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Abstract

Bulk transcriptomics in tissue samples reflects the average expression levels across
different cell types and is highly influenced by cellular fractions. As such, it is critical
to estimate cellular fractions to both deconfound differential expression analyses and
infer cell type-specific differential expression. Since experimentally counting cells is
infeasible in most tissues and studies, in silico cellular deconvolution methods have been
developed as an alternative. However, existing methods are designed for tissues consisting
of clearly distinguishable cell types and have difficulties estimating highly correlated
or rare cell types. To address this challenge, we propose Hierarchical Deconvolution
(HiDecon) that uses single-cell RNA sequencing references and a hierarchical cell type
tree, which models the similarities among cell types and cell differentiation relationships,
to estimate cellular fractions in bulk data. By coordinating cell fractions across layers of
the hierarchical tree, cellular fraction information is passed up and down the tree, which
helps correct estimation biases by pooling information across related cell types. The
flexible hierarchical tree structure also enables estimating rare cell fractions by splitting
the tree to higher resolutions. Through simulations and real data applications with the
ground truth of measured cellular fractions, we demonstrate that HiDecon significantly
outperforms existing methods and accurately estimates cellular fractions.

Keywords: Cellular deconvolution, Single-cell data, RNA sequencing, Hierarchical tree,
Penalized regression

1 Introduction
Tissue-level gene expression data quantify the average expression across cell types, which is
largely affected by the heterogeneity of cell type proportions. The varying cellular fractions
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across tissue samples can confound tissue-level analyses (Jaffe et al., 2014), potentiate the
estimation of cell type-specific differential expression (J. Wang et al., 2021), and can help
understand the etiology of disease (Mostafavi et al., 2018). Although biochemical methods
like flow cytometry and immunohistochemistry can measure a tissue sample’s cell counts,
they are labor-intensive and costly. Thus, in silico cellular deconvolution methods have been
developed to estimate cellular fractions from bulk tissue data as a cost-effective alternative.

Existing deconvolution methods can be grouped into three categories: unsupervised,
semi-supervised, and supervised. Unsupervised deconvolution methods do not require a
reference and mimic factor analyses, but the resulting factors are usually hard to annotate
and interpret (Avila Cobos et al., 2020). Semi-supervised deconvolution methods depend
on marker genes that are only expressed in certain cell types and are used to infer cell type
references solely using bulk data (Zhong et al., 2013).With the development of sorted-cell or
single-cell RNA sequencing (scRNA-seq) reference data, supervised deconvolution has become
a powerful alternative and has precipitated the development of methods that leverage these
references to better estimate cell type proportions (Newman et al., 2015; Hunt et al., 2019;
X. Wang et al., 2019; Wilson et al., 2020).

As the number of cell clusters obtained from numerous single-cell studies increases, cell
type hierarchy has become important for understanding the topology of cell types across
datasets (Wu et al., 2020; Peng et al., 2021; L. Chen et al., 2022). Large efforts have been
made to enhance the interpretation of cell types, such as cell ontology (Miller et al., 2020)
and hierarchically organized cell types (Hodge et al., 2019). In practice, tissues with various
differentiated cell types that share the same origin of cell differentiation, like peripheral blood
mononuclear cells (PBMCs), bring great difficulties to reference-based deconvolution methods
because cell types from the same origin have similar expression levels. This begets co-linearity
in cellular deconvolution regression models, which results in highly variable estimates. Some
methods attempt to alleviate this issue by selecting better cell type marker genes to reduce
the correlation between the reference gene expression levels in different cell types. However,
these methods give highly biased results when the quality of cell subtype marker genes is not
high (Fischer et al., 2021). In addition, most deconvolution methods work better for more
abundant cell types and thus are limited to applications of major cell types. Their estimated
fractions of rare cell types are often zero, which precludes downstream analyses of rare but
biologically important cell types.

To address the issue of co-linearity and rare types, existing methods HEpiDISH (Zheng et
al., 2018) and MuSiC (X. Wang et al., 2019) implemented a top-down recursive deconvolution
process guided by a hierarchical cell-type tree. After estimating cell fractions of major cell
types in the first layer, they calculate artificial omics of major cell types and use it as the
response in reference-based deconvolution to estimate subtype fractions in the second layer,
assuming the fraction of a major cell type equals the sum of its subtype fractions. Although
this process can be extended to hierarchical trees with more than two layers, the top-down
approach may fail when the “parent” cell types are poorly estimated. Importantly, the bias of
each layer’s estimation will accumulate and increase the estimation bias of cellular fractions
in subsequent layers. Therefore, it is pressing to develop methods that can utilize more
complicated tree structures to provide accurate estimates of cellular fractions.

