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ABSTRACT
Introduction  Type 2 diabetes mellitus (T2DM) is one of 
the most ordinary metabolic disorders and manifests as a 
high blood sugar level; 80%–90% of patients with T2DM 
will develop high blood pressure (HBP), which exacerbates 
irreversible organ damage. Understanding the metabolic 
basis of HBP is essential to facilitating early diagnosis and 
prompt treatments of diabetic complications.
Research design and methods  34 patients who originally 
had T2DM and then developed HBP within 1 year were 
selected from physical examination participants. Using 
ultrahigh-performance liquid chromatography quadrupole 
time-of-flight metabolomic analysis, we compared the 
metabolomic profile of patients with 30 healthy controls. The 
results showed a clear discrimination in metabolomic profiles 
between T2DM and T2DM+HBP when employing orthogonal 
projection to latent structure with discriminant analysis with 
electrospray ionization modes.
Results  Eight differential metabolites changed 
significantly during disease progression, among which L-
isoleucine, L-glutamic acid, pyroglutamic acid and linoleic 
acid decreased, while sphinganine, Cer(d18:0/16:0), 
Cer(d18:0/18:0), and citric acid increased. These 
metabolites are associated with the γ-glutamyl cycle, 
tricarboxylic acid cycle, and ceramide metabolism.
Conclusions  These novel serum biomarkers may improve 
the management of T2DM and HBP complications, thus 
reducing the use of incorrect medical care.

INTRODUCTION
Diabetes mellitus (DM) is a state established by 
insistently high levels of glucose in the blood.1 
According to the WHO and the International 
Diabetes Federation, 366 million people were 
influenced by diabetes in 2011, and an approx-
imated 3.4 million people died of high blood 
sugar in 2004, a number that is expected to 
double for the period 2005–2030.2–4 The two 
most general types are type 1 diabetes and 
type 2 diabetes. Particularly, type 2 diabetes 
mellitus (T2DM), as one of the most costly 
and devastating health problems, brought a 
huge financial burden on the health systems 
of many countries.5 Hypertension/high blood 
pressure (HBP) is frequent in patients with 

DM, as 80%–90% of patients with T2DM will 
develop HBP.6 HBP occurs approximately twice 
as frequently in individuals with T2DM as in 
those without T2DM.7 T2DM often progresses 
to combine with HBP in clinical scenarios, and 
these conditions strongly predispose people 
to irreversible organ damage as well as organ 
dysfunction and failure including the retina, 
kidneys, heart, blood vessels, and nervous 
system.8

Metabolomics is assured as the comprehen-
sive quantitative and qualitative analysis of all 
metabolites in blood,9 and it is a non-invasive 

Significance of this study

What is already known about this subject?
►► An association has been reported 80%–90% of pa-
tients with type 2 diabetes mellitus (T2DM) would 
develop high blood pressure (HBP) in previous stud-
ies; however, the specific mechanisms of patho-
genesis was unclear; we started from metabolomic 
analysis and analyzed the possible pathogenesis by 
differential metabolites.

What are the new findings?
►► During the development of HBP in T2DM patients, 
eight changed significantly metabolites have been 
found.

►► Among these metabolites, L-isoleucine, L-glutamic 
acid, pyroglutamic acid, and linoleic acid decreased, 
while sphinganine, Cer(d18:0/16:0), Cer(d18:0/18:0), 
and citric acid increased.

►► The previously mentioned metabolites were asso-
ciated with tricarboxylic acid (TCA) cycle, ceramide 
metabolism, and γ-glutamyl cycle, and their changes 
may be important for the therapeutic effect of inter-
ventions for T2DM combined with HBP.

How might these results change the focus of 
research or clinical practice?

