
geriatrics

Review

Prostate Cancer: Is It a Battle Lost to Age?

Venkatesh Vaidyanathan 1,*, Nishi Karunasinghe 2, Anower Jabed 3, Radha Pallati 1,
Chi Hsiu-Juei Kao 1, Alice Wang 1, Gareth Marlow 4 and Lynnette R. Ferguson 1,2

1 Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand;
rpal628@aucklanduni.ac.nz (R.P.); b.kao@auckland.ac.nz (C.H.-J.K.); alice.wang@auckland.ac.nz (A.W.);
l.ferguson@auckland.ac.nz (L.R.F.)

2 Auckland Cancer Society Research Centre, Auckland 1023, New Zealand; n.karunasinghe@auckland.ac.nz
3 Department of Molecular Medicine and Pathology, FM & HS, University of Auckland, Auckland 1023,

New Zealand; a.jabed@auckland.ac.nz
4 Experimental Cancer Medicine Centre, Cardiff University, Cardiff CF14 4XN, UK; MarlowG@cardiff.ac.uk
* Correspondence: v.vaidyanathan@auckland.ac.nz; Tel.: +64-9-923-6513; Fax: +64-9-373-7502

Academic Editor: Ralf Lobmann
Received: 11 August 2016; Accepted: 31 October 2016; Published: 3 November 2016

Abstract: Age is often considered an important non-modifiable risk factor for a number of diseases,
including prostate cancer. Some prominent risk factors of prostate cancer include familial history,
ethnicity and age. In this review, various genetic and physiological characteristics affected due to
advancing age will be analysed and correlated with their direct effect on prostate cancer.
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1. Introduction

Aging is the irreversible process by which individuals undergo various physiological changes,
and become vulnerable to various diseases, which in some cases can also be the cause of mortality [1,2].
Age is often considered an important non-modifiable risk factor for a number of diseases which
include, but are not limited to neurodegenerative diseases such as age-specific Alzheimer’s disease [3];
cardiovascular diseases such as coronary heart disease, stroke [4,5], and hypertension [6]; and certain
cancers [7,8] including prostate cancer (PCa) [9,10].

PCa has one of the highest incidence rates amongst all diagnosed cancers in males worldwide [11].
According to 2011 statistics, in males, PCa was the most common cancer registration in New Zealand,
making up 27.3% of all male cancer registrations, and is a significant burden to the Public Health
System [12]. Some prominent risk factors of PCa include familial history, ethnicity and age [13]. Only a
very few cases of PCa are diagnosed in men less than 50 years old and around three-quarters of all
the cases diagnosed are in men 65 years or older. For this review, we are considering 65 years as the
cut-off [14]. Certain other factors which can also be related to PCa as risk factors are reproductive
hormonal imbalances [12] and lifestyle factors such as, diet and smoking tobacco [12,13].

In this review, we will be looking into four parameters as risk for PCa which can be affected due
to aging (Figure 1):

(i) Immunity and inflammatory response,
(ii) Cholesterol metabolism and obesity,
(iii) Free testosterone levels,
(iv) Genetic and epigenetic effects.
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We will then correlate these changes with advancing age and try to establish if they have a direct
effect on the onset and progression of PCa or not. By the end of this review we aim to answer three
important questions with regards to the diagnosis and progression of PCa:

1. Is PCa a gerontological disorder fuelled by an aging immune system, altered cellular metabolism,
decreased levels of testosterone, and alterations in gene expression?

2. Is there potential for slowing or reverting these changes?
3. If the answer to question 1 is ‘yes’, can diagnostic tools distinguish aggressive PCa from

non-aggressive PCa for possible early interventions?

To our knowledge, this is the first conclusive review to look into the alterations in risk factors for
PCa with progressing age as a standard of variability in patients.
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Figure 1. Relation between aging and risk and progression of prostate cancer.

2. Risk Factors for Prostate Cancer

Most cancers are defined as complex diseases involving both environmental and genetic
determinants as risk factors [15]. It is well documented that cancers of almost all the organs and organ
systems can be caused due to environmental and lifestyle factors, including, and not restricted to,
smoking tobacco, alcohol consumption, infectious agents, occupation, diet and obesity [16]. We suggest
that the entire span of life spent pursuing the various lifestyle habits may have an accumulated effect
on various factors such as immunity, inflammation, and even expression of the genes. Therefore the
role of aging is of much importance not only to understand the role it plays directly as a risk for
diseases, but also indirectly.

