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Abstract: The MDR/MTB ELITe MGB® kit (ELITech) carried on the ELITe InGenius® platform is a
new real-time PCR assay allowing automated extraction and detection of DNA of the
Mycobacterium tuberculosis complex (MTB) and mutations in the rpoB and katG genes and inhA
promoter region (pro-inhA) associated to resistance to rifampicin and isoniazid, the two markers of
multidrug-resistant TB (MDR). We assessed the performances of the test on a collection of strains
(n = 54) and a set of clinical samples (n = 242) from routine practice, comparatively to TB diagnosis
and genotypic drug susceptibility testing (gDST) as references. Regarding the 242 clinical samples,
the sensitivity and specificity of MTB detection by ELITe were 90.9% and 97.5%, respectively. For
the detection of resistance-conferring mutations on positive clinical samples, we observed perfect
agreement with gDST for katG and pro-inhA (κ = 1.0) and two discordant results for rpoB (κ = 0.82).
Considering the 54 cultured strains, very good agreement with gDST was observed for the detection
of the 25 distinct mutations in rpoB, katG, and pro-inhA, (κ = 0.95, 0.88, and 0.95, respectively). In
conclusion, the automated MDR/MTB ELITe MGB® assay shows great promise and appears to be a
valuable tool for rapid detection of pre-MDR- and MDR-TB directly from clinical specimens.

Keywords: tuberculosis; multi-drug resistance; rapid molecular diagnosis

1. Introduction

Antibiotic resistance is a major threat to tuberculosis (TB) control. Efficient patient
care needs early and accurate detection of Mycobacterium tuberculosis complex (MTB) and
identification of resistance to rifampicin (RIF-R) and isoniazid (INH-R) [1]. The World
Health Organization (WHO)-endorsed Xpert® MTB/RIF assay (Cepheid, Sunnyvale, CA,
USA) has the advantage of being fully automated but provides limited information as it can
only detect rpoB mutations involved in RIF-R but not INH-R, which can significantly impact
first-line regimen success. Molecular-based assays have been developed to detect specific
drug resistance-encoding mutations in MTB [2–4]. For instance, GenoType MTBDRplus
(Hain Lifescience, Nehren, Germany) assay is recommended by the WHO for direct testing
of smear-positive specimens and MTB isolates. It permits the detection within 48 h of the
most frequent mutations in rpoB and in katG genes, and inhA promoter (pro-inhA), which
cause RIF-R and INH-R, respectively [5–7]. This line-probe assay is not automated and is
time-consuming. Other “real-time” PCR-based assays detecting resistance to both RIF and
INH have been developed, such as Fluorotype® MTBDR VER 2.0 (Hain Lifescience, Nehren,
Germany), which detects mutations in the same three targets as GenoType MTBDRplus
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for both RIF and INH resistance, and is additionally automated with a testing capacity of
95 samples per run. However, automation does not comprise DNA extraction [8].

MDR/MTB ELITe MGB® Kit on the ELITe InGenius® platform (ELITechGroup Molec-
ular Diagnostics, Bothell, WA, USA) is the first multiplex real-time PCR assay designed for
automated DNA extraction and simultaneous detection of the DNA of MTB and of the main
mutations responsible for resistance to RIF and INH in clinical specimens. Automation has
the advantage of obtaining results in 3 h, with all steps included from sample to results,
thus reducing time-to-result and making it possible to initiate early adapted treatment,
especially in case of MDR-TB. The assay was first evaluated by Bisognin et al. but on frozen
samples spiked with mutated strains [9]. Recently, a second study by Hodille et al. was
performed retrospectively on clinical samples (n = 54) and strains (n = 25) [10]. The present
evaluation of the assay aims to provide its diagnostic accuracy directly on 242 specimens
collected in prospective clinical routine practice and, in a second part, retrospectively
on 54 previously characterized strains from our French National Reference Centre of My-
cobacteria (NRC MyRMA, Paris, France) collection, representing a wide range of mutations
(25 distinct mutations in total).

