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MicroRNA (miRNA) is a category of single-stranded non-coding small RNA (sRNA) that
regulates gene expression by targeting mRNA. It plays a key role in the temperature-
dependent sex determination of Chinese alligator (Alligator sinensis), a reptile whose sex is
determined solely by the temperature during the incubation period and remains stable
thereafter. However, the potential function of miRNAs in the gonads of adult Chinese
alligators is still unclear. Here, we prepared and sequenced sRNA libraries of adult female
and male alligator gonads, from breeding (in summer) and hibernating (in winter) animals.
We obtained 130 conservedmiRNAs and 683 novel miRNAs, which were assessed for sex
bias in summer and winter; a total of 65 miRNAs that maintained sex bias in both seasons
were identified. A regulatory network of sex-biased miRNAs and genes was constructed.
Sex-biased miRNAs targeted multiple genes in the meiosis pathway of adult Chinese
alligator oocytes and the antagonistic gonadal function maintenance pathway, such as
MOS, MYT1, DMRT1, and GDF9. Our study emphasizes the function of miRNA in the
epigenetic mechanisms of sex maintenance in crocodilians.
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INTRODUCTION

Sexual dimorphism is a phenomenon, in animals that exhibit sexual reproduction, in which there are
differences between females and males (Lande, 1980). Although females and males have almost
identical autosomal genomes, they have clear differences in morphology, physiology and behavior.
Therefore, formation of sexual dimorphism is associated with the sex-biased gene expression
triggered either by sex-determination genes or by environmental factors such as population
density or temperature. As a type of small RNA (sRNA) that targets mRNA to regulate gene
expression, microRNA (miRNA) is involved in the formation of sexual dimorphism (Morgan and
Bale, 2012). Due to different developmental pathways, male and female gonads show clear
morphological and functional sexual dimorphism. They are often used as target organs for
studying miRNA expression in mammals (Torley et al., 2011; Real et al., 2013; Guo L. et al.,
2017), fish (Presslauer et al., 2017; Fu et al., 2020; Li et al., 2020), and birds (Bannister et al., 2009; Luo
et al., 2012; Jiang et al., 2018). However, in reptiles, specific temperature-dependent sex
determination (TSD) is instead the focus. For example, a study on the Reeves’ pond turtle
(Mauremys reevesii) has suggested that miRNAs have crucial function in sex maintenance after
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gonad maturation (Xiong et al., 2020). In the gonads of the
Chinese soft-shelled turtle (Pelodiscus sinensis), a regulatory
network was constructed, in which the differentially expressed
miRNAs (DEmiRs) and long non-coding RNAs target many
genes related to gonadal development (Ma et al., 2020).

Sex reversal is a physiological state in which phenotypic- and
genotypic sex are inconsistent (Baroiller and D’Cotta, 2016). In
animals exhibiting sex reversal, the initial sex is determined by its
genetic factors, and, in subsequent life history, sex reversal occurs due
to factors such as environment, hormones, and physiological state.
Sex reversal occurs more frequently in species that have both
genotypic- and environmental sex determination, including the
half-smooth tongue sole (Cynoglossus semilaevis) (Shao et al.,
2014), montane scincid lizards (Bassiana duperreyi) (Radder et al.,
2008), and Nile tilapia (Oreochromis niloticus) (Sun et al., 2016).
However, for crocodilians, whose sex determination mechanism is
TSD-only, sex remains irreversibly stable after the temperature
sensitive period (TSP) (González et al., 2019). There are
indications that the fate of the gonads is not purely established by
antagonistic signaling-pathway competition between male and
female in the embryonic period, but also needs to be actively
maintained in adulthood to prevent sexual reprogramming
(Uhlenhaut et al., 2009; Matson et al., 2011; Liu et al., 2017).

