2000).

Because of the finite number of loci, time is discretized into
intervals and NðtÞ within each interval is estimated by its
harmonic mean, as the harmonic mean of N has a simple
relationship to the Qj functions:

H½a;b�ðNÞ ¼
b2 aR b

a
1
�
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¼ b2 aR b

0
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log
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�
2 log

�
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�:
(8)

Definition (Popsicle). Given a sample of size n haploid indi-
viduals evolving in a random-mating population of variable
size N over time and given a number j between 2 and n, we
define the Popsicle of N over a time interval ½a; b� to be

PopsicleðNÞ½a;b�
¼ 2

�
j
2

�
b2 a

log
�
12

Xn

k¼j
B j
k
cY

k
ðbÞ

�
2 log

�
12

Xn

k¼j
B j
k
cY

k
ðaÞ

�;
with bQ

kðtÞ being the empirical distribution function of the
cumulative coalescent time variable Vk at time t.

Figure 1 Heatmap of the values of log10ðB j
kÞ for n ¼ 50; as function of

k and j. The white area represents the region where B j
k ¼ 0:
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In the rest of this article, we set j ¼ 2 (in Equations 7 and
8), as it incorporates information from all coalescent time
distributions and performs well even for very recent times
(see Supplemental Material, File S1, Figure S1, Figure S2,
Figure S3, and Figure S4).

Quantifying the accuracy of the method

Let us consider a time discretization ðt0; t1;⋯; tmÞ and define
average relative difference (ARD) and average relative error
(ARE) as

ARDm ¼ 1
m

Xm
i¼1

bH½ti21;ti�ðNÞ2H½ti21;ti�ðNÞ
H½ti21;ti�ðNÞ

(9)

and

AREm ¼ 1
m

Xm
i¼1

���bH½ti21;ti�ðNÞ2H½ti21;ti�ðNÞ
���

H½ti21;ti�ðNÞ
; (10)

where bH½ti21;ti�ðNÞ is the estimate of the harmonic mean of N
during the time interval ½ti21; ti� as defined in Equation 8 with
j ¼ 2 andQ2 replaced by its estimate bQ2; andH½ti21;ti�ðNÞ is the
value for the true harmonic mean of N for the corresponding
interval.

Algorithm for inferring gene genealogies from
polymorphism data

We apply a simple two-step algorithm to infer gene geneal-
ogies frompolymorphismdata. In thefirst step,we reconstruct
the genealogy for each locus, using theUPGMAalgorithmand
the matrix of pairwise differences. We convert the branch
lengths from a timescale in mutations to a timescale in
generations, using the mutation rate per locus, which is
considered known. Because of the discrete behavior of mu-
tations, we do not have resolution for time intervals
, 1

�ð2LmÞ generations, with Lm being the total mutation
rate of each locus. We discretize the time space into equal
intervals of size 1

�ð2LmÞ; starting at 0, and estimate the har-
monic mean of N for each interval, using the method. This
strategy gives a first estimate of NðtÞ: In the second step, we
refine our reconstruction by using the NðtÞ profile computed
in the first step. More precisely, we use the pairwise differ-
ences between haploid individuals/gene copies to estimate
the time to the most recent common ancestor of each pair of
(haploid) individuals. From this computation, we construct a
distancematrix onwhich we apply UPGMA to reconstruct the
genealogy. We compute the coalescent times between the
pairs of (haploid) individuals using a Gamma distribution,
following the idea that if mutations are Poisson distributed
onto the coalescent tree of a given pair of (haploid) individ-
uals, and if the height of the tree is exponentially distributed
with rate 1

�
Ne [which is the case under the constantmodel of

NðtÞ ¼ Ne], then the height of the tree T, conditional on the
number of pairwise differences S between the two individu-

als, is Gamma distributed with shape Sþ 1 and with rate
2Lmþ ½1�Ne� (Tavaré et al. 1997):

fTjS¼sðtÞ} ℙðS ¼ sjT ¼ tÞ fTðtÞ}
h
ð2LmtÞs=s!

i
e22Lmt

3 ð1�NeÞe2ðt=NeÞ � G½sþ 1; 2Lmþ ð1�NeÞ�: (11)

We use the first step to compute Ne as the harmonic mean of
the inferred N from the present to the time interval corre-
sponding to the number of observed differences between the
two individuals.

Application to human data

Data preparation: We use high-coverage sequencing data
from the 1000 Genomes Project, publicly available at ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/data/. The data are
downloaded as VCF formatted files, from which we retain
variant positions passing the filters set up by the 1000 Ge-
nomes Project, replacing the filtered-out positions by miss-
ing genotypes. We retain only the trios and within each
population existing in the sample, we phase the individuals
(Browning and Browning 2007) under the trios file input
option, but retain only the parents after phasing, as a sample
of unrelated individuals. The phasing also imputes missing
genotypes. We extract sequences corresponding to regions of
supposedly no/low recombination as indicated by a recom-
bination rate of 0 in the Decode genetic map (Kong et al.
2002). The description of how those regions were ascer-
tained is given below. We use the following population data:
individuals of European ancestry from Utah (CEU), sample
size of 64; southern Han Chinese individuals, China (CHS),
sample size of 56; Peruvian individuals from Lima, Peru
(PEL), sample size of 58; and Yoruba individuals from Iba-
dan, Nigeria (YRI), sample size of 38.