2. Results

2.1. Performances of MDR/MTB ELITe MGB® Assay on Routine Clinical Specimens

The first part of the study aimed to assess the performances of MDR/MTB ELITe
MGB® assay as a routine diagnostic test. The assay was performed prospectively on
247 consecutive clinical specimens sent to our laboratory for diagnosis of TB. DNA extrac-
tion and amplification were performed directly from the clinical sample on the automated
ELITe InGenius® system. Five smear-negative bronchial aspirates were excluded because
their results on the ELITe assay were invalid owing to the presence of inhibitors, leaving
242 samples included for comparison in our study.

Out of the 242 specimens, TB diagnosis was confirmed for 44 of them and was excluded
for the remaining 198 samples. Among the 44 positives, 40 were ELITe positive for MTB
while 4 remained negative (Table 1). The 4 latter, for which the culture was positive, were
negative on smear examination and also using another molecular assay (Fluorotype® MTB,
Hain). Among the 198 TB negatives, 193 were detected as negative by ELITe while 5 were
discordant ELITe positives. Apparent sensitivity and specificity were respectively 90.9%
and 97.5% (Table 1).

Table 1. Performances of MDR/MTB ELITe MGB® assay and microscopic examination for the
detection of M. tuberculosis complex in specimens in comparison to TB diagnosis.

TB Diagnosis
ELITe MTB

(n = 242)
Microscopic Examination

(n = 238)

Positive (n) Negative (n) Positive (n) Negative (n)

Positive 40 1 4 29 13
Negative 5 1 193 2 15 182

Sensitivity, % 90.9 69.0
(95% CI) (78.3–97.5) (52.9–82.4)

Specificity, % 97.5 92.3
(95% CI) (94.2–99.2) (87.6–95.7)

Cohen’s Kappa 0.88 0.60
(95% CI) (0.80–0.96) (0.47–0.74)

1 Including 14 smear-negative (9 TB diagnosis positive and 5 TB diagnosis negative). 2 Including 15 smear-positive
ELITe negative with 13 NTM and 2 contaminated samples.

For the detection of resistance mutations in rpoB, katG, and pro-inhA, ELITe InGenius®

software is set up to interpret results only if Ct ≤ 31. Among the 40 concordant ELITe
positives displayed on Table 1, ELITe InGenius® was able to interpret resistance results
for 26 specimens of Ct ≤ 31, while no valid result was proposed by the InGenius® system
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for the other 14 specimens for which Ct > 31. Nevertheless, for such low positives, ELITe
InGenius® offers the possibility of manual analysis of the curves by the operator. In our
study, 6 out of the 14 InGenius®-uninterpretable results (all RIF-S and INH-S) could thus
be interpreted based on direct analysis of the curves (see 6 in Table 2).

Table 2. Performances of MDR/MTB ELITe MGB® assay in detecting resistance mutations in rpoB, katG, and pro-inhA on
40 ELITe MTB-positive specimens in comparison with gDST.

gDST

MDR/MTB ELITe

Resistant (n) Susceptible (n)
Uninterpretable

(InGenius®

and Operator)

Sensitivity
(Interpreted) %

(95% CI)

Specificity
(Interpreted) %

(95% CI)

Cohen’s Kappa
(Interpreted)

(95% CI)

rpoB
Mutated 6 1 1 2 2 85.7 (85.7) 96.0 (100.0) 0.82 (0.90)

Wild-type 1 3 24 6 6 (42.1–99.7) (79.6–99.9) (0.57–1.0)

katG
Mutated 5 4 0 2 100 (100) 100 (100) 1.0 (1.0)

Wild-type 0 27 6 6 (47.8–100) (87.2–100) (1.0–1.0)

pro-inhA
Mutated 5 5 0 0 100 (100) 100 (100) 1.0 (1.0)

Wild-type 0 27 6 8 (47.8–100) (87.2–100) (1.0–1.0)
1 detected mutations: Ser450Leu, His445Asp. 2 mutation Asn438Asp on rpoB gene, not covered by MDR/MTB ELITe MGB®, and not
conferring resistance to RIF, finally considered as “true negative/susceptible” result. 3 absence of detection of a probe, interpreted as
resistant by ELITe InGenius®. 4 detected mutation: Ser315Thr. 5 detected mutation: −15C > T. 6 including 6 with Ct > 31 (not interpretable
by ELITe InGenius®) finally interpreted by manual analysis of the curves by the operator.