With regards to PCa, it is well-established that there are three major risk factors. These are
advancing age, ethnicity, and familial history [17]. Recent studies point out that alterations in genetic
and epigenetic make-up are the basis for the development of malignancies [18].

For most cancers, including PCa, however, the assessment of the exposures to external
(or, environmental factors) and their effects still remains a challenge. Our understanding of the
etiology of cancer in terms of environmental factors and genetic susceptibility is still rather limited,
and the interplay among these etiological constituents is poorly understood [15]. For this review,
as previously mentioned, we are focusing on the progressing age and its effect on the expression and
progression of PCa.
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3. Aging, Immunity, Inflammatory Response, and Prostate Cancer

Immune defense in higher vertebrates functions by the detection of a wide range of molecular
patterns which are foreign to the tissues, inducing innate immunity and an inflammatory
response [19,20]. The elderly exhibit an increase in susceptibility to various autoimmune, inflammatory,
and/or infectious diseases [20,21]. Immunosenescence, or age-related alterations impairing the proper
functioning of the immune system, is considered to be the major cause of most of the diseases associated
with old age [20]. Immunosenescence has an impact on both adaptive and innate immunity [22,23].

It is well-established that adaptive immunity declines with progressing age, due to factors such
as reduced production of naïve T-cells, reduced diversity of antigen-recognition repertoire, alterations
in signal transduction in T-cells with changes in the cytokine induction patterns, and reduction in
expansion of clonal and functional specific T- and B-cells, as shown in Figure 2 [23,24]. Aging of
the thymus can also be linked to decreases in the production of naïve T-cells [23]. Alterations in
innate immunity alone due to aging may not be the cause of immunodeficiency in individuals,
but lead to dysregulation of immune response [23]. This dysregulation of immune response in aging
individuals can eventually lead to either loss or gain of immune activity [20–23,25]. The gradual
decrease of naïve T-cells, accumulation of memory T-cells and the effector CD8+CD28- T-cells, which
are instrumental in over-secretion of pro-inflammatory cytokines, can lead to an imbalance in the
pro- and anti-inflammatory networks [24,26,27].
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Inflammation can have a wide-spread effect on cancer, from development and progression
of tumours, to response to therapies [28]. Chronic inflammatory responses induced by biological,
chemical, physical, and/or mechanical injuries have been associated with a higher incidence rate of
cancer in a wide range of human tissues [28,29]. Inflammation can be linked to cancer through two
broad pathways, intrinsic and extrinsic [30,31]. The intrinsic pathway of inflammatory response to
cancer is initiated when oncogene activation is induced in the transformed cells, such that activation of
transcription factor nuclear factor kappa-light-chain-enhancer of activated B-cells is affected by the
production of inflammatory mediators [31]. The extrinsic inflammatory response pathway caused due
to infectious conditions also affects the risk of cancer development [31]. Various risk factors, including
environmental aspects are also identified to be associated with some kind of chronic inflammation [28].
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Some of the genes which play a common role as risk factors for PCa and inflammation pathways,
include RNase L (RNASEL), Macrophage Scavenger Receptor 1 (MSR1), Glutathione S-Transferase P (GSTP1),
Growth Differentiation Factor 15 (GDF15), Toll-like Receptor 4 (TLR4), Macrophage Inhibitory Cytokine-1
(MIC-1) , Interleukin 1 Receptor Antagonist (IL1RN), Interleukin-8 (IL8), and Interleukin-10 (IL10) [32].
Kazma, et al. (2015) investigated the association of 320 single nucleotide polymorphisms in 46 genes
involved with the inflammation pathway with the risk of PCa in 494 patients with advanced diseases
and 536 healthy men of African American and Caucasian ethnicities [33]. Their results indicated that,
although innate immunity and the inflammation pathway do not play a central role in the progression
of PCa, they may play a role in the overall risk of the disease [33]. Anatomically, since the prostate
gland is broadly classified into four lobes, some researchers have also looked into the expression and
spread of cancer based on the individual lobe.

