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Abstract

Executive functions, or cognitive control, are higher-order cognitive functions needed for adaptive goal-directed behaviours and are significantly
impaired in majority of neuropsychiatric disorders. Different models and approaches are proposed for describing how executive functions are
functionally organised in the brain. One popular and recently proposed organising principle of executive functions is the distinction between hot (i.e.
reward or affective-related) versus cold (i.e. purely cognitive) domains of executive functions. The prefrontal cortex is traditionally linked to executive
functions, but on the other hand, anterior and posterior cingulate cortices are hugely involved in executive functions as well. In this review, we first
define executive functions, their domains, and the appropriate methods for studying them. Second, we discuss how hot and cold executive functions
are linked to different areas of the prefrontal cortex. Next, we discuss the association of hot versus cold executive functions with the cingulate cortex,
focusing on the anterior and posterior compartments. Finally, we propose a functional model for hot and cold executive function organisation in the
brain with a specific focus on the fronto-cingular network. We also discuss clinical implications of hot versus cold cognition in major neuropsychiatric
disorders (depression, schizophrenia, anxiety disorders, substance use disorder, attention-deficit hyperactivity disorder, and autism) and attempt to
characterise their profile according to the functional dominance or manifest of hot-cold cognition. Our model proposes that the lateral prefrontal
cortex along with the dorsal anterior cingulate cortex are more relevant for cold executive functions, while the medial-orbital prefrontal cortex along
with the ventral anterior cingulate cortex, and the posterior cingulate cortex are more closely involved in hot executive functions. This functional
distinction, however, is not absolute and depends on several factors including task features, context, and the extent to which the measured function
relies on cognition and emotion or both.
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2020). It is important to consider EFs as a meta-cognitive, super-
visory, or controlling system rather than being tied to particular
cognition domains (Ward, 2020). Nevertheless, EFs are com-
monly described in terms of specific types of information pro-
cessing or cognitive functions.

Traditionally, the concept of EFs was closely related to the
distinction between two types of information processing:

Introduction

Executive functions and their domains

Executive functions (EFs), also called cognitive control, refer to
a family to top-down cognitive processes required for goal-
directed behaviours (Diamond, 2013; Miller and Cohen, 2001).
These higher-order cognitive functions involve active mainte-
nance of goal presentations and the means to achieve these goals

(Miller and Cohen, 2001). In this process, different types of
information processing, different sensory modalities (e.g. visual
and auditory), and different systems responsible for response
execution, memory updating and retrieval, and emotional evalu-
ation are involved. Accordingly, a wide range of functions and
brain regions are involved in EFs. These higher-order cognitive
functions are also required for adapting and regulating behaviour,
mental and physical health, and cognitive, social, and psycho-
logical development (Diamond, 2013). Deficits of EFs or execu-
tive dysfunctions are commonly observed in patients with
psychiatric and mental disorders (Elliott, 2003; Reimann et al.,
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SST: stop signal task; AX-CPT: AX Continuous Performance Task; ERT: emotional regulation task.

automatic versus controlled processing (Shiffrin and Schneider,
1977). In this framework, EFs refer to those behaviours and pro-
cesses that require intentional, online exert of control. Another
popular model of EFs is to categorise them into separate modu-
lar-type processes and specific cognitive functions. There is a
general agreement about three core EFs: response inhibition (e.g.
inhibitory control), working memory, and cognitive flexibility
(Miyake et al., 2000). Similar to this, early works attempted to
describe EFs in terms of certain kinds of information processing
associated with specific behavioural tasks. These processes can
be summarised in (1) task-setting and problem-solving abilities,
(2) response inhibition abilities, (3) task switching abilities, and
(4) multitasking (Ward, 2020). In addition to these well-estab-
lished accounts of EFs, results of neuroimaging studies suggest
several organising principles of EFs. One of these organising
principles is related to hemispheric differences of the neural sub-
strates of EFs, which considers dissociated functional roles of the
left and right hemispheres. In one such model, left lateral pre-
frontal cortex (PFC) is considered specialised for task-setting
functions and the right lateral PFC is specialised for monitoring
performance (Stuss and Alexander, 2000). Another proposed
model organises the neural substrates of EFs anatomically from
anterior to posterior parts of the brain. In one such model, a pos-
terior to anterior gradient is considered for the lateral PFC with a
differential functional specificity of the dorsal (linked to action
planning) versus ventral (linked to language and objects) routes
(Badre and D’Esposito, 2009). The updated version of this theory
emphasizes on separate brain networks that interact via local and
global hierarchical structure (Badre and Nee, 2018).

A recently emerging and perhaps the least controversial
organising principle of EFs is to distinguish between EFs based
on the extent they are related to emotion (e.g. hot EFs) or purely
cognitive aspects (e.g. cold EFs) (Ward, 2020). Hot EFs, involve

processing of information related to reward, emotion, and moti-
vation, while cold EFs involve purely cognitive information pro-
cessing. Examples of hot and cold EFs are ‘monetary delay
discounting’ and ‘working memory letter’ tasks, respectively.
The hot versus cold principle has several advantages for organis-
ing EFs. First, in this model both cognition and emotion are con-
sidered. Second, it presents EFs in a spectrum-like model,
indicating that all domains of EFs can be /ot or cold depending
on contextual information, and third, broader regions of the
brain are considered for EFs. A network approach, however, is
needed to more accurately depicts functional organization of hot
vs cold domains of EF. The current knowledge of neural sub-
strates of hot versus cold EFs distinct between lateral (cold-
related) and medial (hot-related) regions of the PFC. This,
however, is not limited to the PFC regions and other cortical and
subcortical areas appear to be involved as well. Major domains,
tasks, and neural substrates of Aot versus cold EFs based on the
currently available studies are summarized in Figure 1.
Although the hot—cold organising principle of EFs has been
most often linked to the PFC (as shown in Figure 1), here we
attempt to broaden this principle to cingulate areas as well, due to
their significant involvement in executive and cognitive control
functions. It is, however, notable that EFs and especially /ot EFs
are closely related to subcortical areas involved in emotional
processing, including the amygdala, insula, striatum (including
putamen, caudate, and nucleus accumbens) hippocampus, and
brainstem (Ardila, 2019; Heyder et al., 2004; Pessoa, 2009). As
the scope of this review is focused on prefrontal and cingulate
cortices, the specific contributions of these subcortical regions
will not be covered in detail here, but will be mentioned where
required. In the next section, we describe /ot and cold EFs with a
specific focus on majorly involved cortical regions, namely, the
PFC and cingulate cortex. Before that, we briefly mention
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Table 1. Characteristics of commonly applied neuroimaging and non-invasive brain stimulation methods for studying human cognition.
Method Type Delivered information Invasiveness Principle of action Resolution/focality
Neuroimag- fMRIL Recording Correlative Non-invasive Brain haemodynamic High spatial
ing Low temporal

EEG Recording Correlative Non-invasive Brain electrical activity Low spatial

High temporal

Non-invasive ~ TMS Stimulation Causal Non-invasive Electromagnetic stimulation Focal
brain tES (e.g. Stimulation Causal Non-invasive Electrical stimulation Non-focal
stimulation tDCS)

fMRI: functional magnetic resonance imaging; EEG: electroencephalogram; TMS: transcranial magnetic stimulation; tES: transcranial electrical stimulation.

methods in cognitive neuroscience that provide important
insights into the relevance of brain areas, and networks associ-
ated with EFs.