►► The results point towards several options in terms of 
TCA cycle, ceramide metabolism, γ-glutamyl cycle 
and so on, providing an idea in the possible patho-
genesis of T2DM combined with HBP.
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analysis of easily accessible human body fluids. Metab-
olomics analysis can evaluate the metabolic changes in 
humans on general physiological or pathological condi-
tions.10 11 The pathogenesis of both DM and hyperten-
sion is associated with the metabolic disorders in human 
tissue.12 Metabolomics analysis can supply collateral 
evidence for an in-depth study of the small biomole-
cules appear in a biological sample.13 14 Combining 
high-resolution mass analyses with conventional Mass 
spectrometry (MS) provides available structural informa-
tion for identifying metabolites.15 16 Recently, ultrahigh-
performance liquid chromatography quadrupole 
time-of-flight mass spectrometry (UHPLC-Q-TOF MS) 
has been widely used in metabolomics studies due to its 
high sensitivity and reproducibility with better detection 
limits.17 18

In this study, a metabolomics analysis on the ground 
of UHPLC-Q-TOF MS was used to gain a wider under-
standing of the metabolic differences between T2DM 
and T2DM+HBP compared with HC and to predict the 
metabolites marking the progression from T2DM to 
T2DM+HBP. It is hoped that the differences in endog-
enous metabolites could be explored through metab-
olomics analysis, and the association between these 
metabolites and biological pathways could be used to 
explain disease progression to realize targeted preven-
tion of complications.

RESEARCH DESIGN AND METHODS
Study sample demographic data and anthropometric 
parameter collection
The study subjects were recruited from Hangxin 
Hospital, Beijing, China. In total, 4298 individuals (3062 
males and 1236 females) underwent health screening 
at Hangxin Hospital, Beijing, China, in 2016–2018. The 
study protocol was in line with the Helsinki Declaration, 
and all serum samples were collected under institutional 
review board approved protocols and after obtaining the 
informed consent of the study patients. Routine physical 
examination was performed during the process of sample 
collection; to help find the cause of any sign or symptom, 
a doctor conducted a careful physical examination and 
asked about personal and family medical history. The 
participants were adults of Han ethnicity who resided in 
the Beijing region and did not have renal dysfunction. All 
of this information was recorded in a database for easy 
viewing.

The body mass index (BMI) was calculated as weight 
(kg) divided by height squared (m2). Age was also 
recorded in our database. DM was characterized by a 
fasting plasma glucose (FPG) ≥7.0 mmol/L, 2-hour post-
prandial plasma glucose (2 h PG) ≥11.1 mmol/L, or 
a history of oral hypoglycemic or insulin use based on 
the standard formulated by the WHO in 1999.19 Patients 
with T2DM were selected based on their diagnosis and 
medical history. According to the hypertension diagnostic 
standards published by WHO/International Society 

of Hypertension Committee in 1999, HBP was defined 
as systolic blood pressure (SBP)  ≥140 mm Hg, diastolic 
blood pressure (DBP) ≥90 mm Hg, or the use of antihy-
pertensive treatment.20 To closely follow the aims of this 
study and exclude the effects of age, sex, and obesity, a 
total of 34 age-matched, sex-matched, and BMI-matched 
T2DM subjects who had T2DM+HBP within 1 year were 
selected. Venous blood samples were taken from indi-
viduals after overnight fasting for at least 10 hours, and 
the serum samples were collected in a normal manner. 
Aliquots of serum samples were snap-frozen in liquid 
nitrogen and transferred to −80°C refrigerator for 
UHPLC-Q-TOF MS analysis.

Clinical chemistry measurements
The total cholesterol (TC), low-density lipoprotein 
cholesterol (LDL-C), high-density lipoprotein choles-
terol (HDL-C), triglycerides (TG), aspartate transami-
nase (AST) and alanine aminotransferase (ALT) in the 
serum were measured using an automatic biochemical 
analyzer (Biosino Biotechnology Ltd, Beijing, China).21

Chemicals and reagents
Ultrahigh-performance liquid chromatography 
(UHPLC)-grade acetonitrile and methanol were 
purchased from Honeywell Burdick & Jackson 
(Muskegon, Michigan, USA, 99% purity). Deionized 
water was purified using the Milli-Q system (Millipore, 
Billerica, Massachusetts, USA). The standards used in the 
UHPLC-Q-TOF MS/MS analysis were purchased from 
Agilent (Agilent Technologies, Santa Clara, California, 
USA).