Das et al. (2013), while working on changes in proteomic profiles in the different lobes of male rats
in different aging stages, have identified that aging in the dorsolateral and ventral lobes affected many
proteins that are involved in vital cellular activities, especially inflammatory response [34]. Of the
many proteins they identified to be affected by aging, in each lobe, the expression of three proteins
was identified to have increased, α-1 inhibitor 3, cysteine and glycine-rich protein, and ANXA1 (by the
gene Annexin A1). Three proteins have also decreased expression uniformly in both lobes- hypoxia
up-regulated protein 1, prolyl-1-hydroxyl-β peptide, and protein disulphide isomerase family A,
member 3 [34]. These findings are interesting, as the role of genes is much more evident than the
ageing of the organs as such.

We suggest that aging leads to a decline in immune response, and triggers the inflammatory
pathways leading to development of PCa and these factors may not be playing a role in the progression
of this disease but the risk of development of disease.

4. Aging, Cholesterol Metabolism, and Prostate Cancer

Effects of high fat diets (HFDs) on cholesterol metabolism have been associated with
hyperlipidemia in humans [35]. HFDs increase the total and low-density lipoprotein (LDL) cholesterol
levels in plasma, decrease high-density lipoprotein (HDL), and increase the total cholesterol to HDL
ratio [35]. A life-long consumption of food rich in calories such as red meat, processed food substances
(such as meat, dairy and fruit products) and/or high temperature cooking methods [36] increases
the chances of obesity and concentrations of triglycerides and cholesterol in serum. This may be
due to increased energy intake compared to expenditure leading to a number of diseases such as
cancer [16,36]. High cholesterol in circulation has also been considered as a risk factor for solid
malignancies, predominantly due to the upregulation of pathways such as cholesterol synthesis
and/or inflammatory response [37].

Although cancers originating in different tissues may vary hugely in terms of overall type and
etiology, they can still have common attributes of metabolic anomalies [38]. Cancer, at the cellular
level, is a disease defined by uncontrolled cell growth and proliferation requiring cellular building
blocks such as nucleic acids, proteins, and lipids [38]. Alteration in metabolism in cancer cells permits
them to accumulate higher quantities of metabolic intermediates which can be used as building blocks
in the body [38]. Detection of cholesterol deposits in tumour cells has made it vital to analyse the
cellular function of cholesterol and fatty acid metabolisms leading to the uncontrolled growth in these
cells [38–40]. Due to the uniqueness of the prostate gland, the association between cholesterol deposits
and PCa has been identified to be very strong [39,41]. Oxidation of fatty acids is also the source for an
increase in the production of mitochondrial reactive oxygen species (ROS), which at high levels can be
harmful to organelles, including the mitochondria [42,43], and various pathological states including
cancers such as PCa [44].

Various case-control [45,46] and epidemiology studies [47] have demonstrated that individuals
with elevated blood cholesterol levels run a higher risk of PCa [40]. The epithelial cells of the prostate
gland have two very unique features [41]. Prostate gland cells, owing to higher cholesterol synthesis
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as compared with the liver cells, have higher cholesterol levels than other tissues in the vicinity and
this increase with aging and progression of PCa (Figure 3) [39]. Prostate epithelial cells also express
higher level of glycolytic activity with reduced respiration [41,48].
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It is an inevitable fact that, when subjects undergo studies designed to identify the impact of
amount and/or type of fat intake, there is an overall effect on the protein and/or carbohydrate in the
diet as well [49]. Due to this, it is extremely difficult to pinpoint the effect that changes in diet have on
the well-being of an individual [49]. It is therefore very important to look into details such as genes
involved in metabolism to identify the regulation of fat break-down and absorption. The effect of
aging on these genes becomes crucial too, as aging not only means that the individuals have had a
life-time of certain dietary habits (which may cause higher oxidative stress and/or DNA damage),
but also factors such as telomere shortening which leads to senescence [50].

5. Aging, Testosterone Level and Prostate Cancer

It is well established that the various symptoms of aging in males include and are not limited to
fatigue, reduction in physical strength, lack of energy, lower and eventually loss of libido, reduced
sexual performance, depression, and mood swings [51]. Various bodily compositions in healthy males
also change with age-associated decline in free and bioavailable testosterone [52]. Some examples of
alteration in body compositions include an increase in fat mass and decrease in muscle mass and bone
mineral density [53–56].

With testosterone being the primary androgen receptor-activating hormone identified in the
Wolffian duct, and also responsible for the development of the primary sexual characteristics [57],
it is the main hormone of interest in this review. The overall level of the biochemical testosterone
also decreases with aging [51]. What is interesting from the point of research is that the symptomatic
evidence suggests normal aging in males to be very similar to those with mild androgen deficiency [51].
In concordance with the core idea of this review, aging in males and the effect on testosterone levels in
males with PCa is another important aspect.