Studying EFs: neuroimaging versus non-
invasive brain stimulation methods

Recent advances in the cognitive neurosciences have provided
us with novel, non-invasive methods for studying human cogni-
tion. Neuroimaging, particularly functional magnetic resonance
imaging (fMRI), has become a dominant tool in cognitive neu-
roscience research and especially human cognition (Dolan,
2008). The emergence of this method has revolutionized study
of the living human brain and fMRI is the most widely used
technique in cognitive neuroscience (Newman, 2019). fMRI
relies on blood oxygenation level-dependent (BOLD) contrast,
which arises due to the magnetic susceptibility of deoxyhaemo-
globin (deoxy-Hb). To put it briefly, an increase of neural activ-
ity leads to an increase of blood volume and thus the proportion
of oxygenated haemoglobin (oxy-HDb) in the region, resulting in
an increased BOLD signal. This BOLD signal is indicative of
brain activity. When it is time-locked to an event/stimulus, it can
be used to reveal neural correlates of cognition. A region with
enhanced activity refers to a local increase of brain metabolism
during performance of an experimental task compared to the
baseline. With fMRI, we can investigate which brain regions are
activated during cognitive task performance, including EFs.
Most of our knowledge about the brain regions involved in EFs
comes from neuroimaging studies (Elliott, 2003; Yuan and Raz,
2014). However, they come with some limitations. Apart from a
relatively poor temporal resolution, which is, however, not the
case for electroencephalogram (EEG), the other well-known
neuroimaging method, fMRI delivers correlational information
about the involvement of brain areas and networks in human
cognition. In other words, the evidence provided by brain imag-
ing methods is purely correlative and does not allow us to infer
causal relationships between brain and behaviour.

While such correlative information about brain—behaviour
relations is valuable and informative, it does not allow to easily
infer causality of brain—behaviour relationships. Here, tools that
allow active manipulation of brain activity come into play. Non-
invasive brain stimulation (NIBS) is a group of methods for mod-
ulating neural processes of the brain, enabling us to directly study
how an experimentally altered neural activity affects behaviour
(Polania et al., 2018). Transcranial magnetic stimulation (TMS)
and transcranial electrical stimulation (tES) are two commonly
used and well-established NIBS techniques. TMS is based on

principles of electromagnetism which ultimately leads to electri-
cal stimulation of brain regions in a focal way, and transcranial
direct current stimulation (tDCS), the most common used tES
methods, uses a weak, painless electrical current applied to the
scalp, thereby modulating brain excitability in a more non-focal
way (Nitsche and Paulus, 2000). Depending on a specific fre-
quency (for TMS) and stimulation polarity/intensity/duration (for
tDCS), different TMS and tDCS protocols can result in excitatory
or inhibitory after-effects that might last for several minutes and
in this case are linked to long-term potentiation or long-term
depression (Polania et al., 2018). Due to such effects on cortical
excitability and neuroplasticity, which are physiological foun-
dations of cognition, these techniques have great potential for
experimental investigation of the physiological foundations
behind human cognition.

As briefly mentioned, various cortical and subcortical regions
are involved in EFs. While neuroimaging methods can show the
functional and structural correlates of EFs in the brain, with NIBS
(e.g. TMS and tDCS) we can further complement our knowledge
of the brain regions/networks supporting EFs. In this review, we
will mostly focus on the evidence coming from these methods
(i.e. fMRI, TMS, and tDCS) in order to picture how /ot versus
cold EFs are organised in the brain. We focus mainly on studies
conducted in healthy individuals in this review. However, due to
high relevance of /hot versus cold cognition in neuropsychiatric
disorders, we discuss important clinical implications of this dis-
tinction at the end. A brief description of the research methods
used in the studies of this review is summarised in Table 1.

Hot versus cold EFs in the PFC

In traditional and contemporary conceptualisations of EFs, there
is a consensus that the frontal lobe and especially the PFC have a
critical role (Miller and Cohen, 2001). The PFC has extensive
connections with almost all sensory systems, cortical regions,
and subcortical structures involved in action, motor response,
memory, emotion, and affect (Miller and Cohen, 2001). Our
focus here is on how PFC structures are related to /ot versus cold
EFs. Broadly speaking, the most basic anatomical division within
the PFC defines three cortical areas: the lateral PFC, the medial
PFC, and the orbital PFC. The lateral PFC lies anterior to the
premotor areas and the frontal eye fields and is situated close to
the surface of the skull. It includes the dorsolateral prefrontal cor-
tex (DLPFC) (Brodmann’s areas 46 and 9) and the ventrolateral
prefrontal cortex (VLPFC) (Brodmann’s areas 44, 45, and 47)
(Ward, 2020). The medial PFC lies between the two hemispheres
and anterior to the corpus callosum and the anterior cingulate
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cortex (ACC) (Brodmann’s area 24 and adjacent regions). The
orbitofrontal cortex (OFC) lies above the orbits of the eyes and
the nasal cavity (Brodmann’s areas 11, 12, 13, and 14). It is of
note that the OFC is functionally and anatomically related to the
ventral part of the medial PFC and is sometimes referred to as the
ventromedial prefrontal cortex (VMPFC) (Brodmann’s area 10,
14, 25, and 32 and parts of 11, 12, and 13) (Ongiir and Price,
2000), but these areas are not identical at finer anatomical divi-
sions (Ward, 2020).