UHPLC-Q-TOF MS analysis
After sample processing, the UHPLC-Q-TOF MS analysis 
was performed using an Agilent 1290IIUHPLC system 
(Agilent Technologies) coupled to a 6530B quadrupole 
time-of-flight mass spectrometer (Agilent Technologies) 
with electrospray ionization (ESI) in positive and nega-
tive modes.

Data processing and data analysis
After data pretreatment, the multivariate data analysis 
was carried out with SIMCA (V.12.0, Umetrics, Sweden) 
based on normalizing serum samples volume. The orig-
inal data set was divided into a training set (90%) and 
a test set (10%) prior before any statistical analysis. No 
samples in the test set were used for parameter selection. 
A principal component analysis (PCA) was conducted 
on the mean-centered data to generate an overview and 
check for outliers. A partial least squares-discriminant 
analysis (PLS-DA) and the orthogonal projection to 
latent structure with discriminant analysis (OPLS-DA) 
were subsequently performed using the unit-variance 
scaled data to find metabolites with significant inter-
group differences.22 Using double cross-validation and 
permutation test, we can evaluate the accuracy of classi-
fication and regression.23 To eliminate the overfitting of 
supervised PLS-DA models, a cross-validation procedure 
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and 100 random permutations testing were performed 
using SIMCA software. The OPLS-DA models were built 
with two calculated components and with sixfold cross-
validation. Variable importance of projection (VIP) scores 
>1 were considered the most class discriminating.24 The 
Bonferroni correction is a safeguard against multiple 
tests of statistical significance by using the same data.25 
After Bonferroni correction, the p value was less than 
0.0167, with a significant difference.

Structural assignment of candidate biomarkers
Frist of all, in accordance with precise mass measurements 
and the relative intensities of the isotope peaks through 
high-resolution MS spectra, possible empirical formulas 
of the potential biomarkers were recognized. Second, 
the Mass Fragment application manager, a component 
of Marker Lynx, was applied to promote the MS frag-
ment ion analysis process by chemically intelligent peak-
matching algorithms. In brief, the MS product ion spectra 
of metabolites was matched with the structure messages 
of metabolites obtained from the human metabolome 
databases (HMDB) in accordance with parameters such 
as deviation from calculated mass, isotopic pattern, and 
double-bond equivalent.26 In the end, the biomarkers 
were defined by standard compounds on account of 
retention times and MS spectra.

RESULTS
Clinical characteristics
A total of 4298 participants recruited in the study were 
followed for up to 3 years. Take medical history and 
written data from the database, according to the T2DM 
and HBP diagnostic criteria, the test population has 
been selected. Thirty-four patients whose primary disease 
was T2DM and who later developed HBP within 1 year 

were selected. At the same time, 30 age-matched and 
sex-matched healthy controls were also enrolled in this 
study as healthy controls (HCs) group. There were no 
significant differences in age, sex, BMI, TC, TG, LDL-C, 
HDL-C, ALT, or AST among the three study groups 
based on the Coefficient of variation in analysis of vari-
ance (CV-ANOVA) test (p>0.05). As expected, the FPG 
in T2DM and T2DM+HBP was higher than that in HC 
(p<0.05). The DBP and SBP in T2DM+HBP were higher 
than those in HC and T2DM (p<0.05) (table 1).

Optimization of UHPLC-Q-TOF MS analysis
Serum metabolites from T2DM patients and T2DM+HBP 
patients were analyzed with an overall approach using a 
nontargeted analysis method. Optimization of the chro-
matographic separation protocol was vital because of 
the high number of chromatographic peaks. The 15 min 
gradient method was applied for analysis of samples from 
the complete cohort of individuals in the end. After 
deleting the repeated features, 6680 spectral features of 
each serum sample, 783 annotated metabolites in posi-
tive electrospray ionization mode (ESI+), and 268 metab-
olites in negative electrospray ionization mode (ESI−) 
with our in-house reference standard library and HMDB 
were acquired. The metabolic profiles of T2DM patients, 
T2DM+HBP patients and HC were systemically character-
ized by UHPLC-Q-TOF MS, and global differences were 
found among these three groups using these metabolites, 
as shown in figure 1.