There is a substantial amount of epidemiological data to prove that serum free and total
testosterone, and adrenal steroid dehydroepiandrosterone (DHEA) levels decrease with the normal
aging process after peaking reaching the age bracket of 20–30 years [58–60]. Examples of the decrease
in the levels of serum testosterone with aging have been cited in cross-sectional and longitudinal
studies [58,61]. On the contrary, certain other androgen axis products such as luteinizing hormone,
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follicular stimulating hormone and dihydrotestosterone levels, and sex hormone-binding globulin
levels have been identified to increase with age [59,62]. Reduction of testosterone could also be at least
partly due to it’s being aromatized to estrogen with increasing age [62]. According to Bélanger, et al.
(1994), a decline in adrenal DHEA is responsible for up to a 50% reduction in total androgens in men
beyond the age of 40 years [63].

Various circulating androgens, including testosterone, have important roles in the growth of the
prostate gland, and PCa [64]. The specific pathway mechanism or the role of testosterone level on
progression of PCa, however, is still to be well defined [64]. The level of circulating testosterone in
men more than 45 years of age, across various ethnicities, shows a tendency to converge down as
compared with vastly varied levels in men of age less than 30 years [52]. Many researchers have shown
that higher levels of circulating testosterone do not correlate with an increased risk of PCa [65,66].
However, low levels of serum testosterone do have a direct correlation with progression of the disease
to aggressive PCa [64,65,67,68]. Moreover, with a life-long consumption of fatty food substances,
the levels of testosterone can also be affected by this. These absolutely contradicting effects on the
levels of testosterone can also cause hormonal imbalance, as shown in Figure 4.
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These observations suggest that variation in the pattern of declining levels of free testosterone with
progressing age is primarily caused by reproductive physiological variations in various populations
and not because of the ethnic differences in populations [52]. It is also important to mention
that the drastic depletion of testosterone levels in Caucasian populations from elevated levels in
young-adulthood to comparatively much lower levels in adult-aged men causes drastic alterations in
hormonal balance which may be a potential cause for higher risk of PCa [52].

Munetomo et al. (2015) have shown an increase in androgen receptor (AR) expression in the
hypothalamus of rats as they age (3 v/s 24 months) [69]. Meanwhile, Pomerantz et al. (2015) have
also shown extensive reprogramming of AR cistrome during prostate epithelial transformation into
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tumours [70]. The close correlation and co-activation between AR and telomeres have also been
discussed in detail by Zhou et al. (2013) [71]. Therefore, aging related telomere shortening [72] could
also have direct effects on normal functioning of the AR.

6. Aging, Genetic and Epigenetic Effects and Prostate Cancer

One of the other aspects linking alteration of testosterone levels, aging and PCa, and thereby,
worthy of mention in this review, is alterations of DNA methylation. Ammerpohl, et al. (2013),
suggested that androgens affect sexual dimorphism in humans and thereby change DNA methylation
marks in the epigenome [73]. Interestingly, on one hand hypermethylation of certain genes such as
GSTP1 is well established to be consistent with the transition of PCa from intraepithelial neoplasia
stage to becoming a frank carcinoma [74], and on the other, certain other studies exhibit that DNA
methylation and histone modifications generally recapitulate the normal aging process [75]. Therefore,
it is very difficult to specifically identify the role of aging on methylation changes, leading to and/or
progression of PCa.