The EF domains related to these areas can be classified in dif-
ferent ways. One popular classification is to functionally specify
these areas based on the extent to which these are involved in /ot
(e.g. emotion and motivation-related) and/or cold EFs (e.g.
purely cognitive). Hot EFs mainly involve the orbital and medial
PFC, including the OFC and VMPFC, and cold EFs engage the
lateral PFC, including the DLPFC and VLPFC (Ongiir and Price,
2000; Stuss, 2011; Ward, 2020). Functionally speaking, sot EFs
are top-down cognitive processes that operate in contexts with
significant emotional and motivational salience, gratification,
rewards and/or punishment (Zelazo and Carlson, 2012; Zelazo
etal., 2005). Examples of ot EF are delay discounting, affective/
risky decision-making, and interpersonal and social behaviour.
Cold EFs are top-down cognitive processes that are logically
based or mechanistic (Chan et al., 2008) and operate in affec-
tively neutral contexts (Zelazo and Carlson, 2012). Examples of
cold EFs include working memory, response inhibition, atten-
tional control, and planning as far as these functions are not pre-
sented in an emotional context. In what follows, we provide
evidence from neuroimaging (i.e. fMRI) and brain stimulation
studies (i.e. TMS and tDCS) about the relation of %ot versus cold
EFs to different PFC areas.

Neuroimaging studies

PFC and cold EFs. A large body of evidence from neuroimaging
studies show that the lateral PFC, including DLPFC and VLPFC,
are involved in cold EFs. Response inhibition, the ability to sup-
press unrelated or inappropriate stimuli/responses, is a core cold
component of EFs. It is well-established that a specific region of
the PFC, the right inferior frontal gyrus (r-IFG), is critical for
inhibitory control (Aron et al., 2004, 2014; Hampshire et al., 2010).
The r-IFG is moreover connected with the ACC, involved in error
detection, and the lateral OFC when conveying information from
non-reward systems (Du et al., 2020). The left [FG is also involved
in verbal fluency, another major cold EF domain (Costafreda et al.,
2006). The lateral PFC, including the DLPFC, is another well-
documented region actively involved in working memory updat-
ing and tasks requiring executive control (Lemire-Rodger et al.,
2019; Wagner et al., 2001). The PFC, however, should be consid-
ered as a part of a larger brain network, the fronto—cingulo—parietal
network, that supports cognitive control via interaction of different
cortical (and also subcortical) structures.

A great example of a cold EF and its association with subre-
gions of PFC is navigation behavior. Planning, decision-making,
goal-coding, and adaptive behavior are those domains of EFs
required for real-world navigation (Patai and Spiers, 2021), all of
which are functionally cold. At anatomical level, navigation
behavior involves interaction of subregions of PFC (e.g., DLPFC,
VLPFC), cingulate cortex (dorsal ACC) as well subcortical
regions such as hippocampus (Patai and Spiers, 2021). An fMRI
meta-analytic study of 193 studies revealed a common pattern of

Figure 2. Lateral view of the prefrontal cortex (PFC) regions and
association with hot and cold EFs. The lateral PFC includes dorsolateral
prefrontal cortex (DLPFC) and ventrolateral prefrontal cortex (VLPFC)
that are predominately involved in cold EFs (in blue). The medial

PFC and orbitofrontal cortex (OFC) are predominantly involved in hot
EFs. The hot PFC regions have extensive connections with several
subcortical structures that process emotion and motivation will be

discussed later (Figure 4).
Marked regions are close approximate to the intended regions. Also note that
circuit nodes and connections are excluded in this and later figures for clarity.

activation in the lateral PFC, dorsal ACC, and parietal cortex
across major cold EF domains (working memory, inhibition,
flexibility, and planning) (Niendam et al., 2012), indicating that
cold EFs are supported by this cognitive control network with
the DLPFC as a key region (Figure 2). The connectivity between
the lateral PFC and dorsal ACC indicates that these regions are
rather involved in cold EFs which are discussed in more detail in
the section dedicated to the cingulate cortex.

PFC and hot EFs. A large and compelling body of evidence from
neuroimaging studies shows that the medial and orbital PFC, spe-
cifically the VMPFC and OFC, are involved in cognitive func-
tions related to reward, emotion, motivation, and social evaluation.
During cognitive control of emotional stimuli, the medial PFC
and OFC are usually activated (Ochsner and Gross, 2005). These
regions, however, interact with the lateral PFC (e.g. VLPFC) and
ACC during effortful control mechanisms when it comes to emo-
tional and motivational stimuli (Ochsner and Gross, 2005; Pessoa,
2009). This indicates that hot EFs involve both brain regions
involved in cold executive control (e.g. lateral PFC and ACC),
and those involved in processing of emotion and motivation. One
major hot EF is risky decision-making or decision-making under
uncertainty. Neuroimaging studies have repeatedly shown that the
VMPFC and OFC are involved in decision-making under uncer-
tainty (Bechara et al., 2000; Clark et al., 2008; Fellows and Farah,
2007; Lipsman et al., 2014; Windmann et al., 2006). Delay dis-
counting or temporal discounting is another classic example of
hot EFs. Here again, studies show a prominent involvement of the
VMPFC and OFC (Wang et al., 2016). What makes the medial—
orbital PFC at least partially relevant for emotional and motiva-
tional processing is their connectivity with subcortical structures
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such as the limbic system, amygdala, and insula (Matyi and Spiel-
berg, 2020; Sharpe and Schoenbaum, 2016). These regions are
also connected with the posterior cingulate cortex (PCC), the
counterpart region in the cingulate cortex which is discussed in
the next section. Indeed, proposed models for delay-discounting
behaviour in humans based on neuroimaging data assume that a
unitary system encompassing the medial PFC, including VMPFC,
and PCC are involved in immediate and delayed reward evalua-
tion (Kable and Glimcher, 2007; Peters and Biichel, 2010). In this
line, an fMRI study showed coactivation of the VMPFC and PCC
during monetary reward encoding (Lin et al., 2011). Another
fMRI study showed that when people consider themselves to
experience a positive future, greater activity was observed in the
VMPEFEC and PCC, indicating the connecting of these regions as
well (Blair et al., 2013).