Genetic map and no/low recombination regions: We use
the Decode genetic map, which has been obtained by
tracking .2000 meioses in Islandic lineages (Kong et al.
2002). The map is downloaded from the Table tool on the
UCSC genome browser website Genome Bioinformatics
Group of UC Santa Cruz (2013). We extract regions that have
a recombination rate of 0. There are 22,321 such regions, of
varying lengths (Figure S10), with the most common length
being 10 kb (6457 regions) and mean length being �48 kb.
An alternative would be to use the HapMap recombination
maps (which can be population specific), but since they are
obtained using linkage disequilibrium (LD) information,
which in turn is directly linked to demography and N, we
focus on the Decode map. In particular, regions of high LD
can be suggestive of a low local recombination rate or a short
gene genealogy of the sample used for computing LD or both.
So, by extracting regions of low “recombination rate” in
LD-based genetic maps, one might enrich the chosen regions
in short gene genealogies, leading to inference of a smaller
population size. We see this effect when applying Popsicle
to regions extracted using HapMapCEU with a total
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recombination threshold of 1023 cM per region, although the
difference of the NðtÞ inference is relatively small between
the different genetic maps (Figure S11).

Comparison with PSMC and MSMC: Since its publication
(Li and Durbin 2011), the PSMC method has been widely
used to estimate past population size over time in a number
of organisms. Thus, it is important to assess how our recon-
struction method compares to the results of PSMC as well
as to the more recent iteration of this approach, MSMC
(Schiffels and Durbin 2013). We use the sequences of the
parents, with missing genotypes imputed, and cut the se-
quences into regions of 100 bp, identical to the approach
in the original article. If no pairwise difference is observed
within a region between the pairs of alleles at the 100 bp,
the region is considered homozygote. If at least one pairwise
difference is observed, the region is considered heterozy-
gote. PSMC and MSMC are developed as a hidden Markov
model, where the hidden states are the coalescent times of
each region, while the observed states are the heterozygos-
ity of the regions. It models recombination in the transition
probabilities from one region to its neighbor. Intuitively, if a
locus has many heterozygote regions, its underlying coales-
cent time is going to be inferred as large, whereas if a locus
contains mostly homozygote regions, the coalescent time is
inferred as small. Chromosomes are given as independent
sequences and only autosomes are used. For running PSMC,
we use the same time intervals as the human study in the
original PSMC article. MSMC was used with the default
time discretization, which is believed to be adapted for
human data. Nondefault parameters for MSMC were fixed re-
combination rate and a recombination to mutation ratio of
0.88.

Application of Popsicle:Weapply Popsicle to the22,321 low-
recombining regions for the four populations, under two
different settings: In the first setting, we reconstruct an
effective population size profile for every individual and
average the results across all individuals from the same
population (we refer to that setting as “Popsicle 1”); in the
second setting, we use Popsicle on subsamples of size 5 and
compute the average of the obtained NðtÞ estimates within
each population (we refer to that setting as “Popsicle 5”). We
use the two-step procedure described above. Because PSMC
also infers the local gene genealogies when performing its
MCMC computations, we also extract the local gene geneal-
ogies from PSMC’s decoding (option -d of the program) and
apply Popsicle 1 to them. The results seem highly unstable,
casting doubt on the reliability of the inferred local gene
genealogies from PSMC (see Figure S12).

Data and code availability: Simulated data can be regen-
erated using the commands given in File S1. Data from the
1000 Genomes Project are available on the ftp server ftp://
ftp.1000genomes.ebi.ac.uk/vol1/ftp/. Code for the compu-
tations is available at: jakobssonlab.iob.uu.se/popsicle/.

Results

Evaluation of Popsicle on simulated gene genealogies

Four different demographic scenarios: To evaluate the in-
ference of NðtÞ; we used the software ms (Hudson 2002) to
simulate samples under different population models with
varying population size. We investigated four demographic
scenarios illustrated in Figure 2. The first three scenarios de-
scribe demographic models that span between the present
and 100,000 generations in the past and that include various
periods of constant population size, instantaneous changes,
and exponential growth or decline. In contrast to scenarios
1–3, scenario 4 describes complicated changes in size that
occur in the recent past, within the last 2000 generations.
Detailed descriptions of each scenario and the ms commands
for the simulations are given in File S1, Table S1, Table S2,
Table S3, and Table S4. In each studied scenario, we simu-
lated 1,000,000 independent gene genealogies of 20 haploid
gene copies (note that we will investigate the effect of num-
ber of loci and hence reduce that number for certain cases;
see below). We assume that the true gene genealogies are
known and omit any inference of genealogies from polymor-
phism data at this stage. The genealogies were used to esti-
mate coalescent time distributions and in turn reconstruct the
population size profile, using Popsicle. We discretized time
into 100 equally long intervals (1000 generations in each
interval for scenarios 1–3 and 20 generations in each interval
for scenario 4).

Theharmonicmean estimates are very close to the true size
in all four scenarios, with better accuracy in the recent past
than in the distant past (Figure 2). The division of time into
100 intervals is arbitrary and dividing time using the true
breakpoints of the scenarios leads to an almost perfect fit
for the time periods where the population size is constant,
whereas dividing time more finely in the periods of variable
size improves the estimation, as long as there are enough
coalescent times occurring within the interval to get a good
estimate of the cumulative distribution function (results not
shown). The NðtÞ estimation is very accurate in periods of
small population size, especially when it is followed by an
expansion. Estimates of NðtÞ are more variable around the
true value when population size was larger in the past (sce-
nario 3). These observations can be understood intuitively by
the fact that pðtÞ will be better estimated in time periods of
small N as the coalescence rate is proportional to the inverse
ofN. The resolution of the reconstructionmethod forN is also
accurate in the recent past, even for drastic or rapid changes
in size over a couple of hundred generations (scenario 4). In
summary, with a finite but sufficiently large number of loci to
estimate the cumulative distributions of coalescent times, we
can accurately reconstruct the global shape of the population
size over time, from very recent times to far into the past.