Quality control (QC)and analytical reproducibility
QC samples is generally preferred for assessing repro-
ducibility, instrument performance and stability in 
metabolomics studies.27 PCA score plots can be used as a 
statistical strategy for evaluating analytical reproducibility 

Table 1  Characteristics of subjects

Groups T2DM T2DM+HBP HC

Gender (M/F) 22/12 22/12 27/3

Age (years) 63.17 (8.58) 64.18 (8.58) 56.33 (11.90)

FPG (mmol/L) 7.84 (2.10) 7.84 (2.55) 5.67 (0.60)*

SBP (mm Hg) 131.64 (6.94) 143.21 (12.43) 118.03 (7.93)*

DBP (mm Hg) 79.23 (8.40) 85.41 (9.62) 72.67 (6.36)*

BMI 24.36 (2.72) 24.42 (2.49) 23.52 (2.83)

TC (mmol/L) 4.68 (0.95) 4.73 (0.80) 4.82 (0.90)

TG (mmol/L) 1.70 (1.13) 1.81 (1.70) 1.84 (1.44)

HDL-C (mmol/L) 1.15 (0.28) 1.23 (0.28) 1.30 (0.23)

LDL-C (mmol/L) 2.76 (0.79) 2.78 (0.62) 2.97 (0.70)

ALT (mmol/L) 22.47 (11.59) 20.94 (9.64) 17.23 (5.70)

AST (mmol/L) 23.5 (6.70) 22.79 (5.67) 21.8 (4.57)

*Difference from every group: *p<0.05.
ALT, alanine aminotransferase; AST, glutamic oxalacetic transaminase; BMI, body mass index; DBP, diastolic blood pressure; FPG, fasting 
plasma glucose; HBP, high blood pressure; HC, healthy control; HDL-C, high-density lipoproteins cholesterol; LDL-C, low-density lipoprotein 
cholesterol; SBP, systolic blood pressure; TC, total cholesterol; T2DM, type 2 diabetes mellitus; TG, triglycerides.
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and stability by representing the location of QC. Quality 
control of the samples in UHPLC-Q-TOF MS analysis 
was performed by a representative QC sample injection 
interval of 11 samples (n=11). The QC samples were 
localized in roughly the same area of the PCA score plot 
(figure 1). The distribution of the QC samples and the 
other samples emphasizes the reproducibility and instru-
ment stability. The PCA score plot revealed intergroup 
metabolic differences, where each point represented a 
serum metabolome and the distance between data points 
reflected the scale of their metabolic differences. All 
samples were analyzed using UHPLC-Q-TOF MS in ESI+ 
(figure 1A) and ESI− (figure 1B).

Serum metabolic profiling and multivariate analysis based on 
UHPLC-Q-TOF MS/MS
Before further analysis, drugs and drug metabolites were 
excluded; metformin is usually perceived as a first-line 
drug for T2DM.28 These include agents that increase 

insulin release, decrease sugar absorption from the intes-
tines, and make human body more sensitive to insulin.29 
Thiazide-diuretics, ACE inhibitors, angiotensin receptor 
blockers, and calcium channel blockers are first choice 
of chemical medicines for HBP.30 As this work focuses 
mainly on endogenous compounds, these drugs and 
drug metabolites were not included in the database for 
statistical model. Only the metabolites that showed a p 
value of less than 0.05 and VIP scores of more than 1 were 
considered the most diagnostic class.

PLS-DA was performed on all three groups, namely, 
T2DM, T2DM+HBP and HC. As illustrated by the PLS-DA 
score plot (figure  2), scores t1, t2, etc, were new vari-
ables summarizing the X-variables. By a two-dimensional 
score plot, SIMCA drew the tolerance ellipse based on 
Hotelling’s T2. Observations placed far outside the 
ellipse were outliers. The parameters of PLS-DA models 
included the values of R2Y and Q2 (for the first four 

Figure 1  Score plots of principal components analysis models generated from the UHPLC–MS analyses of human serum 
displaying the biological samples and the quality control samples (QC; n=10, red). (A) Positive electrospray ionization mode 
(ESI+) and (B) negative electrospray ionization mode (ESI−). UHPLC–MS, ultrahigh-performance liquid chromatography mass 
spectrometry.