NIBS studies

Attentional control is a core component of cold EFs. NIBS studies
have shown that both TMS and tDCS over the left, right, or bilat-
eral DLPFC enhance selective attention (Gladwin et al., 2012;
Pecchinenda et al., 2015; Vanderhasselt et al., 2010). Other NIBS
studies have moreover shown a performance-enhancing effect of
increasing activity of the lateral PFC, including DLPFC and
r-IFG, on attentional control and sustained attention (Coffman
etal., 2012; Hwang et al., 2010). Regarding inhibitory control, the
DLPFC and the IFG, with a right hemispheric predominance, are
involved in response inhibition by both tDCS and TMS studies
(for a review, see Brevet-Aeby et al., 2016). Working memory is
another major component of cold EFs which was widely studied
by NIBS. Recent review and meta-analytic studies have con-
firmed an enhancing effect of increased activity of DLPFC on
working memory task performance (Bagherzadeh et al., 2016;
Brunoni and Vanderhasselt, 2014; Hill et al., 2016; Mancuso
et al., 2016). Another recent relevant meta-analysis investigated
the effects of prefrontal tDCS here on executive function and
found that anodal tDCS over the DLPFC increases performance
of updating tasks and global EF performance under specific stim-
ulation parameters (Imburgio and Orr, 2018). A recent tDCS study
that targeted the DLPFC, temporal cortex, and posterior parietal
cortex showed that DLPFC activation contributes to EFs regard-
less of task modality (semantic, phonemic, and visuospatial)
(Ghanavati et al., 2019). Other studies show also enhanced prob-
lem-solving, and cognitive flexibility as a result of increased
activity of lateral PFC regions via NIBS (Cerruti and Schlaug,
2009; Lucchiari et al., 2018; Metuki et al., 2012; Nejati et al.,
2018a). These studies clearly show that the DLPFC and lateral
PFC regions are involved in working memory and other cold EFs,
although these structures are involved in specific aspects of emo-
tional processing too (Nejati et al., 2021; Lindquist et al., 2012).
Regarding hot EFs, numerous NIBS studies show involve-
ment of medial and orbital PFC regions. The involvement of the
medial-orbital PFC (e.g. VMPFC and OFC) in reward and emo-
tion processing is well-documented by both tDCS (Abend et al.,
2019; Manuel et al., 2019) and TMS studies (Konikkou et al.,
2017). A recent tDCS—MRI study showed a causal link between
VMPEFC activation and the experience and regulation of anger, a
hot EF domain, in an anger-provoking game involving fair and
unfair offers, supporting its role in anger regulation (Gilam et al.,
2018). Activity of the VMPFC in this study was coupled with
both ACC and PCC activation, depending on the specific offer

with more PCC activation during unpleasant offers. Social vari-
ables that include evaluation, interaction, theory of mind, and
empathy are also considered /ot EFs and NIBS studies have
shown that activation of the VMPFC modulates such social vari-
ables (Adenzato et al., 2017; Chib et al., 2013; Li et al., 2020;
Salehinejad et al., 2020a). A recent tDCS study specifically
investigated the interaction of the DLPFC and OFC in /Aot versus
cold EFs by applying excitability-enhancing anodal and excita-
bility-reducing cathodal stimulation (Nejati et al., 2018a).
Participants conducted response inhibition and problem-solving
tasks as measures of cold EFs and risky decision-making and
delay-discounting tasks as measures of /ot EFs while receiving
combined left DLPFC-right OFC stimulation. Increased activity
of the left DLPFC concurrent with decreased activity of the OFC
prominently improved cold EFs while hot EFs were enhanced
under both protocols, those that activated the left DLPFC and the
right OFC. The results of this study suggest that 4ot and cold EFs
are placed on a spectrum, with lateral and medial-orbital contri-
butions to cold and hot EFs, respectively, and that no EFs are
purely cold or hot. This depends to the extent that each EF
domain involves emotion/reward or cognition processing which
determines engagement of relevant brain region. The brain
regions should be predominantly, but not purely, considered cold
and Aot as well and this is determined by task feature too.

Hot versus cold EFs in the cingulate
cortex

The major anatomical divisions in the cingulate cortex include
the anterior, mid, and posterior cingulate cortices, named ACC,
MCC and PCC, respectively (Caruana et al., 2018; Vogt, 2005)
although some classifications only include ACC and PCC. Here
our focus is specifically on the ACC and PCC. Studying involve-
ment of the cingulate cortex in EFs has been mostly limited to the
anterior portion of the cingulate cortex or ACC (Brodmann’s area
24 and adjacent regions). The ACC is traditionally linked to the
ability of error detection, a cognitive mechanism that monitors
for errors and recalibrates task performance accordingly (Carter
et al., 1998). As mentioned earlier, one fundamental domain of
EFs is inhibitory control or response inhibition (Miyake et al.,
2000) which is usually involved in situations with conflicting
stimuli. The Stroop test and Go/No-Go tasks are well introduced
behavioural examples with conflicting and competing stimuli.
Conflict monitoring signals the need for increased cognitive con-
trol to resolve current conflicts, and here, the ACC can be linked
to EFs (Cole et al., 2009; Shenhav et al., 2013). The involvement
of the ACC in error detection abilities, which requires attentional
control, suggests its predominant role in cold EFs. However,
there is compelling evidence for an involvement of the ACC in
emotion and reward-related processes as well. In fact, the ACC
can be subdivided into areas differentially related to cognitive
versus emotional functions. The dorsal ACC is linked to cogni-
tive, whereas the ventral ACC is linked to emotional processing
(Gasquoine, 2013; Lockwood and Wittmann, 2018). In addition
to the ventral ACC, the PCC has been increasingly studied in
recent years and linked to some domains of EFs related to Aot
cognition (Platt and Plassmann, 2014). In what follows, we pre-
sent evidence from fMRI and brain stimulation studies about
how /ot and cold EFs are linked to the cingulate cortex with a
primary focus on the ACC and PCC.
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Neuroimaging studies

ACC and cold/hot EFs. The relation of the ACC to cold EFs is
based on its primary role in conflict detection during information
processing, which signals the need to engage top-down atten-
tional control and performance monitoring (Petersen and Posner,
2012). In this line, an early fMRI study aimed to investigate
which levels of processing are being monitored by the ACC dur-
ing performance of a task with conflicting stimuli and responses.
It was shown that the ACC has a highly specific contribution to
EFs through detection of conflicts at response level which usu-
ally occurs late during information processing (van Veen et al.,
2001). This suggests that the executive control exerted by ACC is
different from the contribution of the DLPFC. This was con-
firmed in another fMRI study that specifically compared the
roles of the DLPFC versus ACC in attentional control. Atten-
tional control is a clear example of cold EFs as it requires exert-
ing control over the goal, monitoring of the goal, and the processes
needed to achieve the goal. It is a fundamental component of
executive control that comes into play in almost all EF domains
and is traditionally linked to the DLPFC (Miller and Cohen,
2001). In that fMRI study, it was, however, shown that not only
the DLPFC takes a leading role in implementing top-down atten-
tional control, but also that the ACC is involved in specific addi-
tional aspects of attentional control, such as response-related
processes (Milham et al., 2003). Regardless of the type of atten-
tional control, the contribution of the ACC to this effortful pro-
cess indicates that it is relevantly involved in cold EFs.
Involvement of the ACC in cold EFs is more precisely linked
to the dorsal ACC. This region is a key hub in a network of brain
regions involved in domain-general EFs in humans (Petersen and
Posner, 2012; Shenhav et al., 2013); however, this ‘domain-gen-
eral’ region has also a domain-specific function related to stimuli
valence. An fMRI study in healthy participants showed that while
dorsal ACC activity is required for processing task-irrelevant
information during the Stroop task performance, which is dis-
tracting due to its cognitive content, the ventral ACC is activated
during presentation of task-irrelevant information which is dis-
tracting due to emotional content (Mohanty et al., 2007). This
study is a good example of how cognitive versus emotional infor-
mation in the context of conflicting stimuli is processed by dorsal
versus ventral ACC, respectively. In other words, both dorsal and
ventral ACC seem to be involved in effortful control over stimuli,
but these areas differ with respect to the kind of stimuli pro-
cessed, that is, cognitive or emotional. Another fMRI study in
healthy subjects, as well as in patients with ACC lesions, found
that the dorsal ACC is actively involved in effortful cognitive and
motor behaviour in healthy individuals, but that these activities
were blunted in patients with focal lesions of the ACC (Critchley
et al., 2003). Together, these studies suggest that the dorsal ACC
is involved in cold EFs. Another influential account, however,
links dorsal ACC functions with motivation and reward—based
decision-making (Wallis and Kennerley, 2011). One of the most
recent accounts for the role of the dorsal ACC integrates these
two perspectives and suggests that that the dorsal ACC plays a
central role in decisions about the allocation of cognitive control
based on a cost/benefit analysis that identifies the highest
expected value of control (Shenhav et al., 2016). According to
this theory, exerting effortful control (cold EF) is based on the