For each of these six assays, 100% concordance was observed with gDST for the three
targets rpoB, katG, and inhA promoter. It has to be noted that the smear examination
was negative for three of them, showed <1 acid-fast bacteria (AFB) for two samples, and
1–9 AFB for the last one. The eight remaining InGenius®-uninterpretable results (including
two MDR-TB and six RIF-S and INH-S, Table 2) could not be analyzed by the operator
either. Six of them were smear negative and one displayed <1 AFB (no smear microscopy
was performed for the last one owing to insufficient quantity). Considering the thirty-two
results which could be interpreted by either InGenius® (n = 26) or the operator (n = 6),
predictions of resistance by ELITe assay and by gDST perfectly matched for katG and
pro-inhA, with kappa values of 1.0 for both targets (Table 2). Regarding the detection
of resistance-conferring mutations in rpoB, two discrepancies were observed. First, a
rare mutation Asn438Asp was detected by Sanger sequencing, which is not covered by
MDR/MTB ELITe MGB® (see 2 on Table 2). As this mutation was finally proven not to
be linked to RIF resistance (the corresponding strain was RIF-S by phenotypic DST), the
non-detection of Asn438Asp by ELITe was finally regarded as a true negative/susceptible
result. In another sample (see 3 on Table 2), the ELITe resistant/gDST wild-type result was
due to the detection of a very weak signal yet below the threshold in the amplification curve
of a probe by ELITe, considered as an absence of amplification, hence initially interpreted
as resistant by ELITe InGenius®. The result was finally considered a false positive. Before
interpreting the data, the sensitivity and specificity values found for rpoB were 85.7% and
96%, respectively, with a kappa value of 0.82 (Table 2). After interpretation, we determined
for rpoB sensitivity and specificity values of 85.7 and 100%, respectively, and agreement
of ELITe assay with gDST was very good, with a kappa value of 0.90 (Table 2). Because
the resistant cases in our set of clinical isolates were due to only two distinct mutations
in rpoB (Ser450Leu (n = 5), His445Asp (n = 1)), one in katG (Ser315Thr, n = 5), and one in
pro-inhA (−15C > T, n = 5), we undertook an evaluation of the ELITe assay on a second
set of previously characterized isolates in order to widen the range of mutations tested in
these three targets.
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2.2. Retrospective Study: Performances of MDR/MTB ELITe MGB® Assay in Detecting
Resistance Mutations in rpoB, katG, and Pro-inhA on Well-Defined Isolates

In this second part of the study, we aimed to assess the performances of MDR/MTB
ELITe MGB® assay in detecting resistance mutations in rpoB, katG, and pro-inhA from
54 isolates from our NRC MyRMA collection. The DNAs extracted by thermal lysis from
these isolates were tested with MDR/MTB ELITe MGB® assay using the “only PCR”
function of the ELITe InGenius® platform. The DNAs were from 40 MDR strains, 2 mono-
RIF resistant strains, 2 mono-INH resistant strains, and 10 strains susceptible to both INH
and RIF. The 44 resistant strains represented in total 17 distinct amino acid substitutions in
rpoB, 5 in katG, and 3 mutations in the inhA promoter region (Table 3).

Table 3. Mutations detected in rpoB gene, katG gene, and inhA promoter on clinical specimens and on
isolates from our NRC MyRMA collection and tested by MDR/MTB ELITe MGB® assay, according
to resistance patterns.