Here we present Hierarchical Deconvolution (HiDecon), a penalized approach with con-
straints from both “parent” and “children” cell types to make full use of a hierarchical tree
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structure. The hierarchical tree is readily available from well-studied cell lineages or can be
learned from hierarchical clustering of scRNA-seq data (Peng et al., 2021). The tree reflects
the similarities between cell types and their differential trajectories. The basic intuition of
HiDecon is that there exists a summation relationship between the estimation results of
adjacent layers. For instance, after estimating cellular fractions at different resolutions with
two deconvolution layers, say lymphocytes (layer 1) and B cells and T cells (layer 2), it will be
ideal if the estimated proportion of lymphocytes is the sum of B cell and T cell proportions.
If these layers’ estimates do not follow the sum constraints implied by the hierarchical tree,
it suggests that estimation bias occurs in certain layers and should be corrected by the
estimation results of other layers. To fully use the cell type hierarchy and marker information
in different layers, HiDecon implements the sum constraint penalties from the upper and
lower layers to aggregate estimates across layers for more accurate cellular fraction estimates.
This is especially useful for rare cell types, which may be poorly estimated in other methods
that do not use the hierarchical tree.

The remainder of the manuscript is organized as follows. We first introduce our model
and estimation algorithm in Section 2. Then in Section 3, we compare HiDecon with existing
methods via simulations based on a real scRNA-seq dataset of PBMC from COVID-19
patients and controls. In Section 4, we further benchmark HiDecon in large-scale human
blood datasets with measured cell counts. We conclude and summarize our findings in Section
5.

2 Methods

2.1 A model for deconvolving bulk gene expression

Gene expression levels in bulk tissue samples can be modeled as the weighted sum of cell
type-specific expression. A reference-based cellular deconvolution model can be written as

X = ASP +E, (2.1)

where X ∈ Rm×n
≥0 denotes the gene expression levels of m marker genes in n tissue samples;

A ∈ Rm×K
≥0 represents the observed reference signature matrix of K cell types derived from

scRNA-seq or sorted-cell data; S ∈ RK×K
≥0 is an observed diagonal matrix with diagonal

elements representing the cell size of different cell types (Jia et al., 2017), that is, the average
abundance of observed transcripts in each cell type; P ∈ RK×n

≥0 is the cellular fractions for
the K cell types that need to be estimated; and E ∈ Rm×n is the error term. Most existing
deconvolution algorithms rely on a pre-specified fixed number of cell types (K), but cell types
are usually hierarchically organized by cell differentiation or lineage. It is critical to estimate
cellular fractions at different resolutions and improve the estimation by borrowing information
from related “parent” and “children” cell types. We term the precise cellular deconvolution
guided by a hierarchical cell-type tree as hierarchical deconvolution and describe it in detail
below.
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2.2 Hierarchical deconvolution

Assume a known hierarchical tree (either from biology literature or hierarchical clustering)
with L layers such that cells are split into finer resolutions as l ∈ {1, 2, . . . , L} increases,
where l = 0 denotes all cells as a single cluster and Kl is the number of cell types in layer l.
We first describe how to map cell types across layers l and l + 1 using a simple example from
PBMCs. Assume layer l has two clusters representing monocytes and lymphocytes and layer
l + 1 has three cell types consisting of monocytes, B cells, and T cells, where lymphocytes in
layer l are divided into B cells and T cells in layer l + 1. Let pil and pi(l+1) be sample i’s
cellular fractions in layers l and l + 1. Since the fraction of lymphocytes should be similar to
the sum of fractions of B cells and T cells, we should have

pil ≈
(

1 0 0
0 1 1

)
pi(l+1) = Bl,(l+1)pi(l+1).

The matrices Bl,(l+1) ∈ {0, 1}Kl×Kl+1 define a mapping between cell types across adjacent
layers and parameterize the hierarchical tree, where row k’s non-zero elements are exactly
cell type k’s “children” in layer l + 1.