Figure 3. The cingulate cortex in the human brain and association
with hot and cold EFs. The anterior cingulate cortex (ACC) includes
dorsal ACC (dACC) that is predominately involved in cold (in blue) and
ventral ACC, consisting of perigenual (pgACC) and subgenual (sgACC)
that are predominately involved in hot EFs (in red), respectively. The
posterior cingulate cortex (PCC) is predominantly involved in hot EFs
(in red). Note that the anatomical borders of the cingulate cortex in
this figure is based on the anatomical studies (see Caruana et al., 2018
and Vogt, 2005 for details). In some studies, the mid-cingulate cortex

is part of the dACC.

Marked regions are close approximate to the intended regions. Also, note that
most circuit nodes and connections (specially subcortical regions) are excluded
for clarity.

analysed value of control (hot EFs), and the dorsal ACC has a
central role in these processes.

In contrast to the controversy over the functions of the dorsal
ACC, there is a general agreement that the ventral region of the
ACC is rather linked to emotional, motivational, and social infor-
mation processing (Gasquoine, 2013; Lockwood and Wittmann,
2018). An fMRI study that measured performance monitoring
with a valence-based task showed that the ventral ACC along
with the PCC is specifically sensitive to the valence of feedback
(Mies et al., 2011), specifically the perigenual ACC and subgen-
ual ACC. These are two subregions of the ventral ACC that are
linked with Aot EFs involving emotion, motivation, and social
decision-making (Lockwood and Wittmann, 2018). In accord-
ance, a recent fMRI study showed connectivity between both
perigenual and subgenual ACC and OFC/VMPFC, which are
involved in emotional and motivational processing (Du et al.,
2020). This might partially explain why the ventral ACC is rather
involved in /ot EFs, as it is structurally connected and anatomi-
cally closer located to those regions of the PFC that are relevant
for hot EFs (Figure 3).

PCC and hot EFs. In comparison to the ACC, a relatively lim-
ited number of studies explored functional organisation of the
PCC in EFs. Previous fMRI studies mainly investigated PCC
activation during memory processes, specifically episodic mem-
ory. However, functional imaging studies consistently found that
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emotionally salient stimuli activate the PCC (Maddock, 1999),
and the involvement of PCC in episodic and autobiographical
memory could be due to its role in the interaction between emo-
tion and memory (Maddock et al., 2001). The involvement of the
PCC in emotion, and thus /ot EFs, is anatomically related to its
connectivity and coactivation with the amygdala, insula, and
OFC (Vogt et al., 2000). An fMRI study found that the PCC was
activated bilaterally during both unpleasant and pleasant, as com-
pared to neutral words in a memory task (Maddock et al., 2003).
Recent studies have provided more convincing evidence for the
involvement of the PCC in emotional stimuli processing. Le et al.
(2019) investigated neural substrates underlying behavioural
avoidance in alcohol drinkers using a valence-based Go/No-Go
task. Their major finding was increased activity in the PCC dur-
ing motivated avoidance and incentivised inhibition of action
which was correlated with sensitivity to punishment. In another
recent TMS—fMRI study, 1 Hz rTMS was applied to the medial
PFC of healthy participants who immediately thereafter under-
went fMRI while performing an emotional self-referential task
(De Pisapia et al., 2019). Neuroimaging findings revealed that
the PCC was the only region that was specifically activated by
negative-valence stimuli and as a result of TMS (TMS-valence
interaction). Another recent study showed elevated functional
connectivity between the PCC and subgenual PFC (e.g. ventral—
medial PFC) as a maker of rumination, in depressed individuals
versus healthy controls (Benschop et al., 2021). Rumination is a
cognitive risk factor resulting from deficient cognitive control
over negative emotions and a maladaptive self-referential pro-
cessing and thus related to /ot EFs. Overall, findings of these
studies indicate relevant connectivity between the medial PFC
and PCC, which will be discussed later in our prefrontal-cingu-
lar network model for Aot versus cold EFs (Figure 3).

NIBS studies

In contrast to neuroimaging studies that provide correlates of
brain—behaviour relations, NIBS methods allow to infer the cau-
sality of these associations. The feasibility of NIBS to modulate
ACC and PCC physiology is, however, limited in part due to the
anatomical depth of these regions. Regarding cold EFs, some
NIBS studies investigated the impact of the ACC stimulation on
EF's and support the contribution of this region to these EFs.

In a recent tDCS study, using a high-definition (HD) stimula-
tion protocol (i.e. 4 X 1 electrode montage), anodal and cathodal
tDCS were applied over the dorsal ACC during performance of a
cognitive and emotional cognitive Stroop task (To et al., 2018).
Anodal stimulation over the dorsal ACC enhanced performance
on the cognitive incongruent stimuli of the task, which requires
effortful attentional control, while cathodal stimulation over the
same region enhanced performance on the block including emo-
tional incongruent stimuli. Furthermore, anodal stimulation sig-
nificantly increased beta frequency band activity, which is
associated with attentional control. A recent tDCS—MRI study
applied anodal tDCS over the ACC and measured behavioural
performance in a colour-word Stroop task, and resting-state
fMRI after stimulation (Khan et al., 2020). While behavioural
findings showed enhanced Stroop task performance as a result of
improved cognitive control, neuroimaging findings showed a
significant decrease of functional connectivity of the cognitive
control network, including ACC, which is associated with less

effortful information processing. In a TMS study that targeted the
ACC during a counting Stroop task performance (a cold EF),
excitatory 10 Hz rTMS (Hayward et al., 2004) over both the dor-
sal and ventral ACC abolished Stroop interference. Together,
NIBS studies show that stimulation of the dorsal ACC is associ-
ated with enhanced cold executive control.