Resistance Phenotype
Mutation in

rpoB katG inhA Promoter

MDR

Val251Phe;
Gln432Pro;
Asp435Val;
Asp435Tyr;

Asp435Tyr +
Ser441Thr;

Asp435Tyr +
Gln429Arg;

Asp435Tyr +
Met433Ile;

Asp435Glu +
His445Asn;
His445Cys;
His445Asp;
His445Leu;
His445Arg;
His445Tyr;
Ser450Leu;
Leu452Pro

Ser315Thr
Trp689Gly

−15C > T
−8T > A

Mono RIF-R Ser450Leu,
His445Tyr Ser140Gly 1

Mono INH-R Asn438Asp 2 Arg249Pro −60C > G

Susceptible Leu430Pro Ser315Gly 3

1 Ser140Gly in katG: not conferring resistance to isoniazid. 2 Asn438Asp in rpoB: not conferring resistance to
rifampicin. 3 Ser315Gly in katG: not conferring resistance to isoniazid.

The performances in detecting resistance mutations in comparison with gDST are
presented in Table 4. None of the 12 strains wild-type for rpoB had any rpoB mutation
detected by ELITe (Table 4). Among the 42 strains mutated in rpoB, 41 resistance mutations
were detected in rpoB by ELITe. The single discordant result was due to an infrequent rpoB
genetic variant, Val251Phe (Table 3 and 1 on Table 4), which was not detected by ELITe
since the region covered by the assay is limited to the mutations affecting codons 429 to
452 (the mutation Val251Phe was actually detected after rpoB sequencing). Sensitivity and
specificity were 97.6% and 100.0%, respectively. Excellent concordance with gDST was
observed with a kappa value of 0.95 (Table 4).
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Table 4. Performances of MDR/MTB ELITe MGB® assay in detecting resistance mutations in rpoB, katG, and pro-inhA on
strains (n = 54) from our NRCMyRMA collection, in comparison with gDST.

gDST

MDR/MTB ELITe Results

Resistant (n) Susceptible (n)
Sensitivity

(Interpreted), %
(95% CI)

Specificity
(Interpreted), %

(95% CI)

Cohen’s Kappa
(Interpreted),

(95% CI)

rpoB
Mutated 41 1 1 97.6 (97.6) 100.0 (100) 0.95 (0.95)

Wild-type 0 12 (87.4–100) (73.5–100.0) (0.85–1.0)

katG
Mutated 34 2 3 3 91.8 (94.3) 100.0 (94.7) 0.88 (0.88)

Wild-type 0 17 (78.0–98.3) (80.4–100.0) (0.74–1.0)

pro-inhA
Mutated 14 1 4 93.3 (93.3) 100.0 (100.0) 0.95 (0.95)

Wild-type 0 39 (68.0–99.9) (90.9–100.0) (0.86–1.0)
1 mutation Val251Phe on rpoB gene, not covered by MDR/MTB ELITe MGB®. 2 including mutation Ser315Gly in an isolate phenotypically
susceptible to INH. 3 mutations Ser140Gly, Arg249Pro, and Trp689Gly on katG gene, not covered by MDR/MTB ELITe MGB®. 4 mutation
−60C > G on inhA promoter region, not covered by MDR/MTB ELITe MGB®.

Regarding the katG gene, the 17 wild-type isolates were well-detected as susceptible
by ELITe assay (Table 4). Among the 37 mutant strains, ELITe detected all the muta-
tions appearing at codon 315, namely the frequent Ser315Thr (n = 33) but also Ser315Gly
(n = 1, Table 3 and see 2 on Table 4). The latter was detected on a strain which was INH-S
on phenotypical DST and was finally considered as a false positive ELITe result. The
three remaining discordant ELITe susceptible/gDST mutated results (see 3 in Table 4)
were due to infrequent mutations located outside the codon 315 region screened by the
assay. The first one was Ser140Gly which was not associated to resistance (phenotypically
INH-S, Table 3). Therefore, it was interpreted as a true negative result. The other two
mutations, Arg249Pro and Trp689Gly, identified on resistant strains, were regarded as two
false negative ELITe results. Sensitivity and specificity of ELITe in detecting resistance
mutations in katG gene were 91.8% and 100% before interpretation, and 94.3% and 94.7%
after interpretation, respectively, with a κ = 0.88 showing very good agreement.