We define an estimator for sample i’s cellular fractions from all layers (pi1, . . . ,piL) to be

argmin(pi1,...,piL)

{
1

2

L∑
l=1

1

ml

∥xil −AlSlpil∥22

}
, (2.2)

subject to

L−1∑
l=1

∥pil −Bl,(l+1)pi(l+1)∥22
Kl

≤ ζ, pi1, . . . ,piL ≥ 0, and ∥piL∥1 = 1, (2.3)

where xil ∈ Rml
≥0 denotes sample i’s bulk gene expression at ml marker genes in layer l;

Al ∈ Rml×Kl
≥0 represents the reference signature matrix of Kl cell types derived from scRNA-

seq data; and Sl ∈ RKl×Kl
≥0 is a diagonal size factor matrix for layer l with diagonal entries

representing the cell size of the Kl cell types in layer l. Nonnegativity of all parts in the
model originates from the nature of gene expression data.

The first constraint in (2.3) reflects the hierarchical tree, and ensures “parent” and “children”
cellular fraction estimates are similar. To ensure the interpretation of proportional estimates,
we further require the last layer’s fractions to sum to one. The optimization in (2.2) and
(2.3) is convex and can be re-written as the following penalized regression problem:

argmin
pi1,...,piL

pil ≥ 0, ∥piL∥1 = 1

{
1

2

L∑
l=1

1

ml

∥xil −AlSlpil∥22 +
λ

2

L−1∑
l=1

∥pil −Bl,(l+1)pi(l+1)∥22
Kl

}
, (2.4)

where the tuning parameter λ ≥ 0 is implicitly a decreasing function of ζ. That is, λ = 0
implies the tree has no impact on estimates and λ = ∞ means parent cellular fractions are
completely determined by their children’s fractions.
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2.3 Estimation algorithm

To simplify our algorithm and follow the common practice of cellular deconvolution (Moham-
madi et al., 2016), we optimize the objective function under the nonnegative constraint and
then normalize the fraction estimates for the Lth layer so they sum to 1. To describe our
algorithm, we first note that for pi = (p⊤

i1, . . . ,p
⊤
iL)

⊤, (2.4) can be re-written as the following
quadratic problem:

argmin
pi∈RK

≥0

f(pi), f(pi) =
1

2
∥x̃i − Ãpi∥22 +

λ

2
∥B̃pi∥22, (2.5)

where K =
∑L

l=1Kl, x̃i = (m
−1/2
1 x⊤

i1, . . . ,m
−1/2
L x⊤

iL)
⊤ ∈ Rm

≥0, and Ã =
⊕L

l=1(m
−1/2
l AlSl) ∈

Rm×K
≥0 for m =

∑L
l=1ml. The matrix B̃ ∈ R(K−KL)×K

≥0 is an upper-triangular difference
operator taking the form

B̃ =

(
L−1⊕
l=1

K
−1/2
l IKl

,0(K−KL)×KL

)
−

(
0(K−KL)×K1 ,

L−1⊕
l=1

K
−1/2
l Bl,(l+1)

)
.

To solve (2.5), we note that the minimizer for pi’s kth coordinate, while fixing all other
coordinates, is exactly

p
(min)
ik = max[0, {bk − p⊤

i(−k)Hk(−k)}/Hkk], b = Ã⊤x̃, H = Ã⊤Ã+ λB̃⊤B̃,

where pi(−k) and H(−k)k are the sub-vectors of pi and the kth column of H obtained after
deleting their kth elements. This naturally leads to Algorithm 1, which employs coordinate-
wise descent to solve (2.5). While not explicitly stated in Algorithm 1, we normalize our
estimate for piL, the tree’s last layer’s cellular fractions, so that its entries sum to 1.

Data: b = ÃT x̃i, H = Ã⊤Ã+ λB̃⊤B̃, and ϵ > 0
Result: pi

Initialize pi = H−1b;
if pi ≥ 0 then

return pi;
else

pik = max(0,pik), k ∈ {1, · · · , K};
repeat

pik = max[0, {bk − p⊤
i(−k)Hk(−k)}/Hkk], k ∈ {1, . . . , K};

until |(Hpi − b)k| ≤ ϵ OR {(Hpi − b)k ≥ 0 AND pik = 0} for all
k ∈ {1, . . . , K} //Karush–Kuhn–Tucker (KKT) conditions ;

return pi;
end

Algorithm 1: HiDecon optimization algorithm.
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Bulk data

SC reference
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1.Nonnegative 
least squares 2.Resample 3.HiDecon

Different 𝜆𝜆s

Best 𝜆𝜆

4. Lin’s concordance 
correlation coefficient

Tuning parameter selection

Figure 1: Flow chart for tuning parameter selection. Different steps are marked with different
colors.