Effect of sample size: We tested the accuracy of our method
for different sample sizes. To be able to quantify the perfor-
mance in reconstructing the population size over time, we
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introduced two statistics: the ARD and the ARE. The former
quantifies a systematic deviation from the true value of the
population size, while the latter quantifies the error of the
estimation (see Model and Methods for the computation of
ARD and ARE). We used scenarios 1 and 4, from which we
simulated 1,000,000 independent gene genealogies with
sample sizes taken from the values f2; 5; 10; 15; 20; 30g Each
scenario was divided into large periods, to be able to discrim-
inate the effect of sample size in the NðtÞ reconstruction be-
tween recent and old time periods and between periods of
large and small population sizes. Scenario 1 was divided into
five periods, while scenario 4 was divided into six periods
(Figure 3, Table 1). Within each period, we discretized the
time into 100 equally long intervals and assessed the NðtÞ
reconstruction with ARD and ARE (Figure 3).

In general, scenario 1 is predicted more accurately than
scenario 4, with an average relative error ranging between
0.2%and3.6%compared to a rangeof 0.4–12.1% for scenario
4. There is little bias in the reconstruction of the two scenar-

ios, except maybe for sample of size 2 in scenario 4, where
there may be an upward bias of some 5% in period 4. In both
scenarios and in all periods, the accuracy of the estimates is
improved by increasing the sample size. The improvement is
substantial when increasing the sample size from 2 to 10 and
increasing the sample size further results in only modest im-
provements. Note the relatively higher error for the instanta-
neous population expansion of scenario 4 (period4), irrespective
of sample size, suggesting that a large population size for a
brief period of time is difficult to infer. Accurate estimates of
N for such periods require a greater number of loci to obtain
resolution on par with time periods with smaller N, as the
number of coalescences is reduced for periods of large N.
This effect is investigated further in the next section.

Effect of the number of loci: With the full knowledge of the
density functions pk; we could potentially compute N at any
time in the past. However, in practice, the distributions can be
estimated only where observations are made, and hence we

Figure 2 Estimation of N based on simulated gene genealogies. Four scenarios of variable population sizes are used to generate 1,000,000 in-
dependent loci in each scenario, for a sample of size 20 (10 diploid individuals). Time is divided into 100 regular intervals and estimates of the harmonic
mean of N (purple solid lines) for all intervals are plotted. The true values of N over time are indicated by gray dashed lines. Figure S4 further explore the
uncertainty of the estimate of N based on finite loci.

1196 L. Gattepaille, T. Günther, and M. Jakobsson



are limited to the time ranges where reasonable estimates of
the distributions can be computed because we have enough
observations. For that reason, the more loci there are, the
more coalescent times can be observed within a time interval
and the better the estimate of the cumulative distributions.
Here we investigate the robustness of Popsicle to varying the
number of loci, by simulating genealogies of samples of size
20 under scenarios 1 and 4. We compare the effect of the
number of loci for different periods in the past, as described in
Table 1, divide each period into 100 regular intervals on
which we estimate the harmonic mean of N, and measure
the accuracy within each period with ARD and ARE.

The accuracy of the N estimates in all periods for both
scenarios increases with increasing number of loci (Figure
4). Generally, for these investigated (and human realistic)
scenarios, the ARE and the ARD from the true values are
low for cases with 50,000 loci (ARE , 0:1; ARD , 0:02)
and still moderate for 10,000 loci (ARE , 0:3; ARD , 0:2).

For smaller numbers of loci, errors can reach $40%. For
scenario 1 and 1000 loci, no coalescence occurred during
periods 4 and 5 in any of the simulations, making the infer-
ence impossible for these periods. Similarly, there were no
coalescence events in period 5 of scenario 1 with 5000 loci, as
well as in periods 4 and 6 in scenario 4 with 1000 loci. This
illustrates the greater difficulty of accurate N reconstruction
for older time periods (in particular, if the period is preceded
by a severe bottleneck) and periods of large population size,
both subject to low probabilities of coalescences, to occur.
Thus, depending on the history of the population and how
far back in time N is of interest, the required number of loci
will vary. Subsampling from some particular number of loci
might give an idea of whether a particular number of loci is
enough for a good estimation of NðtÞ:

Effect of recombination: We explore the robustness of the
NðtÞ reconstruction if recombination occurs in the loci, but

Figure 3 Effect of sample size.
We divide scenario 1 (left panel)
and scenario 4 (right panel) into
smaller periods of time where
we assess the average relative er-
ror and the average relative differ-
ence on the N estimates compared
to the true values of N, as functions
of the sample size used for the es-
timation. A total of 1,000,000 loci
were simulated for each scenario
and each sample size. The original
scaling for the x- and y-axes of both
scenarios can be found in Figure 2.
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when each locus is treated as nonrecombining. This case is
equivalent to considering the entire sequence fragment as
nonrecombining and having a single underlying genealogy,
represented by an average tree, instead of considering the
multiple underlying genealogies within the (recombining)
locus. We investigate the effect of ignoring recombination
for samples of size 2 and for samples of size 20, for different
levels of recombination within each simulated locus. For a
sample of size 2, the average tree is simply the weighted
mean of the trees of the nonrecombining segments, with
the weight being the relative length of each nonrecombining
segment compared to the total segment length. For the case
of 20 gene copies, we build the “average tree” by applying a
UPGMA algorithm to the weighted average matrix of pair-
wise time to coalescence between all pairs of haploid individ-
uals. We use scenarios 1 and 4, as well as the constant-size
model, to study the robustness of the method to different
levels of recombination. We tested five levels of recombina-
tion within the locus: 1026; 53 1026; 1025; 53 1025; and
1024: Assuming a recombination rate of 1:253 1028 per site
per generation, which is around the estimated average for the
human recombination rate, these five levels represent loci of
length 80, 400, 800, 4000 and 8000 bp.