Drastic changes are observed in epigenetic patterns during growth and development; most of
these events are biologically programmed and absolutely necessary for healthy being. However,
changes in the epigenome in mature (adult) somatic tissues mirror aging-associated deleterious
effects [76]. Alterations in biological processes, cellular responses, and disease states, are all parameters
well-established to have an association with changes in gene expression [1]. Many microarray studies
have been carried out to define the process of aging and to identify potential genes, gene expressions,
and biomarkers of risk factors for many gerontological diseases [1,77]. However, aging gene expression
studies have a number of complications. Two of the main issues faced by research in this area are the
fact that only a few genes are identified as being differentially expressed, and also, fewer genes are
found to overlap with the effect in a wide range of tissues [1,78]. Rodwell, et al. (2004), suggested that a
very small proportion of transcriptional response is tissue-specific, and therefore molecular signatures
of aging may overall be identified even in unrelated tissues [79]. These signatures, however, can be
subject to varied interpretations rather than an active aging program [1,79]. de Magalhes, et al. (2009),
were able to integrate gene expression analyses from various studies to identify genes that have a
tendency to over- and/or under-express with progressing age [1]. The inflammatory response pathway
is one of the most important pathways that is upregulated with aging in humans [1]. Over-expression
of anti-apoptotic genes and cell-cycle regulators such as granulin (GRN), annexins, and genes playing a
protective role during oxidative stress and detoxification of lipid peroxidation of end products such as
glutathione S-Transferase-1 (GST1) are commonly observed to be directly related to progressing age [1].
Genes that under-express with aging are not only fewer than the over-expressing genes, but are also
simpler to interpret, as they are predominantly identified in the energy metabolism categories such as
cholesterol metabolism [1]. Negative regulation of transcription strongly suggests that transcriptional
activities decrease with aging, thus supporting the hypothesis that RNA synthesis decreases with
aging [1]. Nevertheless, the total protein content of an individual may not alter with age always;
therefore, decreasing mRNA may lead to the accumulation of proteins with anomalies [1].

The bulk of the mammalian genome gets transcribed to non-coding ribonucleic acids (RNAs) [80,81].
Two major groups of non-coding RNAs that play important roles as epigenetic regulators of
gene expression are long non-coding RNAs (lncRNAs) [81] which are comprised of nucleotide
sequences >200 bp and small non-coding RNAs which include microRNAs (miRNAs) [82], comprised
of nucleotide sequences <200 bp. Certain molecular mechanisms permit lncRNAs to regulate cellular
and tissue functions either by activating or suppressing gene expression [81], whereas miRNAs usually
down-regulate gene expression either by mRNA degradation or by blocking off translation [82,83].
The mechanisms of action of long non-coding RNA with regards to fat metabolism, diabetes, diseases
of mitochondrial dysfunction, age-associated muscle pathology, cancer, declining stress response,
age-associated immune decline and age-associated neurodegeneration should also be looked into [84].
A link between miRNAs and longevity has already been demonstrated in Caenorhabditis elegans, thereby
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implicating the vital role of miRNAs in the regulation of lifespan and the overall process of aging [82].
miRNAs have a higher impact as gene modifiers compared to lncRNAs because not only can a single
miRNA target multiple mRNAs, but one mRNA can also be targeted by multiple, very different
miRNAs [82].

Hooten, et al. (2010), used mononuclear cells obtained from peripheral blood to estimate the
expression level of miRNA in young and old populations, and identified a negative correlation with
advancing age [85]. This information is very important to define the possibility of miRNA playing a
crucial role in the process of aging. miRNAs have also been identified to be key players in controlling
metabolic homeostasis and related diseases in individuals [86].

Owing to the unique expression patterns in tissues affected with cancer, miRNA profiling in PCa is
a common approach adapted to diagnostic, progressive and/or therapeutic use [87]. Certain miRNAs
have been identified to be associated with PCa. One such example is miR-21 [88]. miR-21 has
also been identified to have increased expression in the liver biopsies of obese individuals [89].
This correlation between the role and abundant expression of miR-21 is important to understand the
overall relation between obesity (which can be age-related) and PCa. Target and pathway analysis
for serum age-associated miRNAs also explain the role played by miRNAs on PCa due to aging of an
individual. We recently proposed that certain miRNAs can be begotten from food sources that may
contribute to obesity and also to PCa [90,91]. Hooten, et al. (2013) also used TargetScan 6.2 to predict
that miR-151a-3p, miR-181a-5p and miR-1248, targeted 115, 626 and 265 mRNAs respectively [92].
A number of neurological diseases and cancer, including PCa were identified to overlap among these
three miRNAs thereby proving that age is a significant risk factor for certain cancers including PCa [92].

7. Discussion

The present review article targets two very important questions in the diagnosis of PCa- is this
disease caused due to age-dependent immunosenescence, aging cholesterol metabolism, and androgen
axis, or does failing genetics play the most crucial role in the expression and progression of
PCa. The four parameters that have been followed in this review, namely changes in immunity
and inflammatory response, cholesterol metabolism and obesity, effects on free testosterone level,
and variations in gene expression, are all inter-linked to each other with regards to their tendency to
impact expression and progression of PCa in humans with advancing age. These four parameters have
isolated and combined effects on the expression and progression of PCa.