2.4 Tuning parameter selection

We propose a novel procedure (Figure 1) to select HiDecon’s tuning parameter λ. The idea is
to select the optimal λ using a bulk data surrogate with “ground truth” fractions. In order to
generate a bulk data surrogate, we apply nonnegative least squares (NNLS) to the observed
bulk data XL ∈ RmL×n

≥0 with given signature matrix AL ∈ RmL×KL
≥0 ,

Psim = argmin
P≥0

∥XL −ALP ∥F (2.6)

to get rough estimates for cellular fractions Psim of bulk data to imitate the cellular composi-
tion structure of tissue samples. Then, we simulate bulk data surrogate Xsim with cellular
fractions of Psim by resampling individual cells from single-cell reference with replacement.
Finally, we compare the performance of HiDecon when deconvolving bulk data surrogate Xsim

under a series of tuning parameter λ’s. We use Lin’s concordance correlation coefficient (Lin,
1989) between HiDecon estimates PHiDecon and the “ground truth” Psim for each cell type
as the evaluation metric. The λ with the highest mean concordance correlation coefficient
across cell types is considered the optimal tuning parameter for HiDecon.

2.5 Data normalization and marker selection methods

We normalize the expression of each tissue sample and cell to the same scale and avoid
extreme values. To adjust for library size, the expression of each tissue sample and cell in
the raw count matrix is divided by its total count and multiplied by 1,000,000 as the count
per million (CPM). Then, data is log2 transformed with a pseudo count of 1 to ensure all
elements are nonnegative.

In HiDecon, we select marker genes for each layer of the hierarchical tree with the
following considerations. First, marker genes selected for coarser clusters are not necessarily
marker genes for finer clusters and cannot reduce co-linearity efficiently. Second, in single
cell references, coarser clusters might have many cells from subtypes that might not be
major in bulk data. Then, the reference mainly represents major cells in the single cell data.
Selecting another set of markers for coarser layers can reduce the case that the averaged
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reference misrepresents the expression level of coarser clusters in bulk data. In both the
simulation study and real data application, we use the Wilcoxon rank-sum test to identify the
differentially expressed (DE) genes between two cell clusters after normalizing the reference
data as described above. To identify DE genes of one cluster compared with all other clusters
in this layer, we use the intersection union test (Berger, 1997) to calculate the combined
p-value for assigning rankings to genes. We use the top 50 genes with the smallest p-values
for each cell cluster as its marker genes.

2.6 Evaluation metrics

Denote the ground truth of cell type fractions by PK×n and the estimated fractions by P̂K×n.
We use two evaluation metrics to evaluate the performances of methods in our simulation
study and real data application.

1. Mean absolute error:
MAE

(
P , P̂

)
= avg

(
|P − P̂ |

)
,

where avg of a matrix or a vector is the average over all its entries;

2. Lin’s concordance correlation coefficient (Lin, 1989):

CCC
(
Pk∗, P̂k∗

)
=

2cov
(
Pk∗, P̂k∗

)
σ2
Pk∗

+ σ2
P̂k∗

+
(
avg

(
Pk∗ − P̂k∗

))2 ,
where Pk∗ denotes the row k of P , that is, the kth cell type, and σ2 denotes the
variance. CCC ∈ (−1, 1) is a comprehensive measure sensitive to variability and slope
and intercept of the linearity. The concordance improves as the value of CCC approaches
1. It captures the deviation of estimates from ground truth, that is points’ degree of
departure from the line y = x.