Not many NIBS studies are conducted to modulate the activ-
ity of the PCC to explore its impact on cognitive functions. The
TMS—MRI study conducted by De Pisapia et al. (2019), which
found a TMS—valance interaction for the activation of the PCC
after applying TMS over the medial PFC, is, however, a relavant
example. In this study, the neural basis of emotional content in
self-referential processing, a hot EF, was investigated by stimu-
lating the medial PFC with 1Hz TMS. Participants then con-
ducted a valence-based self-referential task. Stimulating the
medial PFC activated a network of regions including the PCC
which was specifically sensitive to emotionally negative aspects
of the stimuli. In another study, the right DLPFC was stimulated
with inhibitory TMS, and delay-discounting task performance
was monitored during positron emission tomography (PET) scan.
The PCC, and especially the posterior parietal lobule, which is
part of the PCC, were activated during this task (Cho et al., 2012).
Together, NIBS studies available so far show that activation of
the PCC is observed during performing /ot EF tasks (Table 2).

A prefrontal-cingular network model
for hot versus cold EFs

So far, we discussed how hot and cold EFs can be linked to dif-
ferent regions within the PFC and the cingulate cortex.
Anatomical and functional connectivity between the cingulate
and prefrontal cortices can explain functional organisations of
hot—cold EFs in this network. Two major functional connectivity
branches are considered in this proposed model: (1) the connec-
tivity between the lateral PFC (e.g. DLPFC) and ACC (specifi-
cally the dorsal ACC) and (2) the connectivity between the
orbital-medial PFC (e.g. VMPFC and OFC), ventral ACC, and
PCC (Figure 4). In this section, we discuss a prefrontal-cingular
network that may more comprehensively account for /ot and
cold EFs. As subcortical regions are highly involved in /ot EFs,
we also depicted major subcortical limbic structures involved in
emotional and motivational processing which are connected to
hot-related prefrontal-cingular structures.

The cingulate cortex in monkeys and humans has extensive
connections with the PFC (Pandya et al., 1981). The dorsal ACC
(Brodmann’s area 32) projects mostly to the lateral PFC, includ-
ing DLPFC, and the mid-OFC (Pandya et al., 1981), and the
ventral ACC (Brodmann’s area 25), which is part of the
VMPFC, has connections with subcortical regions like amyg-
dala and insula, and projects also to the VMPFC, OFC also
lateral PFC. The PCC (Brodmann’s area 31), however, projects
to the VMPFC, ventral ACC, and OFC (Leech and Sharp, 2014).
Although there is a relative overlap between the ACC and PCC
connectivity with PFC regions at the anatomical level, anterior
and posterior parts of the cingulate cortex show a more differen-
tiated functional specificity. As discussed in the previous sec-
tion, both neuroimaging and brain stimulation studies show that
the dorsal anterior part of the cingulate cortex is mainly involved
in cognitive control functions (Critchley et al., 2003) such as
response inhibition and conflict monitoring (Botvinick et al.,
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Figure 4. The prefrontal-cingular network in the human brain and association with hot and cold EFs. The lateral PFC, including DLPFC and VLPFC,
along with dorsal ACC are predominantly related to cold EFs and can be considered as the cold stream. The PCC, medial and orbital PFC (VMPFC and
OFC), and ventral ACC constitute the hot stream and are predominantly related to hot EFs. The VLPFC is also connected to medial and orbital PFC.
The hot EFs stream is closely connected with several limbic structures that are involved in emotional and motivational processing (red curve). The
connectivity between the hippocampus and lateral prefrontal cortex subregions is also relevant for major cold EFs such as working memory and

navigation behavior.

DLPFC: dorsolateral prefrontal cortex; VLPFC: ventrolateral prefrontal cortex; ACC: anterior cingulate cortex; dACC: dorsal anterior cingulate cortex; vACC: ventral anterior
cingulate cortex; VMPFC: ventromedial prefrontal cortex; OFC: orbitofrontal cortex; PCC: posterior cingulate cortex; VA: ventral striatum; NA: nucleus accumbens; A:

amygdala; H: hippocampus.

Marked regions are close approximate to the intended regions. Note that some circuit nodes and connections specially with subcortical areas are excluded for clarity and

that some connections (shown by arrows) may be indirect.

2004). From a functional perspective, these EF domains are
mostly relevant for cold EFs and similar to those domains the
lateral PFC is involved in, although a functional difference is
observed for the timing of attentional control exerted by the
DLPFC and dorsal ACC (Milham et al., 2003). The connectivity
between the lateral PFC and ACC and their coactivation during
cognitive control tasks supports this functional link (Tik et al.,
2017). The ventral ACC is mainly involved in exerting control
over emotional stimuli which indicates that the ACC is involved
in both cold and hot EFs (Gasquoine, 2013; Lockwood and
Wittmann, 2018). However, the cognitive functions specific to the
posterior part of cingulate cortex (e.g. PCC) are shown to be
involved in emotional processing, value-based decision-making,
subjective valuation, and motivational states (Platt and Plassmann,
2014; Vogt et al., 2000). In this connection, neuroimaging studies
have shown coactivations between the PCC and the medial—
orbital PFC (e.g. VMPFC and OFC) (De Pisapia et al., 2019;
Le etal., 2019; Lin et al., 2011; Vogt et al., 2000).

This relative functional specificity of the anterior versus pos-
terior parts of the cingulate cortex seems similar to the ‘hot—cold’
organising principle of EFs in the PFC. In the PFC, the kot versus
cold organisation is proposed based on functional differences

between the lateral versus medial-orbital regions. Neuroimaging
and brain stimulation studies have documented that cold EFs are
rather supported by the lateral PFC, while /ot EFs are related to
the medial-orbital PFC (Nejati et al., 2018a; Ochsner and Gross,
2005; Ongiir and Price, 2000; Peterson and Welsh, 2014; Ward,
2020). Integrating this functional differentiation in the PFC and
cingulate cortex with respect to hot versus cold EF allows us to
consider a broader network. According to the prefrontal-
cingular network, the lateral PFC (e.g. DLPFC and VLPFC) is
functionally more closely related to the dorsal ACC, while the
medial-orbital PFC (e.g. VMPFC and OFC) is functionally and
anatomically more closely related to the ventral ACC and PCC.
This does not, however, exclude a contribution of the dorsal
ACC, which is documented to be involved in emotion, affect, and
pain, to Aot EFs (Shackman et al., 2011). Considering a purely
segregationist model for the ACC seems to be no longer appro-
priate (Shackman et al., 2011), however, our discussion here is
limited to EFs and specifically /ot versus cold domains, which
seems to be functionally supported by different regions of the
cingulate cortex.