As an endangered alligator unique to China, the Chinese alligator
(Alligator sinensis) is known as a “living fossil” (Pan et al., 2019). Like
the other 22 extant crocodilian species in the world, Chinese alligators
have no sex chromosomes; temperature during the TSP determines
their sex, and it remains stable throughout the subsequent life history
(Pieau et al., 1999). Therefore, the Chinese alligator is a suitable
biological model to study temperature-dependent sex determination,
differentiation, andmaintenance. Our previous studies on the gonads
of the Chinese alligator have mainly focused on the process of sex
differentiation in the embryonic stage (Lin et al., 2018), the
importance of hibernation to ovarian development (Lin et al.,
2020), and the genetic and epigenetic mechanisms of sex
maintenance (Lin et al., 2021). The default sex of the Chinese
alligator embryo is female and the male determination is triggered
by high temperature through calcium signals in the middle of the
TSP, while miRNA also participates in the regulation of this process
(Lin et al., 2018). The DMRT1 and steroid biosynthesis pathways in
adult Chinese alligators show male-biased expression and maintain
male sex (Lin et al., 2021). However, the roles of miRNA in sexual
dimorphism and gonadal sexmaintenance in adult Chinese alligators
is still unclear.

Here, we constructed a miRNA expression profile of the Chinese
alligator testes and ovaries, aiming to establish an mRNA-miRNA
regulatory network and identify key miRNAs involved in sex
determination and maintenance. These data will improve the
epigenetic mechanism of sex determination, differentiation, and
maintenance of crocodilians from embryo to adulthood.

MATERIALS AND METHODS

Sample Collection
All procedures with the alligators were approved by the State
Forestry Administration of the People’s Republic of China [Forest

Conservation Permission Document (2014–1545)] and the
Animal Ethics Committee of Zhejiang University (ZJU 2015-
154-13). All four alligators were obtained from the Changxing
Yinjiabian Chinese Alligator Nature Reserve in 2015. The
samples were collected from hibernating and breeding-season
adult Chinese alligators in winter and summer, respectively.
Testis (W_TES) and ovary (W_OVA) in winter and testis
(S_TES) and ovary (S_OVA) in summer were collected after
ketamine anesthetic (5–10 mg/kg) was injected into their tails.
Bloodletting and dissection were performed when they were
under deep anesthesia. The gonads were extracted and put
into liquid nitrogen for quick freezing, and then transferred to
−80°C until use.

RNA Extraction, sRNA Library Preparation
and Sequencing
Total RNA was extracted from gonads using Trizol RNA
Isolation Kit (Invitrogen, Waltham, MA) for the construction
of the sRNA libraries W_TES, W_OVA, S_TES, and S_OVA.
RNA integrity was assessed using the RNA Nano 6000 Assay Kit
of the Agilent Bioanalyzer 2,100 system (Agilent Technologies,
Santa Clara, CA), and the library was constructed for the qualified
total RNA (RIN ≥8.0). For each sample, 3 µg of RNA was used to
construct sRNA libraries using an NEBNext® Multiplex Small
RNA Library Prep Set for Illumina® (New England Biolabs,
Ipswich, MA), according to the manufacturer’s instructions.
Then, the library preparations were sequenced on an Illumina
Hiseq 2,500/2000 platform and 50 base pair single-end reads were
generated.

Sequencing Data Analysis
Clean reads were obtained by removing reads with adapter
contaminants, containing poly-N, and low-quality reads from
raw reads. Clean reads of 18–35 nucleotide (nt) in length were
mapped to the Chinese alligator reference genome (GenBank
accession number GCA_000455745.1) without mismatch using
Bowtie version 2.2.3 (Langmead and Salzberg, 2012). Mirdeep2
(Friedländer et al., 2012) and miREvo (Wen et al., 2012) software
were integrated to identify the miRNA of Chinese alligator and
submit them to the Rfam database (Kalvari et al., 2018) for
comparison to identify conserved miRNA (miRNA existing in
at least one other species) for miRNA family analysis. TPM
(number of transcripts mapped to miRNA per million
transcripts) was used to standardize the expression of miRNA.
The R software package DEGseq version 1.12.0 (Wang et al.,
2010) was used to calculate the differential expression of miRNA
between the two sets of samples. Expression data were calculated
relative to the testicular data. DEmiR was defined as miRNA that
demonstrated an absolute log2-fold change >1 and adjusted p (q)
< 0.01. Sequences with male-bias therefore displayed a negative
log2-fold change.