3 Simulation studies

3.1 Simulation benchmarking with large PBMC scRNA-seq data

We first compared HiDecon with existing cellular deconvolution methods via simulations. In
addition to the two existing top-down hierarchical deconvolution algorithms (HEpiDISH and
MuSiC), we further compared HiDecon with other state-of-the-art deconvolution methods
without considering the hierarchical cell tree, including CIBERSORT (Newman et al., 2015)
and dtangle (Hunt et al., 2019). We used a real large-scale PBMC scRNA-seq dataset (Ren
et al., 2021) to simulate pseudo-bulk data. It is a comprehensive COVID-19 study that
contains scRNA-seq data from 27,943 genes of 284 samples, among which there are 28 controls,
122 mild/moderate, and 134 severe/critical samples. When generating bulk data, if there are
not enough cells from some cell types, it will introduce large single cell specific variance to
the gene expression contribution of this cell type in bulk data. In order to reduce cell specific
variance when generating bulk data, we only used samples having at least 20 cells in each type.
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a b
Abbreviation Full name

Mono Monocytes

DC Dendritic cells

B_1 B_c01-TCL1A

B_2 B_c02-MS4A1-CD27

B_3 B_c03-CD27-AIM2

NK_1 NK_c01-FCGR3A

CD4_1 T_CD4_c01-LEF1

CD8_1 T_CD8_c01-LEF1

CD8_5 T_CD8_c05-ZNF683

CD8_7 T_CD8_c07-TYROBP

Figure 2: Cell type hierarchical relationship of COVID-19 PBMC data (Ren et al., 2021)
used in the simulation. (a) Cell type abbreviation and full name reference. (b) Hierarchical
tree constructed from cell lineage relationship and used to guide HiDecon.

Moreover, lymphocytes have complicated differentiation structures. We explored subtypes
of lymphocyte cell types to evaluate HiDecon’s performance on co-linearity and rare cell
types. After filtering samples, we used 608,883 cells from 126 samples to calculate reference
and simulate bulk data. Cell types include monocytes (Mono), dendritic cells (DC), B cells
(B), natural killer cells (NK), CD4+ T cells (CD4), and CD8+ T cells (CD8). Lymphocyte
subtypes (e.g., three subtypes of B cells and CD8+ T cells, respectively) are explicitly shown
in Figure 2a, following the cell cluster names in the original paper.

We averaged the expression of all cells from each sample to generate simulated bulk
data with known fractions, which are calculated by real cell counts of each sample in the
scRNA-seq data. It is computationally intensive to select cell type-specific marker genes
when the single cell reference matrix has numerous cells. Moreover, having too many cells
from certain samples can cover up the information of some other under-represented samples.
Considering these problems, first, we averaged single cell gene expression for each cell type to
extract sample-level single cell data. This process was performed over all samples. Then, we
pooled these sample level single cell data together to construct the pseudo single cell reference
so that all samples are equally represented in this reference. The reference dimension is genes
by the product of the number of cell types and the number of samples.

We used a hierarchy tree from biological cell lineage relationship (Figure 2b). Dendritic
cells are most similar to monocytes. B cells, natural killer cells, CD4 cells, and CD8 cells
are all lymphocytes. B cells are mostly naive or memory cells which sets them apart from
natural killer cells, CD4 cells, and CD8 cells which are mostly active immune cells. Finally,
CD4 cells and CD8 cells are both subtypes of T cells.

We used the tuning parameter selection method to find the best λ for HiDecon. With
the ground truth of cellular fractions in the simulated dataset, we calculated CCC between
the ground truth fraction PK×n and deconvolution estimated fraction P̂K×n for each cell
type across all samples to measure the concordance. We also calculated MAE to assess
the accuracy of estimates (Table 1). HEpiDISH can only process the split of one cluster
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Table 1: Comparing the true and estimated cellular fractions in the simulation. The first ten
columns show Lin’s concordance correlation coefficient (CCC) calculated for each cell type
across all samples. The last two columns present the mean CCC across cell types and MAE
(mean absolute errors) for each method. The boldface highlights the best method in each
column. Average true fractions for each cell type are shown in parentheses under cell type
names. Full names of cell types are listed in Figure 2a.