It is important to consider the following additional aspects
with regard to the proposed prefrontal-cingular network. First,
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the involvement of the lateral PFC and dorsal ACC in cold EFs,
and the medial-orbital PFC, ventral ACC, and PCC in hot EFs
does not imply that these regions are functionally limited to cold
or hot cognition. They rather have a predominant functional
specificity. As shown in previous studies, there is an interplay
between these cold-related and hot-related regions (Le et al.,
2019; Nejati et al., 2018a) and importantly these regions show
coactivations depending on specific task features. Second, the
hot versus cold EFs distinction should not likewise be considered
as representing two separate and unrelated domains of EFs.
Although some domains are most purely cognitive, such as inhib-
itory control or working memory, they might be enriched by
emotional features depending on the task, stimuli, and the con-
text used for measuring them. Finally, it should be taken into
account that we narrowed our discussion to the prefrontal and
cingulate cortices. The prefrontal-cingular network includes the
cortical regions most closely involved in EFs based on previous
studies. This is not meant to underestimate the engagement of
other brain regions, especially subcortical limbic regions, the
amygdala—hippocampal systems, and sensorimotor regions of the
dorsal striatum (e.g. putamen and caudate nuclei) in EFs, which
were, however, beyond the scope of this review.

Clinical implications of hot-cold EFs
for neuropsychiatric disorders

The hot—cold distinction of cognition has important clinical
implications for both characterising and applying appropriate
treatment of neuropsychiatric disorders. In the majority of neu-
ropsychiatric disorders, the core pathophysiology involves
cortico-subcortical regions of the brain, and here the prefron-
tal-cingular network is highly involved (Heilbronner and
Haber, 2014; Miller and Cummings, 2017). This is in line with
the network approach in cognitive neuroscience, which assumes
that a dynamically changing pattern of activity over several
brain regions is critical for cognitive processes (Ward, 2020).
Disturbances of these networks — structural and functional — are
related to symptoms and pathophysiology of neuropsychiatric
disorders. Accordingly, it is possible to identify symptom-rele-
vant brain networks, and their disturbances, based on connectiv-
ity mapping of the human connectome which is one of the major
approaches in current biological psychiatry. Abnormalities of the
prefrontal-cingular and prefrontal-limbic networks are largely
involved in the pathophysiology, symptom expression, and
course of the major neuropsychiatric disorders, including but not
limited to depression, schizophrenia, anxiety disorder, substance
use, and impulse control disorders, as well as major neurodevel-
opmental disorders (attention-deficit hyperactivity disorder
(ADHD) and autism). In what follows, we briefly discuss the
respective pathophysiology of some of these disorders and out-
line whether their cognitive profiles (i.e. hot vs cold) are funda-
mental (central) for or rather manifest (relevant expression) in the
psychopathology of each disease. A summary of the specific /ot
versus cold profile of each disorder is shown in Table 3.

Depression

Emotional dysregulation is the core phenotype in depression and
in agreement with this, deficits of 4ot cognition are a common
manifestation in depression. From a hot—cold perspective,

however, dysfunctional cold EFs, especially cognitive control
deficits, are central for the psychopathology of depression, in line
with cognitive theories of depression (Gotlib and Joormann,
2010). In other words, cold cognition turns /ot in depression
(Roiser and Sahakian, 2013). Deficient cold EFs are observed in
cognitive control, working memory, and attention (Nikolin et al.,
2021; Salehinejad et al., 2017), while kot EF deficits involve
those EF tasks (mainly cold) that utilise emotionally valenced
stimuli, and reward and punishment processing (Roiser and
Sahakian, 2013). In accordance, neuroimaging studies show
abnormalities of frontal-limbic structures that account for both
cold and hot cognitive deficits (Keren et al., 2018; Rive et al.,
2013). A central functional abnormality of the left and right PFC
is proposed in depression with a hypoactivated left and hyperacti-
vated right DLPFC, supported by the results of neuroimaging
studies (Grimm et al., 2008). Modulation of the activity of these
regions is consequently one focus of NIBS treatment in depres-
sion (Chen et al., 2020; Razza et al., 2020; Rostami et al., 2017).
Treatment approaches in depression should consider fundamental
cold executive dysfunctions as the primary target more than
before in line with the hot—cold pathology of the disease explained
above.

Schizophrenia. In schizophrenia, deficient cold cognition has
been more extensively studied with respect to the disease patho-
physiology and symptoms (Sheffield et al., 2018). A deficient
cold cognitive profile seems to be both fundamental to and man-
ifest of the symptoms and underlying pathophysiology. This is
also in agreement with the developmental aspect of schizophre-
nia, including onset in adolescents, where cold cognition deficits
are central (James et al., 2016). A well-documented deficient
network in schizophrenia that is involved in cold cognition is
the thalamocortical circuitry, especially the thalamus-PFC path-
way (Giraldo-Chica and Woodward, 2017) and prefrontal-hip-
pocampal connectivity (Meyer-Lindenberg et al., 2005).
Deficient cognitive control, processing speed, memory (verbal,
working), and reasoning are commonly reported cold EF deficits
in schizophrenia (Table 3). However, impaired /ot EFs, including
risky decision-making, theory of mind, and emotion recognition
are also reported in schizophrenic patients, and associated with
psychotic symptoms (MacKenzie et al., 2017; Ruiz-Castaiieda
etal., 2020). Regarding treatment approaches, therapeutic target-
ing of cold EF deficits aligns, however, best with the fundamen-
tally involved cold cognitive profile and pathophysiological
characteristics of the disease.

Anxiety disorders

Anxiety disorders are traditionally linked to emotional and
threat-related difficulties, and thus, /ot cognition deficits (e.g.
emotion regulation, threat perception, reward—punishment pro-
cessing) are central for the pathology of these disorders. These
emotional difficulties are, however, strongly linked to deficits in
several cold EFs that are stable over time (Nejati et al., 2018b;
Zainal and Newman, 2018). Two well-known theories in this
respect are the ‘Attentional Control Theory’ (Eysenck and
Derakshan, 2011) and the ‘Cognitive Model’ of pathological
worry (Hirsch and Mathews, 2012). In these theories, impaired
cold EFs (specifically inhibition and set-shifting abilities), on one
hand, and threat-related perceptual and attentional bias, on the
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other hand, are proposed to be responsible for the overwhelming
experience of worry and anxiety. This effect is, however,
dependent on the extent to which respective EF tasks include
threatening stimuli or significant cognitive load (Leonard and
Abramovitch, 2018). Neuroimaging and brain stimulation stud-
ies have shown functional and structural abnormalities of cortical
regions related to both 4ot and cold EFs, with a specific focus on
the prefrontal-amygdala network in anxiety disorders (Ironside
etal., 2019). Here, a hyperactivation of the medial PFC (VMPFC
and OFC) and ventral ACC (hot pathway), which is highly rele-
vant for fear memory and extinction (Marcovic et al., 2021), and
a hypoactivation of the DLPFC and dorsal ACC (cold pathway)
are shown to be linked to hypersensitivity of the amygdala and
other limbic structures (Vicario et al., 2019).