Three software platforms, namely miRanda, PIPT, and
RNAhybrid (Rehmsmeier et al., 2004; Kertesz et al., 2007;
Betel et al., 2010), were used to predict potential target genes
of DEmiRs. Subsequently, Gene Ontology (GO) annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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analysis were carried out. GOseq (Young et al., 2010) and KOBAS
software (Mao et al., 2005) were used for GO annotation and
KEGG pathway analysis, respectively. A p-value ≤ 0.05 was used
to identify significantly enriched GO terms and KEGG pathways.

RESULTS

sRNAs Sequencing and Assembly
A total of 51 704 167 raw reads were generated from four sRNA-
seq libraries, and 50 697 427 (98.05%) of them were classified as
clean reads. Among the clean reads, 47 171 540 (93.05%) reads
were 18–35 nt in length, of which 43 213 175 (85.24%) reads
could be mapped to the reference genome for subsequent
analysis (Supplementary Table S1). We found that the
number of unique reads in testes was much higher than that
in ovaries, which indicated that the types of reads in testes were
more abundant and specific. We also found that whether in
summer or winter, sRNA of 22 nt accounted for a high
proportion in all four samples, with an average abundance of
43.39%, indicating that miRNA was stably expressed in the
gonads of the Chinese alligator. However, the proportion of
sRNA of 26–32 nt in testes was higher than that in ovaries,
suggesting that Piwi-interacting RNA (piRNA) may play a more
important role in the functional maintenance and development
of testes than in ovaries (Figure 1). The size distribution in
winter was essentially the same as that in summer
(Supplementary Figure S1).

After removing other non-coding RNA and repeat sequences
(Supplementary Table S2), 813 mature miRNAs were identified
in the Rfam database (Supplementary Table S3). Among them,
130 conserved miRNAs were obtained, and the other 683

miRNAs were specific to the Chinese alligator. Active
expression was observed for 97.69% (127/130) of conserved
miRNAs, while 67.94% (464/683) of Chinese alligator specific

FIGURE 1 | The nucleotide (nt) length distribution of small RNA in adult Chinese alligator ovaries (A) and testes (B) sampled in summer.

TABLE 1 | MicroRNAs identified using sRNA sequencing of Chinese alligator
gonads.

All Actively expressed

Conserved 130 127
Specific to Chinese alligator 683 464
Total 813 591

FIGURE 2 | Female- and male-biased differentially expressed miRNAs
(DEmiRs) in adult Chinese alligator gonads sampled in summer and winter.
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miRNAs were actively expressed, and the total number of actively
expressed miRNAs was 591 (Table 1).

Sex Bias Analysis of miRNAs
In summer, there were 61 male-biased and 31 female-biased
miRNAs. In winter, there were 85 male-biased and 22 female-
biased miRNAs. Among them, 65 miRNAs maintained their sex
bias in both seasons, of which 63 maintained stable male-biased
(50) or female-biased (13) expression in both seasons (Figure 2).
Two miRNAs (miR-133a and miR-144) showed inverted sex-
biased patterns between the two seasons.

Family Analysis of Sex-Biased miRNAs
The 134 DEmiRs, of which 95 were conserved, belonged to 61
miRNA families. Two miRNAs (miR-133a and miR-144) with
inverted expression in summer and winter were excluded, and the
remaining 132 miRNAs were categorized as male-biased and
female-biased (Figure 3). The 13 miRNAs that maintained
female-biased expression in both seasons mainly belonged to
three miRNA families: miR-10, miR-8, and miR-23. Of the let-7

family, only let-7c maintained female-biased expression in both
seasons. The 50 miRNAs that maintained male-biased expression
in both summer and winter primarily belonged to seven miRNA
families: miR-17, miR-19, miR-34, miR-190, miR-138, miR-15,
and miR-7.