Finally, considering the inhA promoter region, the single discordant result between
ELITe assay and gDST was due to the mutation −60C > G (Table 3 and see 4 on Table 4),
which is not covered by the ELITe assay. This mutation was identified by Sanger sequencing
on an INH-R strain, which presents no other identified mutation. The assay showed a
sensitivity and a specificity of 93.3% and 100%, respectively. Total agreement for the
detection of resistance mutations in pro-inhA was excellent, with a kappa coefficient of 0.95.

3. Discussion

In this study performed on 242 routinely collected specimens, MDR/MTB ELITe
MGB® assay yielded very good results in diagnosing TB, with a sensitivity and a speci-
ficity of 90.9% and 97.5%, respectively. The performance parameters of ELITe assay
were significantly higher than those of microscopic examination (sensitivity of 69.0%
and specificity of 92.3%), as shown in Table 1. Among the ELITe positives, 14 were smear
negatives, with 9 confirmed TB (see 1 on Table 1). Interestingly, the ELITe assay seems
sensitive enough to detect pauci-bacillary TB. Sensitivity was comparable to that pub-
lished by Bisognin et al. [9], and higher than that observed by Hodille et al, in routine
clinical context in our study. Considering the ELITe negatives, 15 were smear-positive,
among which 13 were due to the non-tuberculosis mycobacteria M. intracellulare (n = 3),
M. avium (n = 5), M. fortuitum (n = 1), M. chimaera (n = 2), M. abscessus susp. bolletii (n = 1),
and M. genavense (n = 1), and 2 were false-positive microscopic examinations likely due
to Corynebacterium spp., indicating very high specificity of ELITe assay, which was also
observed by Bisognin et al. (99.23%) and Hodille et al. (100%) [9,10]. Among the nine
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discordant results, four were false-negative ELITe results obtained from four culture-
diagnosed TB with negative microscopic examinations owing to their low bacillary load
in the specimens. Notably, these four negative specimens were also negative by Hain
FluoroType® MTB, suggesting that molecular diagnostics seem to not be sensitive enough
in such smear-negative specimens. On the other hand, five out of the nine discordant
results were discordant ELITe positive ones. The five false-positive results, for which no
diagnosis of TB had been established, corresponded to ELITe amplification curves showing
very late positive and doubtful signals, for which either artefacts or contamination could
not be excluded. These observations should warn about InGenius® interpretation issues
for very weak positives.

Recently, new rapid tests have been developed, such as Xpert® MTB/RIF Ultra,
for which a gain in sensitivity has been reported (88–95.7%), yet raising a specificity
issue (58.6–96.7%) [11,12]. Comparatively, the ELITe assay has the advantage of offering
high sensitivity while keeping the highest specificity, as it was also recently reported by
Bisognin et al. [9]. Hodille et al. found a lower sensitivity on their 54 selected samples,
when compared to culture. It has to be noted that clinical specimen processing makes it
inappropriate to declare a sensitivity of 100% in detecting RIF and INH resistance, while
it was calculated based on only six samples for both molecules [10]. In our study, we
tested prospectively as in routine diagnosis 242 samples, among which 44 were confirmed
diagnosed TB.

Another advantage of the ELITe assay is that the ELITe InGenius® apparatus allows
the recovery of the extracted DNAs for further molecular tests, such as the identification of
associated resistance markers (in particular to second-line drugs) and the phylogenotyping
allowing to trace rapidly possible routes of transmission of MDR-TB.