Cryptic recombination can lead to inference of spurious
changes in population size, even under the simple model of
constant population size (Figure 5), although the effect is
limited to a factor of at most �2 in the investigated cases.
For instance, scenarios 1 and 4 that are relatively realistic for,
e.g., humans show low to moderate bias due to cryptic re-
combination, even for the cases of high levels of recombina-
tion (or long fragments). Overall, the effect of cryptic
recombination appears to be indifferent to sample size. For
the case of constant size, we can provide some intuition on
the effects of cryptic recombination. We note that genealo-
gies inferred from recombining loci are weighted averages of
the underlying genealogies of the nonrecombining fragments
of the loci and therefore tend to be more star-like as well as of
intermediate size. Estimating one single gene genealogy from
such a mosaic of correlated gene genealogies will have an
impact on the distributions of coalescent times (see Figure
S5). Star-like gene genealogies are typically associated with
rapid and recent expansions, which is what the inferred NðtÞ
shows in the case of constant population size and high level of
cryptic recombination.

Toward solving the full inference problem

Popsicle is designed to infer effectivepopulation size over time
from samples of gene genealogies obtained under the de-
mographic model studied and not directly from observed
sequence data. However, to provide an illustration and one
example of a solution to integrate Popsicle into a full inference
method that would take sequence data as input, we outline
one heuristic approach here. This approach builds local gene
genealogies from sequence data and applies Popsicle to the
distributions of coalescent times obtained using inferred gene
genealogies. Our aim is notably to apply this full-resolution
method on human sequences, to be able to compare these
population size profiles to previously published results.
Hence, we have to find a way to obtain the gene genealogies
from sequence data. One way could be to use ARGWeaver
(Rasmussen et al. 2014), as is done in Palacios et al. (2015).
However, Palacios et al. (2015) found a systematic bias in
their reconstruction of effective population size over time
profiles when using ARGWeaver to infer gene genealogies,
even for rather simple demographic scenarios. Here, we de-
velop a simple two-step algorithm based on UPGMA and
properties of the coalescent to infer gene genealogies from
sequences, as it seemed to perform well on simulated non-
recombining sequences. A detailed outline of the algorithm is
described in Model and Methods. Inferring gene genealogies
from sequences is a challenging problem, especially for
recombining sequences, and we note that our algorithm is
merely a heuristic solution to the problem that performs well.

We evaluate our ability to reconstruct the population size
over time, using Popsicle together with our algorithm to
infer gene genealogies. In particular, we study the impact
of the mutation rate on the reconstruction, to get a sense
of how large the mutation rate needs to be to obtain
reasonable results. We present the results for samples
of size 20, simulated with values of Lm taken fromf1024; 53 1024; 1023; 53 1023; 1022g; for 1,000,000 non-
recombining loci and under scenarios 1 and 4 (Figure 6 and
Figure S7). For reference, with a mutation rate of
1:253 1028/bp per generation, the range of Lm values cor-
responds to loci of 8, 40, 80, 400, and 800 kb, respectively.
With a mutation rate Lm of 53 1024;we can already uncover
a good estimate of the population size profile. Unsurprisingly,
the more mutations there are, the better the estimates of
times to coalescence and the more accurate the reconstruc-
tion is. This fact is particularly important for recent times
where enough mutations are required to accumulate to infer
the very recent population sizes (Figure S6).

Application to human sequence data

We apply the developed heuristic algorithm of gene-geneal-
ogies inference followed by Popsicle to empirical sequence
data. The effect of recombination can be mitigated by con-
sidering only regions of the genome with low or no recombi-
nation, provided that we have access to a good genetic map.
Following this principle, we applied Popsicle to human

Table 1 Division of scenarios 1 and 4

Scenario

Period 1 4

1 [0–1,000] [0–400]
2 [1,000–10,000] [400–800]
3 [10,000–20,000] [800–1200]
4 [20,000–60,000] [1,200–1,400]
5 [60,000–100,000] [1,400–1,600]
6 — [1,600–2,000]

Time intervals are given in generations.
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genome sequence data from the 1000Genomes Project (Com-
plete Genomics high-coverage samples from the Complete
Genomics Data from 1000 Genomes Public Repository 2013),
for Yoruba individuals fromNigeria, for American individuals
of European ancestry from Utah, for Han Chinese individuals
from southern China, and for Peruvian individuals. We
extracted regions of no recombination according to the De-
code recombination map (Kong et al. 2002) (see Model and
Methods for a description of the data preparation). For com-
parison, we also use PSMC (Li and Durbin 2011) and MSMC
(Schiffels and Durbin 2013) to infer NðtÞ profiles from the
data. We inferredNðtÞ profiles for the four populations in two
ways: (a) using single individuals (as PSMC does) and aver-
aging across single individuals (denoted Popsicle 1) and (b)
using five individuals from the population (denoted Popsicle
5). From simulations, we have observed that .10 haploid
sequences result in only a minor improvement of the infer-
ence in population size (see Figure 3).