Advancing age of patients, for example, alters the ability of certain genes to express and push
towards an overall tendency to over- or under-express. The expression levels of certain genes, such as
Glutathione Transferases, have previously been identified to have a direct relation to progressing age,
and these genes in turn affect the expression of diseases such as PCa through various pathways such
as inflammatory response. Interestingly, a similar chain of events pertaining to PCa can be observed
when considering the effect on fat-mass and obesity-associated gene [93] initiated by progressing age.
The effect of progressing age on switching on and off genes, especially on post-transcriptional gene
modifiers such as lncRNAs and miRNAs are also well documented [94]. This is a major change as
well, bearing in mind that miRNAs, constituting only around 1% of the entire genome have been
estimated to target as many as 30% of the genes [95]. These direct our understanding of PCa towards
the conclusion that it is in fact a gerontological disorder that gets aggravated with alterations in the
expression of genes that govern the immune system, cellular metabolism and testosterone production.
Stromal weakness with age adds to this problem, providing a platform for easy invasion of the
malignant cells.

Since these changes occur at the molecular level, it will be very interesting to see if they can be
reversed using modern biological tools such as siRNA technology or clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR associated protein 9 (CRISPR/Cas9) targeted genome
editing, accompanied with lifestyle changes. Therefore there is a need to be able to ablate the genes
in cells so that we can understand what the loss of function would look like and to have a model
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where we can add back the protein in the absence of confounding local production. This situation has
changed recently, however, and it is now possible to achieve very high efficiency gene targeting using
the CRISPR/Cas9 technology [96,97]. As a result it is now possible to generate somatic gene knockout
to produce isogenic cancer cell models that possess or lack the genes with abnormal expression and
use the synthetic protein to study its mechanism of action. Even if highly targeted CRISPR/Cas work
in humans requires extensive work into the future, this technology can be used in in vitro models to
understand downstream pathways modified by such gene deletions. Such knowledge can be used in
future targeted therapies. Until then, however, molecular techniques such as genotyping should be
used in parallel with the pathophysiological details.

This brings us to the third question being addressed in this review- can diagnostic tools identify
aggressive PCa from non-aggressive PCa. It is recognized that aging cannot be reversed, but, genetic
tests such as association of various clinical characteristics with single nucleotide polymorphisms (SNPs)
can be used for early diagnosis and personalized treatment [12,98,99]. The use of prostate-specific
antigen (PSA) levels in PCa diagnosis is still controversial [100]. A strong statement by the United States
Preventive Services Taskforce in 2008 and 2012 against PSA testing, as well as those of other national
bodies [101–103], has thrown the use of PSA testing into doubt, resulting in confusion amongst patients
and their health practitioners. Recent studies indicate the consequences following the withdrawal of
PSA screening which has resulted in an overall increase in metastatic PCa incidence [104]. According
to these authors, the relative increase in metastatic PCa incidence compared to data of 2004 was highest
in the age range of 55–69 years with an increase by 92%.

Various genetic studies with aggressive PCa have been carried out [105,106]. Such studies
can pave way for early differentiation of men that are more likely to develop aggressive disease.
Such information will support precautionary lifestyle changes for at risk men as well as differentiation
of those that required early interventions for aggressive PCa treatments. Various genome-wide
association studies (GWAS) have also been carried out to identify the possibility of aggressiveness of
PCa associated with SNPs [107,108], but a well-documented database is needed to account for ethnic
variations. GWAS provide the tools to identify common and low-penetrance loci of diseases, such as
PCa, without prior knowledge of the location and/or function [108]. The database thereby created,
will aid in identify the important SNPs and the effect of external factors, including and not limited
to aging, downstream of the genes harboring the SNPs. Data sharing at this level will also be of
much help for researchers to understand gene–gene, gene–environment and gene–diet interactions.
Race is another risk factor especially African-American, and in almost all research carried out, it is
corrected for [109], but the use of database thus created can also help researchers better understand
aging process, if different between African American and Caucasian with PCa, which is not consistent
even in GWAS [110], and thus help diagnose and control the progression of the disease. It will also
be interesting to see if an approach targeting SNPs in genes specific to immunity and inflammatory
response, cholesterol metabolism and obesity, and testosterone metabolism is carried out to check for
association with progression of PCa in patients with and without the aggressive form of the disease.
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MIC-1 Macrophage inhibitory cytokine-1
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MSR1 Macrophage Scavenger Receptor 1
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