Functional Analysis of Sex-Biased miRNA
Target Genes
We predicted the target genes of sex-biased DEmiRs to explore
their potential functions. Our analysis obtained 306 and 909
target genes for sex-biased DEmiRs in summer and winter,
respectively. The target genes that were identified in summer
samples were classified into 42 GO subcategories (Figure 4).
Notably, six enriched GO terms (p < 0.05) were found to be
related to steroid hormones, including corticosteroid receptor
signaling pathway, response to corticosteroid, glucocorticoid
receptor signaling pathway, glucocorticoid mediated signaling
pathway, response to glucocorticoid, and cellular response to
corticosteroid stimulus. KEGG analysis mapped these target

FIGURE 3 | Sex-biased differentially expressed miRNAs (DEmiRs). Sequences that were similarly biased in summer and winter are highlighted in blue and red, for
male- and female-bias respectively.
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genes to 159 pathways. One of the 20 most enriched pathways
(Figure 5) was steroid hormone biosynthesis (ko00140) (p = 8.92
× 10-2). However, analysis of the winter-specific target genes
revealed that no steroid-related GO terms and KEGG pathways
were significantly enriched (Supplementary Figures S2, S3).

Association Analysis of DEmiRs and DEGs
We explored, in more detail, the miRNAs that maintained sex-
biased expression in both seasons. In silico analysis revealed that
1,659 and 2,719 genes were targeted by 13 female-biased and
50 male-biased miRNAs, respectively. Previously, we identified
sex-biased differentially expressed genes (DEGs) in Chinese
alligator gonads by transcriptome analysis (Lin et al., 2021).
Here, we constructed interaction networks of DEmiRs and
DEGs (Figure 6). Since these DEGs were associated with
functional maintenance and regulation during sexual maturity,
we examined these pathways in greater detail. There were five
DEGs in the oocyte meiosis pathway that were targeted and
regulated by DEmiRs (Figure 7A). In this pathway, three female-
biased genes, MOS, MEK1, and RPS6KA, in the MOS-MEK-
MAPK-PSK pathway were targeted by 17, 5, and 4 male-biased

DEmiRs, respectively. While RSP6KA inhibits the expression of
MYT1 through phosphorylation, MYT1 was negatively regulated
by two female-biased miRNAs, resulting in its low expression in
the ovary. Due to the suppressive effect of MYT1 onMPF, the low
expression of MYT1 activated the germinal vesicle breakdown
mediated by MPF to begin meiosis I. In meiosis II, APC5 was
targeted by four female-biased miRNAs, showing significant
male-biased expression, which maintained a high level of MPF
expression in the ovary and achieved stagnation in the middle of
the second meiosis until fertilization. There were also two DEGs
in the antagonistic gonadal function maintenance pathway that
were targeted and regulated by DEmiRs (Figure 7B). These two
genes are an important male sex-determining gene, DMRT1, and
a key oocyte secretion factor, GDF9.

DISCUSSION

The gonads are important reproductive organs for animals,
specifically those relying on sexual reproduction, to produce
gametes and steroid hormones. As an important post-

FIGURE 4 | GO annotation of the predicted target genes of sex-biased differentially expressed miRNAs (ovaries relative to testes) in summer.
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transcriptional regulatory mechanism for the formation of sexual
dimorphism, miRNA has been reported in the gonads of several
reptiles with TSD (Lin et al., 2018; Ma et al., 2020; Xiong et al.,
2020). Here, we performed sRNA sequencing to analyze gonad
miRNA of adult Chinese alligators in winter and summer, and
constructed miRNA expression profiles. The distribution pattern
of sRNAs between the testes and ovaries was different, and this
pattern was retained between seasons. In the ovarian sRNA size
distribution, only a miRNA peak was observed; however, in the
testes, two peaks were observed, corresponding to miRNA and
piRNA. A similar pattern has been reported in the gonads of
yellowfin seabream (Acanthopagrus latus), but the proportion of
piRNA in the gonads of yellowfin seabream is larger than that of
miRNA (Li et al., 2020). The high proportion of piRNA in the
testes is indispensable in testicular development (Li et al., 2013;
Kang et al., 2014), indicating that piRNA in the testes of Chinese
alligator may play an equally critical role.