Figure 2  Score plot with partial least squares-discriminant analysis (PLS-DA) of serum metabolites in type 2 diabetes mellitus 
(T2DM; n=34, blue), T2DM combined with high blood pressure 1 year later (T2DM+HBP; n=34, green), and healthy controls 
(HC; n=30, red) in ESI+ (A) and ESI− (B). For the first four components, R2Y=0.721 and Q2=0.467 in ESI+; for the first two 
components, R2Y=0.39 and Q2=0.2 in ESI−. ESI, electrospray ionization.
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components, R2Y=0.721 and Q2=0.467 in ESI+; for the 
first two components, R2Y=0.39 and Q2=0.2 in ESI−). The 
permutations plot helped to evaluate the likelihood that 
the current PLS or PLS-DA model was bogus; that is, the 
model just fit the training set well but did not predict 
Y well for new observations. The idea of this validation 
was to compare the goodness of fit (R2 and Q2) of the 
original model with the goodness of fit of several models 
based on data where the order of the Y-observations had 
been randomly arranged while the X-matrix had been 
kept complete. The permutation test for PLS-DA showed 
that all R2Y and Q2 values to the left were lower than the 
original points to the right of the blue regression line of 
the Q2 points, which intersected the vertical axis (on the 
left) at or below zero (figure 3), showing that the PLS-DA 
model was valid. Furthermore, clinical individuals are 
not as stable as the data shown in animal models, and 
the sample size is also relatively small, also resulting in 
a lower Q2. The results of the permutation test show 
that this PLS-DA model has a good ability to explain and 
predict the variations in the X and Y matrices (figure 3 
intercepts R2=0.0, 0.272, Q2=0.0,–0.426 in ESI+; R2=0.0, 
0.107, Q2=0.0,–0.154 in ESI−).

To further confirm the significant serum metabolomics 
differences among the three different groups, pairwise 
comparative OPLS-DA analyses were conducted with one 
orthogonal and one predictive component calculated for 
each of the models, as shown in figure 4. The results are 
demonstrated in the form of score plots. The OPLS-DA 
score plot indicated clear separation (with R2Y=0.964, 
Q2=0.834 in ESI+; R2Y=0.709, Q2=0.528 in ESI−) between 
the T2DM and HC, between T2DM+HBP and HC (with 
R2Y=0.801, Q2=0.685 in ESI+; R2Y=0.7, Q2=0.545 in 
ESI−), and between T2DM patients and T2DM+HBP 

patients (with R2Y=0.996, Q2=0.694 in ESI+; R2Y=0.435, 
Q2=−0.162 in ESI−). In the OPLS-DA plots, each pair of 
groups could be separated clearly. The high values of 
R2Y and Q2 showed that these models could explain and 
predict metabolic variations between the two groups. The 
parameters of the OPLS-DA models, including the values 
of R2Y and Q2, were >0.5, indicating these models were 
fit for these recognition analyses.

Principal changes in metabolites among T2DM, T2DM+HBP 
and HC
According to the importance of parameter variables in the 
projection, the important components for separation are 
selected. Analysis of these data using PLS-DA and OPLS-DA 
revealed these three groups were associated with significant 
changes in several compounds in ESI+and ESI−. There 
were significant differences in these metabolites among the 
three study groups based on ANOVA (p<0.05). The Bonfer-
roni correction was used to account for multiple hypothesis 
testing.25 The principal ions that changed were m/z 131.094, 
147.055, 301.301, 539.529, and 567.56 in positive ion mode 
and m/z 129.043, 192.028, and 280.22 in negative ion mode. 
These eight ions eluted at 3.73, 1.11, 7.54, 10.11, 10.83, 1.55, 
1.42 and 9.76 min and were identified as L-isoleucine, L-glu-
tamic acid, sphinganine, Cer(d18:0/16:0), Cer(d18:0/18:0), 
pyroglutamic acid, citric acid and linoleic acid, respectively.