Regarding the detection of resistance mutations, MDR/MTB ELITe MGB® assay
has been designed to provide results similar to the GenoType MTBDRplus assay which
targets the same regions in rpoB, katG, and pro-inhA. With respect to the five discordant
ELITe susceptible/gDST-mutated results shown on Table 4, the mutations Val251Phe on
rpoB and Ser140Gly, Arg249Pro, and Trp689Gly on katG are not covered by ELITe. Like
MTBDRplus, the MDR/MTB ELITe assay misses about 7% of the katG mutations outside
the “315” target [13]. Notably, ELITe was able to detect the mutation Ser315Gly, to which
no resistance was associated. It is important to note here that in comparison with the
MTBDRplus line probe assay, ELITe cannot specify the most frequent mutations but only
predicts if a mutation is present in each of the three targets. Therefore, one could wonder
about the consequences of silent mutations on the ELITe performances. Even if they could
in practice impact the results of the ELITe analysis, silent mutations are scarcely observed,
and none was detected in our study. Nevertheless, this point should be assessed with
larger sampling in the future. ELITe assay is robust regarding rpoB and pro-inhA since most
associated resistance mutations are located in the regions targeted by the assay. It appeared
less robust for katG owing to the more diversified mutations outside the tested region, of
which the impact on resistance to INH is less predictable.

Our study has two limitations: (i), the size of our samples which has to be enlarged to
confirm our results, and (ii) the limited diversity in tested specimens. In fact, our study
was performed mostly on pulmonary samples but included only few extra-pulmonary
specimens. However, in our study, the assay was evaluated in laboratory routine conditions,
unlike the first evaluations of the ELITe assay recently published by Bisognin et al. and
Hodille et al. [9,10], which were performed on frozen specimens. In the first evaluation,
all the positive specimens were drug-susceptible and wild-type for the three molecular
targets rpoB, katG, and inhA promoter, and detection of resistance was assessed on samples
spiked with three mutated strains containing only mutations Ser450Leu on rpoB, Ser315Thr
on katG, and −15C > G on inhA promoter. As for the second study by Hodille et al.,
only the mutations on the strains were described. Considering the three targets, only
nine mutations were tested, namely Ser450Leu, His445Tyr, and Leu452Pro on rpoB gene,
Ser315Thr, ∆1–492, Gln88Pro, and Leu343STOP on katG, and −15fabG1 and −17fabG1 on
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pro-inhA [10]. The large range of mutations tested in our study (25 distinct mutations from
clinical isolates, representing frequently observed resistance patterns) provides sufficient
diversity to reinforce our confidence in the potential of the ELITe assay to be an efficient
routine tool for diagnosing MDR-TB.

4. Materials and Methods
4.1. Clinical Specimen Processing

Two hundred and forty-seven consecutive routine clinical specimens were collected
from 5 November 2019 to 28 August 2020 from liquefied sputa (n = 41), bronchial aspirates
(n = 148), bronchoalveolar lavages (n = 12), gastric aspirations (n = 5), biopsies (n = 18),
cerebrospinal fluid (n = 7), lymph nodes (n = 5), abscesses/pus (n = 6), urine (n = 1), and
other cavitary fluids (n = 4), from patients for which TB was suspected. Samples were
processed inside a level-III biosafety cabinet. For every specimen, culture on Löwenstein-
Jensen (LJ) medium was performed and a slide was prepared and stained with auramine
for microscopic examination, following routine procedure in our laboratory [14].

4.2. DNAs Extracted from Strains

Fifty-four DNAs from our NRC MyRMA collection were tested. These DNAs were
selected in order to cover a wide set of mutations in genes conferring resistance to RIF and
INH. These strains belong to the lineages Beijing (n = 17), Delhi-CAS (n = 2), Ghana (n = 3),
Haarlem (n = 3), H1 (n = 1), LAM (n = 8), NEW-1 (n = 1), S (n = 3), Uganda-1/T2 (n = 1),
T1 (n = 2), Ural (n = 1), and uncharacterized strains (n = 12). DNAs were extracted from
isolated strains by thermal lysis, as previously described [15].

4.3. Genotypic DST

Detection of resistance mutations in the three targets (rpoB, katG, and pro-inhA) by
the new assay was compared with genotypic DST (gDST) as reference, which included
identification of mutations in the three targets using GenoType MTBDRplus and Sanger se-
quencing [15] plus Deeplex® Myc-TB (GenoScreen, Lille, France) when required, following
the manufacturers’ instructions.