Overall, the Popsicle profiles of effective population size in
the last 1 MY for every population largely resemble the vague
knowledge about past human population sizes as well as the
NðtÞ profiles inferred by, e.g., PSMC (Figure 7A). In contrast,
the profile reconstructed by MSMC is very different from that
of PSMC and Popsicle. As MSMC traces only the first coales-
cent event between any pair of the 10 chromosomes in the
data, it provides estimates of the population size only for the
last 50,000 years or so. A comparison on the log scale be-
tween the three methods applied to CEU data is provided in
Figure S7. Results of MSMC and PSMC across populations are
given in Figure S8 and Figure S9, respectively.

Popsicle reveals a steady but slow increase in effective
population size starting around 1 MYA, reaching a maximum
between200and500KYA, followedbyasharperdeclineanda
recovery during the last 100 KY for European and East Asian
populations. However, prior to 1 MYA, the population size
inferredbyPSMCishigher than thepopulation size inferredby

Figure 4 Effect of the number of
loci. We divide scenario 1 (left
panel) and scenario 4 (right
panel) into smaller periods of
time where we assess the aver-
age relative error (ARE) and the
average relative difference (ARD)
on the N estimates compared to
the true values of N, as functions
of the number of loci used for
the estimation. The sample size
for all simulations is 20. The orig-
inal scaling for the x- and y-axes
of both scenarios can be found in
Figure 2.
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Popsicle (Figure S7). In addition, Popsicle infers a less sharp
decline in population size than PSMC does, for all four pop-
ulations, and infers a population size history markedly differ-
ent for Yoruba compared to the three other non-African
populations (Figure 7, B and C) whereas the Yoruban popu-
lation follows the non-African populations rather closely in
the PSMC results (Figure S9). Popsicle results suggest a
somewhat larger ancestral population for Yoruba than the
ancestral population size of the three non-African popula-
tions, which could be interpreted as deep and long-lasting

population structure within Africa between 400 and
100 KYA. Note, however, that the nonrecombining regions
have been chosen using the Decode recombination map, a
genetic map formed by tracking .2000 meioses in Islandic
lineages. Recombination patterns and hotspots in particular
are believed to be variable across populations (Myers et al.
2005; Baudat et al. 2010), and thus the nonrecombining re-
gions selected using the Decode map might be in fact recom-
bining in Yoruba, resulting in a bias of the population size
estimates (see Figure 5). Recombination maps for Yoruba

Figure 5 Effect of omitting recom-
bination. Shown is a comparison
between NðtÞ reconstructed using
gene genealogies computed as a
weighted average of the gene ge-
nealogies obtained from ms and
true NðtÞ (black lines) under three
different demographic scenarios.
We generated 1,000,000 indepen-
dent loci for two different sample
sizes, 2 and 20 haploid gene cop-
ies, and for five different levels of
recombination within each locus.
The three different demographic
scenarios were the constant-size
model (top), scenario 1 (middle),
and scenario 4 (bottom). The differ-
ent cryptic recombination rates for
each locus (in morgans) are indi-
cated by different colors and the
values of the recombination of the
segments are given in the key.
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have been computed (Frazer et al. 2007), but because they
have been inferred using properties of linkage disequilibrium
that itself depends on demography, theywould not be ideal to
use for selecting regions of low/no recombination. A future
pedigree- or sperm-typing-based recombination map for the
Yoruba would help in understanding the differently inferred
NðtÞ profiles for African and non-African populations.

Popsicle 1 and Popsicle 5 give similar effective population
size profiles (Figure 7, B and C) but the times of the major
features in Popsicle 5 are shifted to older times compared to
Popsicle 1. Whereas Popsicle 1 suggests a bottleneck in non-
African populations that reaches its strongest effect between
30 and 40 KYA, Popsicle 5 places the bottleneck between
70 and 80 KYA, which is more in line with the estimates of
timing of the founder effects due to a dispersal out of Africa
(Scally and Durbin 2012). In neither Popsicle nor PSMC do
we see the superexponential increase in size that has oc-
curred in all populations since the spread of agriculture
(Keinan and Clark 2012), but we possibly do in the MSMC
results (Figure S8). It is possible that for Popsicle and PSMC
too few loci are included for a reliable inference in the recent
times, or too few individuals, or that the mutation rate per
locus is too low to observe a dramatic expansion in popula-
tion size (as most terminal branches will be very short
in genealogies from models of rapid recent expansion).
Keinan and Clark (2012) suggest that observing enough rare
variants is necessary to infer the exponential growth that
human populations have been going through in the past
thousands of years.

The resolution of Popsicle can be better than that of PSMC,
as Popsicle does not constrain the coalescent times into afinite
(and usually rather small) set of values like PSMC does. In
principle, any time discretization for computing the harmonic
mean of the effective population size over time can be used,
although in practice we need to make sure that there are

enough coalescences within each time interval to get reliable
estimates of the effective size. Popsicle is also markedly faster
than PSMC, not only because it uses a moderate number of
nonrecombining regions, but also because of the closed-form
relationship between population size and coalescent time
distributions. Most of the computational time is spent on
inferring the gene genealogies (which takes ,20 min for
the 22,321 loci in the data application). Once the gene gene-
alogies are computed, the application of the Theorem for
reconstructing the population size takes a few seconds. Fi-
nally, Popsicle accommodates samples of any size, which
should lead to more reliable results, especially in the recent
times, provided that the phasing of the genomes is accurate.