DISCUSSION
Our experimental population came from a community 
physical examination based on bulk data files. Only 34 
patients who originally had T2DM and then developed 
HBP within 1 year were enrolled due to strict screening 
criteria. A metabolomics analysis of serum from these 34 

Figure 3  Permutation test results of the PLS-DA model in the positive (A) and negative ion modes (B). The R2Y value 
represents the goodness of fit of the model. The Q2 value represents the predictability of the models. All R2Y and Q2 values to 
the left were lower than the original points to the right of the blue regression line of the Q2 points, which intersects the vertical 
axis (on the left) at or below zero, showing that the PLS-DA model was valid. Permutation test plot for the PLS-DA model 
(number of permutations, 100; intercepts R2=0.0, 0.272, Q2=0.0,–0.426 in ESI+; R2=0.0, 0.107, Q2=0.0,–0.154 in ESI−). ESI, 
electrospray ionization; PLS-DA, partial least squares-discriminant analysis.
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patients was conducted with an overall approach based 
on non-targeted UHPLC-QTOF/MS. Such an approach 
is also serviceable to identify the important metabolic 
pathways that may play important roles in the devel-
opment of T2DM with HBP. Eight differential metabo-
lites associated with amino acid, lipid and carbohydrate 
metabolism had specific differences between groups, as 
illustrated in table 2. During the development of HBP in 
T2DM patients, serum levels of L-isoleucine, L-glutamic 
acid, pyroglutamic acid, and linoleic acid decreased, 
while sphinganine, Cer(d18:0/16:0), Cer(d18:0/18:0), 
and citric acid increased. The above results may provide 
fresh insights into the pathophysiological mechanisms 
underlying the development of metabolic diseases and 
their complications.

In this study, one of the most dramatic findings is 
the obvious elevation of citric acid level in T2DM and 
T2DM+HBP in comparison with HC. The concentration 
of citric acid kept increasing during the progression from 
T2DM to T2DM+HBP. This displays the metabolic disor-
ders of tricarboxylic acid cycle (TCA cycle) in T2DM and 
T2DM+HBP groups and the severity of such disturbance 
increased from T2DM to T2DM+HBP. Citric acid is an 
intermediate in the TCA cycle and an essential donor for 
protein acetylation. Citrate restrains glycolysis and the 
TCA cycle.31 32 When these pathways are inhibited, mono-
saccharide conversion to TG is distributed in each organ. 
This event is the pathogenic mechanism of metabolic 
disorders in insulin resistance, metabolic syndrome and 
T2DM.33 Moreover, insulin resistance and insufficient 

Figure 4  Scores plot of the OPLS-DA model built to discriminate between patients diagnosed with T2DM and those 
diagnosed with HBP. (A) ESI + and (B) ESI−. ESI, electrospray ionization; HBP, high blood pressure; HC, healthy control; OPLS-
DA, orthogonal projection to latent structure with discriminant analysis; T2DM, type 2 diabetes mellitus.

Table 2  Serum differential metabolites among T2DM, T2DM+HBP and HC

Mode Mass Formula RT Metabolites P value
T2DM 
versus HC

T2DM+HBP versus 
HC

T2DM+HBP versus 
T2DM

Positive 
electrospray 
ionization 
mode (ESI+)

129.045 C5 H7 N O3 1.11 Pyroglutamic acid 0.0083 ↑ ↑ ↓

131.094 C6 H13 N O2 3.73 L-isoleucine 0.0112 ↓ ↓ ↓

147.055 C5 H9 N O4 1.11 L-glutamic acid 0.0018 ↑ ↑ ↓

301.301 C18 H39 N O2 7.54 Sphinganine <0.0001 ↓ ↑ ↑

539.529 C34 H69 N O3 10.11 Cer(d18:0/16:0) <0.0001 ↓ ↓ ↑

567.56 C36 H73 N O3 10.83 Cer(d18:0/18:0) 0.0027 ↓ ↓ ↑

Negative 
electrospray 
ionization 
mode (ESI−)