Mono DC B_1 B_2 B_3 NK_1
(0.38) (0.02) (0.07) (0.03) (0.03) (0.07)

HiDecon 0.85 0.25 0.80 0.54 0.50 0.34
CIBERSORT 0.88 0.31 0.66 0.31 0.37 0.01

dtangle 0.35 0.08 0.56 0.18 0.30 0.47
MuSiC 0.89 0.01 NA NA 0.16 NA

CD4_1 CD8_1 CD8_5 CD8_7 Mean MAE(0.13) (0.09) (0.09) (0.08) CCC
HiDecon 0.62 0.66 0.52 0.64 0.57 0.05

CIBERSORT 0.42 0.76 0.25 0.25 0.42 0.07
dtangle 0.51 0.51 0.60 0.69 0.43 0.06
MuSiC NA 0.35 0.22 0.39 0.20 0.08

in the first layer, which is not applicable for complex structures and thus not compared in
the simulation. HiDecon shows a comprehensively accurate estimation performance with
the highest mean CCC and lowest MAE. It is worth noticing that HiDecon is powerful in
estimating rare cell type fractions. For the eight cell types with average true abundance
lower than 10%, the mean CCC across these types of HiDecon estimates is 0.53 while these
of CIBERSORT and dtangle are only 0.36 and 0.42 respectively.

We further checked the estimation details with scatter plots of measured and estimated
cellular fractions (Figure 3). HiDecon estimated fractions are well aligned by the diagonal line
y = x, while other methods fail to estimate some cell types. CIBERSORT estimates natural
killer cells NK_1 (NK_c01-FCGR3A) as zero in 95.2% of samples. dtangle has generally
flat estimates for lymphocyte subtypes. MuSiC has exaggerated estimates for dendritic cells
and CD8_1 (T_CD8_c01-LEF1) cells and flat estimates for CD8_5 (T_CD8_c05-ZNF683)
cells. In contrast to other methods that have many zero estimates, HiDecon saves many rare
cell type fractions from being estimated as zero, providing evidence of HiDecon’s ability to
estimate rare cell types.

3.2 Robustness evaluation

In real settings, there is a deviation from weighted signature sum and bulk data, that is, the
error term E shown in Equation 2.1. Here, we added noises to simulated bulk data and kept
track of estimation performances as the noise level gets greater. We set noise e ∼ N(0, sd2),
where the error standard deviation (sd) ranges from 0 to the standard deviation of the
simulated pseudo-bulk data when there is no noise, with a step size of 0.1. For each level of
noise, we repeated the experiments 50 times under different random seeds to eliminate the
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Figure 3: Scatter plots of cellular fractions in the COVID-19 data simulation study for
different deconvolution methods. The x-axis represents the ground truth of PBMC cell
fractions, and the y-axis shows the estimated cell type fractions. Cell type names and their
mean fractions calculated by ground truth are shown at the top.
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randomness and we averaged evaluation metrics from the 50 repetitions. We calculated the
mean concordance correlation coefficient (CCC) and mean absolute error (MAE) trajectories
and made box plots under different levels of noise (Figure 4). HiDecon has higher CCC
and lower MAE than CIBERSORT, dtangle, and MuSiC. The CCC curve for MuSiC is
not shown due to all zero estimates of some cell types, probably caused by the top-down
recursive tree-guided process in MuSiC. The experiment shows that HiDecon has consistently
outstanding performances under different noise levels.
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Figure 4: Mean concordance correlation coefficient (CCC) and mean absolute error (MAE)
trajectories and box plots under different levels of noises (standard deviation, sd) with 50
repetitions. Noises e ∼ N(0, sd2) are added to simulated bulk data. The CCC curve for
MuSiC is not shown due to all zero estimates of some cell types.

4 Real data applications
To assess the performance of HiDecon in real data, we used the Framingham Heart Study
(FHS) dataset with measured blood cell counts. FHS is a large-scale longitudinal study with
three cohorts: the original (Dawber et al., 1951), offspring (Feinleib et al., 1975), and third-
generation cohorts (Splansky et al., 2007). White blood cell (WBC) counts were measured
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Table 2: Lin’s concordance correlation coefficient (CCC) and MAE between measured and
estimated cellular fractions in the FHS data. Missing values (NAs) are caused by all zero
estimates of some cell types. When calculating the mean CCC, NAs are treated as zero. The
boldface highlights the best method in each column. Average true fractions for each cell type
are shown in parentheses under cell type names.