Applying Popsicle to extracted regions of limited recombi-
nation should not bias the results in principle. Regardless of
themolecular reasonexplaining the lowrateof recombination
in the region (for instance, limited access for crossovers or
conservation constraints due to functional importance of the
region), the fact that there is one local gene genealogy for the
entire region is what matters for the method to work. How-
ever, for applications to empirical data, variation in the local
mutation rate, due to purifying selection for example, will
affect the reconstruction of the gene genealogy by changing
the estimates of the branch lengths for different loci. This
could potentially cause bias in the reconstructed Popsicle
profiles, as all gene genealogies are inferred using one muta-
tion rate. Using amutationmap obtained from the study of de
novomutations in trios or pedigrees could alleviate this issue
and infer the local gene genealogies from genetic data, using
a specific mutation rate for each region.

Discussion

The major implication of our main result is to reduce the
problem of NðtÞ reconstruction from polymorphism data to a
problem of gene-genealogy inference. If local gene genealo-
gies in the genome can be inferred accurately from observed
polymorphism data, then our Theorem can be used to esti-
mate NðtÞ with great accuracy as well. Currently, however,
local gene-genealogy inference remains a challenge. First,
most genomes do not consist of large sets of independent
nonrecombining loci, but rather of sets of recombining chro-
mosomes. Each chromosome can be seen as a linear structure
of successive nonrecombining loci whose underlying geneal-
ogies are correlated with one another. This correlation decays
with distance between loci due to recombination. Also, in a
given sample, the exact positions on the chromosome of
the recombination events, and hence the breakpoints be-
tween the nonrecombining bits of DNA, are unknown.
Fully recovering the genealogies along the chromosome
means reconstructing the ancestral recombination graph
from polymorphism data and this is a challenging problem
(Griffiths and Marjoram 1996; McVean and Cardin 2005;
Parida et al. 2008; Rasmussen et al. 2014; Zheng et al.
2014). We noted based on simulations that a low to mod-
erate level of cryptic (unaccounted) recombination leads to

Figure 6 Effect of estimating gene genealogies from polymorphism data.
Shown is reconstruction of NðtÞ from distributions of coalescent times
computed from gene genealogies inferred from polymorphism data. We
used a sample size of 20 and 1,000,000 independent loci, evolving under
scenario 1. The mutation rate per locus Lm is indicated by the color of the
line and the key gives the mutation rates.
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accurate estimates of NðtÞ; but the bias increases with greater
levels of cryptic recombination.

The problem of inferring gene genealogies can also be
challenged by a lack ofmutation events to accurately estimate
coalescent times. For some species, theremight not be enough
mutation events to be able to infer the local gene genealogies
of nonrecombining segments. In humans for example, the
ratio between the mutation rate per site and per generation
and the recombination rateper site andper generation is likely
close to 1 (or 2, depending on assumptions on mutation rate;
for the pedigree-basedmutation rate or the divergence-based
mutation rate, see, e.g., Scally and Durbin 2012). Hence, on
average, for each mutation observed locally in a sample,
there is also a recombination breakpoint nearby. A targeted
approach, where only low-recombining regions of sufficient

length are considered, could yield better results and we have
shown that such a strategy can provide NðtÞ profiles that are
similar to estimates based on approaches that specifically
model recombination. These challenges are inherent to the
problem of estimating local gene genealogies from sequence
data. There have been interesting developments in this area
(see, e.g., Rasmussen et al. 2014), and we look forward to the
further methodological improvements to infer the ancestral
recombination graph.

To gauge some intuition of usefulness of Popsicle for
human genome data, we can make a computation of the
number of regions that can be recruited for analysis. Assume
a genome of 3 billion bp, a mutation rate of 1.25 3 1028/bp
and generation, a recombination rate of 1.25 3 1028/bp and
generation, and an effective population size of 10,000 diploid

Figure 7 Comparison of NðtÞ inference among different
methods. (A) Comparison of NðtÞ profiles inferred using
PSMC, MSMC, Popsicle 1, and Popsicle 5. (B) Inferred NðtÞ
profiles for four populations, CEU, CHS, PEL, and YRI
based on Popsicle 1. (C) Inferred NðtÞ profiles for four
populations, CEU, CHS, PEL, and YRI based on Popsicle
5. The timescale is computed assuming a mutation rate of
1:2531028 and a generation time of 25 years.
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individuals. Assume further that the genome is organized
into recombination “hotspots” and “cold regions,” where
the former account for 99% of the recombination events
and the cold regions have a 100 times lower recombination
rate compared to the genome average. Assuming an average
cold region extends for 40 kbp (compare with Figure S10),
the average recombination rate in such a locus is 5 31026

(orange line in Figure 5) and the average number of pairwise
mutations would be 20. Hence, the genome would consist of
75,000 genome regions of length 40 kbp that contain abun-
dant polymorphism data to obtain a good estimate of gene
genealogies. This rough computation illustrates that at least
the human genome harbors favorable properties that Popsi-
cle can utilize.

We present a novel method for inferring population size
over time, a problem that has recently gained much interest
due to the availability of genome sequence data. By analyt-
ically solving the relationship between NðtÞ and the distri-
bution of coalescent times, we have connected NðtÞ to the
problem of inferring the ancestral recombination graph
from polymorphism data, which remains a challenge in
population genetics. We show that, using a moderate
number of loci and a simple algorithm for genealogy in-
ference, our method Popsicle was able to recover the gen-
eral pattern of population size as a function of time with
high resolution and using modest computational time,
properties that will be useful for future large-scale studies
of many full genomes.
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Appendix: Derivation of the B j
k

The relationship between thedensity function of the cumulative coalescent timespk and the family of functions qj can bewritten
in matrix form. We define p!ðtÞ as the vector of density functions of cumulative coalescent times ðp2ðtÞ;⋯;pnðtÞÞ; q!ðtÞ as the
vector

	
q2ðtÞ;⋯; qnðtÞ



; and the upper triangular matrix as A ¼ ðAijÞ2# i;j# n ¼ ðAi

jÞ2# i;j#n: Then from Equation 3, from
Polanski et al. (2003) we have

p!ðtÞ ¼ A q!ðtÞ:

To prove that the B j
k defined in the Theorem can invert the relationship between pkðtÞ and qjðtÞ; we show that the matrix B

defined by ðBijÞ2# i;j# n ¼ ðBi
jÞ2# i;j# n is the inversematrix ofA. We defineC ¼ ðCijÞ2# i;j# n ¼ A3B:Our aim is to prove thatC is

in fact the identity matrix. First, we know thatC is an upper triangularmatrix, as bothA and B are upper triangularmatrices. To
prove thatC is the identitymatrix, we cover four separate cases: Cin for 2# i, n; Cij for 2# i, j, n; Cii for 2# i, n; and finally
Cnn: For the computation of the two first cases, we need to introduce a notation:

Fi;j;n ¼
Yn

l¼i;l6¼j

1�
l
2

�
2

�
j
2

�: (A1)

We know from partial fraction decomposition that

Fi;j;n ¼ ð21Þ
Xn
l¼i;l6¼j

Yn
m¼i;m 6¼l

1�
m
2

�
2

�
l
2

� ¼ ð21Þ
Xn
l¼i;l 6¼j

Fi;l;n: (A2)

We compute the coefficients Cin; for 2# i, n:

Cin ¼
Xn
k¼2

AikBkn ¼
Xn
k¼i

Yn

l¼i;l 6¼k

�
l
2

�
Yn

l¼i;l 6¼k

��
l
2

�
2

�
k
2

��3
�
k
2

�
�
n
2

� ¼
Yn21

l¼i

�
l
2

�Xn
k¼i

Fi;k;n ¼
Yn21

l¼i

�
l
2

�Xn
k¼i

ð21Þ
Xn

l¼i;l 6¼k

Fi;l;n

¼ ð21Þ
Yn21

l¼i

�
l
2

�Xn
l¼i

Xn
k¼i;k 6¼l

Fi;l;n ¼ ð21Þðn2 iÞ
Yn21

l¼i

�
l
2

�Xn
l¼i

Fi;l;n ¼ ð21Þðn2 iÞCin: (A3)

In the above calculation,wego from line3 to line 4byusingEquationA1. Thenon thenext lineweexchange the two sumsandby
noticing that the terms under the k-indexed sum are not dependent on k, we obtain line 6. On line 6, we can notice that the
factor after ð21Þðn2 kÞ is exactly the same as in line 3, thus is equal to Cin: Since n 6¼ k; only Cin ¼ 0 can satisfy Cin ¼ ði2 nÞCin:

We go on by computing our second case: the coefficients Cij for i, j, n :

Cij ¼
Xn
k¼2

AikBkj ¼
Xj

k¼i

AikBkj ¼
Xj

k¼i

Qn

l¼i;l 6¼k

�
l
2

�
Qn

l¼i;l6¼k

��
l
2

�
2

�
k
2

��3
�
k
2

�
�

j
2

� Yn
l¼jþ1

12

�
k
2

�
�

l
2

�
0BBB@

1CCCA

¼
Yj21

l¼i

�
l
2

�Xj

k¼i

Qn

l¼jþ1

��
l
2

�
2

�
k
2

��
Qn

l¼i;l6¼k

��
l
2

�
2

�
k
2

�� ¼
Yj21

l¼i

�
l
2

�Xj

k¼i

Fi;k;j ¼
Yj21

l¼i

�
l
2

�Xj

k¼i

ð21Þ
Xj

l¼i;l 6¼k

Fi;l;j

¼ ð21Þ
Yj21

l¼i

�
l
2

�Xj

l¼i

Xj

k¼i;k 6¼l

Fi;l;j ¼ ð21Þðj2 kÞ
Yj21

l¼i

�
l
2

�Xj

l¼i

Fi;l;j ¼ ð21Þðj2 kÞCij: (A4)
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Similarly to the computation of Cin above, the only way to satisfy Cij ¼ ði2 jÞCij for i, j, n is to have Cij ¼ 0: Now, the
remaining coefficients to be computed are the diagonal coefficients. For 2# i, n;

Cii ¼ AiiBii ¼

Yn

l¼iþ1

�
l
2

�
Yn

l¼iþ1

��
l
2

�
2

�
i
2

��3
�

i
2

�
�

i
2

� Yn
l¼iþ1

12

�
i
2

�
�

l
2

�
0BB@

1CCA ¼ 1: (A5)

Finally,

Cnn ¼ AnnBnn ¼ 1: (A6)

All the above computed coefficients prove that the matrix C is the identity matrix, and hence B is the inverse matrix of A, which
demonstrates the Theorem.
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Figure S4. Uncertainty on the estimates of N(t). (.png, 274 KB) 
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Table S1 Scenario 1

Period (in gen.) Haploid Size

0-1,000 20,000

1,000-10,000 40,000

10,000-20,000 10,000

> 20,000 30,000



Table S2 Scenario 2

Period (in gen.) Haploid Size Parameters

0-16,000 N0 exp(−αt) N0 = 40, 000, α = 6.93/(2N0)

16,000-24,000 10,000

> 24,000 20,000



Table S3 Scenario 3

Period (in gen.) Haploid Size Parameters

0-30,000 N0 exp(−αt) N0 = 10, 000, α = −0.732/(2N0)

30,000-40,000 30,000

40,000-60,000 40,000

> 60,000 30,000



Table S4 Scenario 4

Period (in gen.) Haploid Size Parameters

0-400 N0 exp(−α1t) N0 = 200, 000, α1 = 4605.2/(2N0)

400-800 N1 exp(−α2(t− 400)) N1 = 2, 000, α2 = −2302.6/(2N0)

800-1,200 20,000

1,200-1,400 40,000

1,400-1,600 10,000

> 1,600 20,000



Supporting Information

The ms commands for the simulations.
All the times are given in units of 2 times the present haploid population size (see tab:s1 to tab:s4 for the exact values). The letter n
can be replaced by any desired sample size.