129.043 C5 H7 N O3 1.55 Pyroglutamic acid <0.0001 ↑ ↑ ↓

192.028 C6 H8 O7 1.42 Citric acid 0.0003 ↑ ↑ ↑

280.22 C18 H32 O2 9.76 Linoleic acid 0.0046 ↑ ↑ ↓

The symbol ↑: rising tendency; the symbol ↓: downtrend.
ESI, electrospray ionization; HBP, high blood pressure; HC, healthy control; T2DM, type 2 diabetes mellitus.
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insulin secretion often attenuate glycolysis and subse-
quently glucose elevate and citrate reduce. Insulin resis-
tance is related with disturbed metabolism of glucose 
and TCA cycle.34 A study has shown that the TCA cycle 
continues its activation after HBP develops.35 The acti-
vation of TCA cycle leads to the accumulation of inter-
mediate, which further inhibits the circulation process. 
A similar phenomenon also occurred in the variation of 
L-isoleucine concentration, but the trend was opposite. 
L-isoleucine is link with insulin resistance: higher levels 
of L-isoleucine have always been easily observable in the 
blood of diabetic mice, rats, and humans.36 37 The levels 
of L-isoleucine is proportional to blood glucose levels. 
L-isoleucine is both a glucogenic and ketogenic amino 
acid, which can participate in the TCA cycle. After trans-
amination with alpha-ketoglutarate, the carbon skel-
eton can be transformed into either succinyl CoA and 
imported into the TCA cycle for oxidation or turned into 
oxaloacetate for gluconeogenesis. The carbon skeleton 
can also be transformed into acetyl CoA and imported 
into the TCA cycle by condensing with oxaloacetate to 
form citrate.38 Although no studies shown an association 
between L-isoleucine and blood pressure, the reduc-
tion of L-isoleucine proves that it plays a positive role in 
preventing the progression from T2DM to T2DM+HBP.

Of greatest concern, however, is sphinganine decreases 
and then increases during the T2DM patients developed 
with HBP. Sphingosine is the product of ceramide hydro-
lysis, and sphinganine is a pivotal precursor in its de novo 
synthesis pathway.39 Previous data suggest that increased 
concentrations of sphingosine and sphinganine in 
the blood could contribute to the deterioration in cell 
function in diabetes.40 So the serum sphinganine level 
was inversely proportional with changes in blood pres-
sure. Lipids are the richest metabolites found in human 
serum. Ceramide, also called N-acylsphingosine, is one 
of the byproducts of the hydrolysis of sphingomyelin by 
the enzyme sphingomyelinase. Cer (d18:0/18:0) and 
Cer (d18:0/16:0) pertain directly to ceramide metabo-
lism and their concentration increases on T2DM compli-
cated with HBP. Despite this increase, the concentration 
of ceramides was still lower than HC. The ceramide 
signaling pathway is activated in response to myocardial 
ischemia/infarction.41 Sphingolipid sphingomyelin is 
the mother compound of the sphingomyelin transmem-
brane signaling pathway. Sphingomyelin is hydrolyzed to 
ceramide and phosphocholine by the enzyme sphingo-
myelinase.42 According to the experimental results, lipid 
metabolites increased in the course of HBP and perhaps 
played a possible contributor to the accelerated HBP 
complications in T2DM.

In addition, our research has thrown up some inter-
esting facts, the change trend of some metabolites is 
opposite to that of ceramides metabolites. Linoleic acid 
in foods is important for human body to maintain many 
physiological functions such as the synthesis of phos-
pholipids and other lipid metabolism, being capable 
of significantly lower the effect of serum cholesterol.43 

Pyroglutamic acid can alleviate diabetes by reducing 
insulin resistance and lipid levels of serum and liver and 
by regulating the gene expression of glycolipid metab-
olism.44 The levels of these three metabolites were all 
lower than those of the HC and increased during the 
development of HBP. Their effect on blood pressure has 
not crystallized enough and which would be a focus of 
our future research.

CONCLUSIONS
In this study, a metabolomics strategy based on UHPLC-
Q-TOF MS was established in conjunction with modern 
multivariate statistical techniques to find clusters of 
T2DM related metabolite changes. The previous metab-
olites were associated with TCA cycle, ceramide metab-
olism, and γ-glutamyl cycle and their changes reflected 
the differences of metabolism between HC and T2DM, 
who then had T2DM+HBP 1 year later. These metabolic 
changes may be crucial factors for future clinical diag-
nosis, treatment, and assessment of the therapeutic effect 
of interventions for T2DM combined with HBP.
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