Substance use disorders

A common and core feature of substance use disorder (SUD) is
impaired control over craving, or impulsive behaviour. In accord-
ance, here again deficits of both cold and hot EFs are central to
the psychopathology of SUD. According to the neurocognitive
model of addiction, 4ot and cold executive deficits play a funda-
mental and manifest role in different stages of addiction. In the
first two stages (binge/intoxication and withdrawal/negative
affect), a deficient reward system is central (Koob and Volkow,
2016), which is related to a deficient kot cognition, and in the
preoccupation/anticipation stage, where craving behaviour domi-
nates, a deficient executive control system is relevantly involved
(Koob and Volkow, 2016), which is related to cold EFs. Therefore,
both /ot and cold EFs deficits are involved in the psychopathol-
ogy of SUD, although /ot manifestations of symptoms are pre-
dominant. The dual-process model of addiction similarly
emphasises on both a cold-related ‘controlled’ system (related to
the lateral PFC) and a hot-related ‘impulsive’ system (including
mesolimbic and nigrostriatal pathways) (Wise, 2009). Novel
treatment approaches in SUD have shown the relevance of target-
ing the cold-related ‘controlled’ as well as the hot-related ‘impul-
sive’ system by modulating activity of brain structures including
DLPFC and ACC which are connected to reward system
(Alizadehgoradel et al., 2020; Zhao et al., 2021).

ADHD

ADHD is a major neurodevelopmental disorder, and executive
dysfunctions are central for its psychopathology (Willcutt et al.,
2005). Results of functional and structural neuroimaging studies,
and behavioural studies exploring EFs show predominantly cold
EF deficits in the psychopathology, and pathophysiology of
ADHD (Antonini et al., 2015; Hobson et al., 2011; Molavi et al.,
2020b; Rubia, 2018). Regarding /ot EFs, results are mixed, with
some studies reporting deficits in affective/motivational EF tasks
(Nejati et al., 2020), while others report unimpaired 4ot EF func-
tions (Antonini et al., 2015). However, neuroimaging, brain stim-
ulation, and behavioural studies have recently shown an
impairment of several hot-related cognitive processes and an
involvement of medial PFC regions in /ot EF task performance
(Nejati et al., 2020; Rubia, 2018). It might be speculated that Aot
EF deficits in ADHD are caused by central cold executive defi-
cits and do not exist independently (Van Cauwenberge et al.,
2015). In accordance, the pathology of the functional activity
profile of the brain in ADHD is more closely aligned with

predominantly cold EF deficits with a fundamental involvement
of the frontoparietal network (including IFG, DLPFC, ACC, and
temporoparietal regions), the basal ganglia, and the cerebellum
(Rubia, 2011). NIBS studies, in this line, have been mostly
focused on improving cold EFs in ADHD (Salehinejad et al.,
2019, 2020b).

Autism spectrum disorder

Core symptoms in autism spectrum disorder (ASD) include defi-
cits in reciprocity behaviours (required for successful social inter-
action), and repetitive behaviours. However, ASD is rather known
as a disorder of social abilities, although this depends also on the
phenotype of the disease. In contrast to this prevailing view, the
majority of studies about EFs in ASD investigated cold EFs.
Recently, however, ot EFs are studied more extensively in ASD.
Briefly, these studies show that ASD involves deficits of both cold
and hot EFs (Kouklari et al., 2018; Zimmerman et al., 2016).
However, deficits related to /ot cognition (e.g. reciprocity abili-
ties and theory of mind) seem to be predominant (Kouklari et al.,
2017, 2018; Zimmerman et al., 2016), which aligns with the cen-
tral role of the medial PFC and PCC in the pathophysiology of
ASD (Li et al., 2017; Patriquin et al., 2016). Cold EFs are also
relevantly impaired, but these deficits might be secondary and
largely restricted to those cold domains needed for the perfor-
mance of hot EFs (Zimmerman et al., 2016). This is in line with
the development of EFs in ASD. Cold but not hot EFs improve
significantly as a function of age (Kouklari et al., 2018), suggest-
ing that hot deficits are more fundamental for the psychopathol-
ogy of ASD. Considering the heterogeneity of the disease, more
detailed research is required to determine the hot—cold profile in
ASD, and its subtypes.

Other relevant disorders

Hot—cold executive dysfunctions and respective pathophysiology
in the prefrontal-cingular network are prominent in psychopa-
thology other neuropsychiatric disorders as well including but
not limited obsessive—compulsive disorders (cold-deficits
driven), borderline personality disorder (hot-deficits driven), and
impulse control disorders (cold—hot deficits driven) (Gruner and
Pittenger, 2017; Schulze et al., 2019). In this line, recent NIBS
studies have also shown than modulating activity of the prefron-
tal-cingular and relevant subcortical regions are promising for
the treatment of these disorders (Brevet-Aeby et al., 2016; Molavi
et al., 2020a; Rostami et al., 2020).

Conclusion

This review was focused on how %ot and cold EFs can be func-
tionally organised in the prefrontal and cingulate cortices. Based
on evidence from neuroimaging and NIBS studies, we propose a
prefrontal-cingular network that can explain neuronal correlates
of hot versus cold EFs more comprehensively and in line with
the current network-driven approach. In this network, the lateral
PFC and associated regions (e.g. DLPFC, VLPFC, and IFG)
along with the ACC, specifically the dorsal ACC, are more
closely involved in cold EFs (e.g. attentional control, inhibition,
error detection, and working memory), whereas the medial and
orbital PFC regions (e.g. VMPFC and OFC) and ventral ACC
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along with the PCC are more relevant for ot EFs that involve
emotional, motivational, reward/punishment based, and social
stimuli. The extent to which these regions are hot or cold
EF-related does not exclude a role of these networks in the other
EFs, but rather indicates a gradual dominance for the respective
type of information processing. The hot—cold distinction in EFs,
and broadly in cognition, provide a novel, network-based
approach for studying underlying pathophysiology in major
neuropsychiatric disorders that usually come with both cogni-
tive and emotional disturbances. This can promote more eftec-
tive therapeutic intervention congruent with cognitive profile of
the diseases.
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