• scenario 1: ms n 1 -t 1 -eN 0.025 2 -eN 0.25 0.5 -eN 0.5 1.5 -T
• scenario 2: ms n 1 -t 1 -G 6.93 -eG 0.2 0.0 -eN 0.3 0.5 -T
• scenario 3: ms n 1 -t 1 -G -0.732408192445406 -eG 1.5 0.0 -eN 2 4 -eN 3 3
• scenario 4: ms n 1 -t 1 -G 4605.17018598809 -eG 0.001 -2302.58509299405 -eG 0.002 0 -eN 0.003 0.2 -eN 0.0035 0.05 -eN 0.004 0.1
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Figure S1 Accuracy of estimates of recent N as function of j. We compare estimates of N under scenario 1 with n = 20, between
present and generation 1000 back in the past. Time is discretized in 100 equally sized bins and the accuracy of the N estimation is
measured by the average relative error (see equation 10 in the main text).
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Figure S2 Estimation of N(t) depending on j during the first generations, scenario 1. Different values of j are indicated by the
color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S3 Estimation of N(t) depending on j during during the first generations, scenario 4. Different values of j are indicated by
the color of the solid lines, with a rainbow gradient from red (j = 2) to dark blue (j = 20).
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Figure S4 Uncertainty on the estimates of N(t). Results obtained by first simulating 1,000,000 independent gene-genealogies
from model 1 with 20 haploid gene-copies and then (A) apply the theorem 10,000 times using 10,000 randomly sampled gene-
genealogies from the 1,000,000 genealogies, or (B) apply the theorem 10,000 times using 50,000 randomly sampled gene-genealogies
from the 1,000,000 genealogies. (C) Bootstrap results for model 1 using 20,000 gene-genealogies and 10,000 bootstrap replicates. (D)
Bootstrap results for model 4 using 20,000 gene-genealogies and 10,000 bootstrap replicates. Time is discretized into 100 equally
long intervals. We marked by a two solid gray lines the 2.5 and 97.5 percentiles of the 10,000 estimates of N within each interval.
For (A) and (B), the black solid line represents the true value of N(t). For (C) and (D), the black solid line represents the recon-
structed N(t) profile using our method on the 20,000 independent gene-genealogies.
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Figure S5 Density of V2 with cryptic recombination. Comparison between the expected density of V2 under the constant model
for n = 2 (solid blue line) and the observed density of V2 under the constant model with recombination of Lr = 10−4 in green.
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Figure S6 Effect of estimating trees from polymorphism data. Results of the 2 steps reconstruction method, applied with a sample
size of 20, for 1,000,000 independent loci, evolving under scenario 1 (top figure) and scenario 4 (bottom figure). The mutation rate
per locus Lµ is indicated by the color of the line and the legend gives the correspondence between the colors and the values.
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Figure S7 Comparison of methods on the CEU individuals. Log-scale transformed results of the main text figure 7, panel A.
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Figure S8 Results of MSMC on CEU, CHS, PEL and YRI. Thin light lines represent the population size reconstruction for one
individual and thick lines indicate the average across individuals for a given population. Individuals from PEL have more variance
in the estimated scaled mutation rate by MSMC, thus have time intervals that differ quite a bit from individual to individual when
scaled back in years.
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Figure S9 Results of PSMC on CEU, CHS, PEL and YRI. Thin light lines represent the population size reconstruction for one in-
dividual and thick lines indicate the average across individuals for a given population. Individuals from PEL have more variance
in the estimated scaled mutation rate by PSMC, thus have time intervals that differ quite a bit from individual to individual when
scaled back in years.
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Figure S10 Distribution of length for the no recombining regions of the Decode genetic map.
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Figure S11 Comparison between Popsicle 1 using no recombining Decode regions (green lines) and Popsicle 1 using low recom-
bining regions extracted from HapMapCEU. CEU samples.
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Figure S12 Application of Popsicle 1 to PSMC decoding gene-genealogies. Lower panel is a zoom in of the upper panel curve for
smaller population size.
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Table S1 Scenario 1

Period (in gen.) Haploid Size

0-1,000 20,000

1,000-10,000 40,000

10,000-20,000 10,000

> 20,000 30,000

Table S2 Scenario 2

Period (in gen.) Haploid Size Parameters

0-16,000 N0 exp(−αt) N0 = 40, 000, α = 6.93/(2N0)

16,000-24,000 10,000

> 24,000 20,000

Table S3 Scenario 3

Period (in gen.) Haploid Size Parameters

0-30,000 N0 exp(−αt) N0 = 10, 000, α = −0.732/(2N0)

30,000-40,000 30,000

40,000-60,000 40,000

> 60,000 30,000
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Table S4 Scenario 4

Period (in gen.) Haploid Size Parameters

0-400 N0 exp(−α1t) N0 = 200, 000, α1 = 4605.2/(2N0)

400-800 N1 exp(−α2(t− 400)) N1 = 2, 000, α2 = −2302.6/(2N0)

800-1,200 20,000

1,200-1,400 40,000

1,400-1,600 10,000

> 1,600 20,000
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