Neutrophil Lymphocyte Monocyte Eosinophil Mean MAE(0.60) (0.28) (0.09) (0.03) CCC
HiDecon 0.13 0.57 0.04 0.28 0.26 0.10

CIBERSORT 0.15 0.31 0.02 0.06 0.13 0.15
dtangle 0.02 0.17 0.01 0.01 0.05 0.17

HEpiDISH 0.12 0.25 0.03 0.04 0.11 0.17
MuSiC NA 0.08 0.00 NA 0.02 0.32

from a complete blood count using the Coulter HmX Hematology Analyzer. There are 4,110
samples from two FHS cohorts (offspring and third-generation) that have both measured
cell counts and high-throughput gene expression data from blood. The counted white blood
cell types include neutrophils (Neutro), monocytes (Mono), lymphocytes (Lymph), and
eosinophils (Eosino). Based on cell lineage, we use a two-layer hierarchical cell tree to
guide deconvolution. The second layer has all four cell types, while in the first layer, the
lymphocytes are treated as a separate cell type as lymphoid cells, and the other three cell
types form a combined cell type to indicate that they belong to myeloid cells.

Similar to the simulation, we used CCC and MAE as evaluation metrics to compare the
estimated and measured fractions. As expected, HiDecon demonstrates superior concordance
and the lowest MAE across almost all cell types (Table 2). HiDecon’s CCC on eosinophils, a
rare type with only 3% abundance, is more than 4 times higher than other methods.

As visualized in the scatter plots, HiDecon estimated fractions have a better concordance
with measured fractions along the diagonal line than other methods (Figure 5). Methods like
CIBERSORT, HEpiDISH, and MuSiC produce many false zeros or even all zero estimates
in some cell types, while dtangle shows flat estimated fractions which is similar to that in
the simulation scatter plot (Figure 3). Additionally, HEpiDISH and CIBERSORT estimated
fractions have exaggerated variability.

5 Discussion
In summary, we proposed hierarchical deconvolution (HiDecon) to incorporate a hierarchical
cell type tree into cellular deconvolution to facilitate the estimation of related and rare
cell types. To solve the problem of reference-based deconvolution methods that related
cell types cause co-linearity in the signature matrix, we developed an algorithm to leverage
the constraints from “parent” and “children” cell types when we iteratively estimate the
cellular fractions of all layers of a cell type tree. We benchmarked the HiDecon algorithm
on simulated COVID-19 PBMC data and a large real human blood dataset from FHS and
evaluated HiDecon by comparing estimation results to the true or measured cell counts.
Both numerical and real data benchmarking studies indicate that HiDecon shows higher
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Figure 5: Scatter plots of cellular fractions in the FHS data for different deconvolution
methods. The x-axis represents the ground truth of measured white blood cell fractions, and
the y-axis shows the estimated cell type fractions. Cell type names and their mean fractions
calculated by ground truth are shown at the top.
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accuracy than existing methods. We implemented the algorithm as a user-friendly R package
HiDecon and hosted it on GitHub (https://github.com/randel/HiDecon). HiDecon can
incorporate complex hierarchical cell type tree structure, while the software of the two
existing hierarchical deconvolution methods, MuSiC and HEpiDISH, can only incorporate a
two-layer tree. Importantly, HiDecon enjoys fast convergence speed brought by the convexity
of the objective function. It takes only 12.6 seconds to deconvolve the 4,110 bulk samples of
the FHS data.

However, HiDecon also has some limitations. First, in our numerical study, blood data
have clearly constructed and biologically and statistically interpretable hierarchical tree. If
there does not exist known hierarchical tree for a tissue, we recommend users construct cell-
type relationships by hierarchical clustering using single-cell data. Second, when deconvolving
samples in which cell types are all highly distinguishable, HiDecon might not outperform
existing methods because the hierarchical tree cannot further help in this setting. This is
rare in practice especially as the research interest goes into refined cell types.

Accurate estimation of cell type proportions can provide novel insights for many down-
stream analyses at cell type resolution. Representative analyses include differential fraction
analysis (M. Cai et al., 2022), cell type-specific (CTS) differential expression (Z. Li et al.,
2019; J. Wang et al., 2020; Jin et al., 2021), CTS eQTLs (expression quantitative trait loci)
(Westra et al., 2015; J. Wang et al., 2021) when both gene expression and genetic data
are available, and CTS gene co-expression networks (S. Chen et al., 2020). Furthermore,
hierarchical structures are not limited to gene expression data but also exist in other omics
data such as DNA methylation. We will explore more settings where a hierarchical tree can
serve as a useful guideline to deconvolve other omics data types that warrant future work.
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