4.4. MDR/MTB ELITe MGB® Kit on ELITe InGenius® System (ELITechGroup Molecular
Diagnostics, Bothell, WA, USA)

The MDR/MTB ELITe MGB® assay consists of a fully automated multiplex real-time
PCR assay designed for the simultaneous detection of the DNA of M. tuberculosis and of
resistance to rifampicin and isoniazid. Based on the use of ELITe MGB® probes, MTB
Complex is detected by targeting the repeated sequence IS6110, rifampicin resistance
by analyzing the so-called Rifampicin Resistance Determining Region (RRDR) in rpoB,
and isoniazid resistance by analyzing katG at the level of codon 315 and inhA at the
level of its promoter region. The entire ELITe assay is performed on the ELITe InGenius
platform, an automated integrated system for extraction, amplification, detection, and
results interpretation.

Specimens were first decontaminated using NAC-PAC® decontamination and diges-
tion system (AlphaTecTM), following the manufacturer’s instructions and inactivated using
thermal shock (25 min at 95 ◦C, 1 h at −20 ◦C, 10 min at 95 ◦C, and 10 min at −20 ◦C). Two
hundred microliters of decontaminated and inactivated specimens were processed on the
ELITe InGenius® System, following the manufacturer’s instructions. Briefly, DNA extrac-
tions were performed from 200 µL of sample in ready-to-use, unitary, cassette-based format
extraction cartridges, while real-time multiplexed PCR amplifications were performed in
independent unit cartridges for Elite-controlled thermal cyclers. An internal control was
included at the extraction step in order to control the absence of PCR inhibitors. Results
interpretation and analysis were automatically done by the system. The raw data for the
Ct values are given as Supplementary Information (Table S1). The cutoff value used by the
InGenius® system to differentiate between positive and negative samples is 45.
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4.5. Statistical Analysis

Apparent sensitivity and specificity of the new assay were calculated in comparison
with confirmed diagnosis of TB following the international guidelines [16] for MTB detec-
tion and gDST for the detection of resistance mutations as references. Agreements between
MDR/MTB ELITe MGB® assay and reference tests were assessed with Kappa statistics since
it is more robust for evaluation of agreement between categorical variables. Cohen’s kappa
(κ) values from 0.00 to 0.20 show slight agreement, those from 0.21 to 0.40 indicate fair
agreement, those from 0.41 to 0.6 suggest moderate agreement, those from 0.61 to 0.80 show
substantial agreement, and those above 0.8 indicate excellent agreement [17]. Statistical
analyses were performed using R packages epiR [18] and irr [19] on R software [20].

5. Conclusions

As a conclusion, MDR/MTB ELITe MGB® assay combines the abilities to yield early
diagnostic results directly from specimens, like Xpert® technology, and to properly detect
RIF and INH resistance like GenoType MTBDRplus DNA strips. The automation on the
ELITe InGenius® Instrument, which integrates DNA extraction, amplification, and result
interpretation makes it possible to get results in about 3 h, a feature which not only can bring
about early results and early adapted treatment for the patients but is also time-sparing for
technicians. However, this technique needs appropriate and dedicated premises, which
makes it difficult to use as point-of-care testing. In the present report, we have shown that
the ELITe assay has proven to be a reliable test to detect MTB and resistance to first-line
drugs RIF and INH in clinical routine practice. Its use directly on primary specimens
could be very helpful as an early guide for treatment if the assay is combined with a new
next-generation sequencing (NGS)-based targeted deep-sequencing approach such as the
Deeplex® Myc-TB assay which allows the detection of resistance to 13 anti-TB drugs [21,22].
Such a strategy represents a very promising breakthrough for early optimal treatment of
MDR-TB and XDR-TB patients and is currently under evaluation in our laboratory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10070797/s1, Table S1: Raw Ct values measured by ELITe assay for MTB detection.
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