The miR-10 family is a common type of miRNA in the ovaries,
and its members maintain high expression in the follicles of
different species (Hossain et al., 2012; Salilew-Wondim et al.,
2014; Santonocito et al., 2014). MiR-10 and miR-23 family
members regulate granulosa cell apoptosis in different species
(Nie et al., 2015; Jiajie et al., 2017). Since granulosa cell apoptosis
is the basic physiological mechanism of follicular atresia (Zhang
et al., 2019), these two family members may have a regulatory

function in the follicular development cycle of female Chinese
alligators. Female mice lacking miR-200b and miR-429, members
of the miR-8 family, failed to ovulate normally and their fertility
was greatly reduced, while males showed no change (Hasuwa
et al., 2013). We observed that miR-148a maintained female-
biased expression in summer and winter, and had the highest
abundance in the gonads. MiR-148a is usually studied in
association with cancer and is considered to be an important
factor that can either promote tumorigenesis or suppress tumors
(Li et al., 2016). In ovarian cancer, the high expression of miR-
148a can significantly reduce the proliferation and invasion of
ovarian cancer cells, and promotes cell apoptosis (Zhao et al.,
2016; Zhu et al., 2019). In the ovaries of adult Chinese alligators,
the high expression of miR-148a indicates the health of the
ovaries. In addition, only let-7c of the let-7 family maintained
its female-biased expression in both seasons, while other family
members (Let-7a, 7e, and 7f) showed female-biased expression
only in summer, which may be related to the hibernation habit of
Chinese alligator (Lin et al., 2020).

The miR-17/92 cluster and its paralog cluster miR-106b/25
may cooperatively regulate spermatogonial cell development, and
the functional loss of the miR-17/92 cluster in male mice germ
cells may lead to smaller testes, reduced epididymal sperm count,
and defective spermatogenesis (Tong et al., 2012). Members of
the miR-34 family may also have regulatory functions in

FIGURE 5 | The 20 most enriched KEGG pathways of the predicted target genes of sex-biased differentially expressed miRNAs (ovaries relative to testes) in
summer.

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 8438846

Hu et al. Sex-Biased miRNAs in Chinese Alligator

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


spermatogenesis or motility, and miR-34b/c and miR-449
clusters have redundant functions in the regulation of germ
cell development in the mice testes (Bao et al., 2012). Adult
male mice with double knockout of miR-34b/c and miR-449
clusters showed male sterility, low sperm count and motility, and
deformation (Wu et al., 2014; Yuan et al., 2015). In zebrafish,
another member of the miR-34 family, miR-34a, negatively
regulates sperm motility by targeting gsk3a (Guo W. et al.,
2017). In the gonads of adult Chinese alligator, miR-34b/c and
miR-449a/b demonstrated male-biased expression in summer,
and the expression of miR-34b and miR-34c in the testes was
much higher than that of miR-449a and miR-449b. In winter, the
differential expression of miR-449a/b between the gonads did not
reach statistical significance, and the testicular expression level in
winter was much lower than in summer. This suggests that the
miR-34 family, especially miR-34b/c, has important functions in
the development of male gonads and sperm in Chinese alligator,
and miR-449 plays an auxiliary regulatory role in this regulatory
function during the summer breeding season.

Previously, we constructed the oocyte meiosis, steroid
biosynthesis, and antagonistic sex maintenance pathway in the
gonads of Chinese alligator (Lin et al., 2021). However, we found
that most of the target genes of sex-biased DEmiRs were
concentrated in the previously constructed oocyte meiosis
pathways, and a small number appear in the mutually
antagonistic sex maintenance pathways, while hardly any
appear in the steroid biosynthesis pathways. In the mutually

FIGURE 6 | The negative regulation of some sex-related genes by
differentially expressed miRNAs. Male- and female-biased miRNA are
represented by blue and red fonts, while male- and female-biased differentially
expressed genes are represented by blue and red circles, respectively.

FIGURE 7 | Regulation of miRNA on differential gene expression (DEG) in the (A) meiotic pathway of oocytes and (B) antagonistic gonadal function maintenance
pathway during the sexual maturity period.
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antagonistic sex maintenance pathways, the genes DMRT1 and
GDF9 were targeted by female-biased and male-biased DEmiRs,
respectively. In the testes of adult mice, the lack of DMRT1 in
Sertoli cells will cause the Sertoli cells to not express SOX9, which
promotes male gonadal development, and instead express
FOXL2, which promotes female gonadal development, to
reprogram the Sertoli cells into granular cells (Lin et al., 2021).
The inhibition of DMRT1 expression by miR-200b and miR-429
in the ovary allows the female sex to be maintained in adulthood.
GDF9 is an important oocyte secretion factor in a variety of
vertebrates, and plays a role in the stability of the oocyte
microenvironment and the maintenance of the quality of the
oocyte (Gilchrist et al., 2008; Chen et al., 2017; Liu et al., 2018). In
an in vitro experiment to study zebrafish gonadal differentiation,
GDF9 could significantly inhibit AMH and co-express with
CYP19A in gonadal differentiation (Chen et al., 2017).
CYP19A is a downstream regulatory gene of FOXL2, and can
encode aromatase to irreversibly convert testosterone into
estradiol and promote the functional maintenance of the ovary
(Wang et al., 2007; Lance, 2009). Inhibition of GDF9 by miR-429
and miR-novel_1377 in testes maintained male sex in adulthood.
The targeted regulation of miRNAs on DMRT1 and GDF9,
therefore, enables the maintenance of male and female sex.

In order to explore the difference between adult and embryonic
gonads of the Chinese alligator, we compared the expression of
miRNA in adult and embryonic gonads (Lin et al., 2018) and
observed that the target genes differed between the
developmental stages. Two miRNAs of the miR-10 family (miR-
10a/b) showed female-biased expression inmid-TSP and adulthood,
but the target genes were different. In mid-TSP, miR-10a and miR-
10b targeted twomale sex-differentiation genes,ADCY4 and FGFR2,
while in adulthood, the targeted gene was MYT1, which has
important functions in the oocyte maturation. Two members of
the miR-133 family (miR-133a/b) had sex-biased expression in both
post-TSP and adulthood, but the biased expressions were not
consistent. MiR-133b had male-biased expression in both post-
TSP and adulthood in winter; miR-133a showed male-biased
expression in post-TSP, but in adulthood, it had opposite sex-
biased expression in winter and summer. In addition, in post-
TSP, these two miRNAs targeted multiple genes related to sex
determination and sex differentiation, such as StAR, CYP11A,
HSD17B6 and MAP3K1, while in adult stage, the only sex-related
gene targeted by these two miRNAs is StAR. In Chinese alligators,
miR-133a and miR-133b have important sex-determination
functions in the embryonic stage, but in adulthood their sex-
related functions were reduced. This suggests that the same
miRNA may regulate different genes and play different roles at
different stages of animal development.

CONCLUSION

We identified miRNAs in the gonads of Chinese alligators,
analyzed the differential expression patterns between testes
and ovaries, and further investigated the role of miRNAs in
Chinese alligator sex determination, differentiation, and

maintenance. These results will further inform our
understanding of the epigenetic mechanisms of the
formation and maintenance of sexual dimorphism. We
anticipate that this research will contribute to the
conservation of the Chinese alligator, a particularly
endangered species.
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