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Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal solid cancers
globally. To improve diagnosis sensitivities and treatment efficacies, the development of
new theranostic nanoplatforms for efficient HCC management is urgently needed. In
the past decade, mesoporous silica nanoparticles (MSNs) with tailored structure, large
surface area, high agents loading volume, abundant chemistry functionality, acceptable
biocompatibility have received more and more attention in HCC theranostic. This review
outlines the recent advances in MSNs-based systems for HCC therapy and diagnosis.
The multifunctional hybrid nanostructures that have both of therapy and diagnosis
abilities are highlighted. And the precision delivery strategies of MSNs in HCC are also
discussed. Final, we conclude with our personal perspectives on the future development
and challenges of MSNs.

Keywords: mesoporous silica nanoparticles, hepatocellular carcinoma, theranostic, precision delivery,
biomedical applications

INTRODUCTION

Liver cancer is currently the fourth primary cause from cancer-related deaths and its incidence
and mortality is still increasing, with an estimated 841,080 new cases and 781,631 deaths from
this disease in 2018 (Llovet et al., 2016; Bray et al., 2018; World Health Organization [WHO],
2018). Among all primary liver cancers, hepatocellular carcinoma (HCC) represents approximately
90% of all cases. Surgical resection and liver transplantation are considered the curative therapies
for long-term control of HCC, however, the majority of HCC patients are diagnosed at advanced
stages beyond the standard of surgical treatment (GBD, 2013; Roberto et al., 2016; Yegin et al.,
2016). A few molecular targeting drugs such as sorafenib (SO) approved for advanced HCC, which
show merely a marginal survival benefit contrasting with conventional drugs. Unfortunately, its
efficacy and adverse effects for HCC patients remained unsatisfactory (Bruix et al., 2015; Gao J.
et al., 2015). Therefore, new treatment and diagnose modalities for the management of HCC are
urgently warranted.
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With the development of nanotechnology, nanomaterials
modified as multifunctional nanoplatforms for cancer
therapeutics, diagnostics, or both (known as “theranostics”)
attracted increasing attention (Wang J. et al., 2016; Xu et al.,
2018; Kesse et al., 2019). Since the first report using silica
nanoparticles (Cornell Dot) accepted by the United States
Food and Drug Administration (FDA) for a stage-I human
clinical trial in 2011 (Benezra et al., 2011), the recent decade
has witnessed a steadily increase in research on biomedical
application of mesoporous silica nanoparticles (MSNs) in the
liver cancer (Figure 1). In general, MSNs show the following
unique structural and biomedical properties:

(a) Adjustable pore size. The tunable pore diameters of MSNs
from 2 to 30 nm allow a variety of agents encapsulated in
nanoparticles (Kobler and Bein, 2008; Keasberry et al., 2017).
Moreover, hierarchically MSNs which simultaneously consist
of large pores and small pores throughout the whole particle
are more effective for the diffusion of two different guest
molecules in one unit (Jin et al., 2014).

(b) Tunable particle size and shape. The particle size of MSNs
can be controlled from 10 to 1000 nm, and the particle
morphology can be controlled from rod-, sphere-, to
wormlike structures (Figure 2; Huh et al., 2003; He et al.,
2009). MSNs with different size and shape have unique
characteristic (Lu et al., 2009; Meng et al., 2011b), which
is convenient for researchers choosing the most suitable
particle to achieve their aims.

(c) Ordered mesoporosity and large surface area. The ordered
mesoporous structure with disjoint between individual
porous channels enable better control of agents loading and
release kinetics (Hu et al., 2011). And due to extensive porous
structure, MSNs usually have a large surface area enhancing
nanoparticles dissolution.

(d) High agents loading volume. Highly porous interior structure
ensure a high agent payload of MSNs, usually above 200 mg,
maximally about 600 mg agent per 1 g silica (He et al., 2010a).

FIGURE 1 | The statistics of the paper indexed in the ISI web of science by
the topic of “mesoporous silica” and “liver cancer.”

In addition, MSNs synthesized with a hollow core called
hollow-type MSNs are capable of encapsulating a super-
high dose of agent, typically more than 1000 mg agent per
1 g silica, which is obviously higher than those by other
nanoparticles (Zhu et al., 2005a,b).

(e) Facile functional surfaces. MSNs, generally speaking, have
two functional surfaces, namely exterior particle surface
and cylindrical pore channel surface. However, for hollow-
type MSNs, there is an extra interior particle surface. These
surfaces can be easily functionalized by virtue of the silane
coupling chemistry (He et al., 2010b; Cheng W. et al., 2017).
Furthermore, both of exterior and interior particle surfaces
which could appropriately connect and coat with other
materials become the key of creating high-performing hybrid
materials (Castillo and Vallet-Regi, 2019).

(f) Excellent biocompatibility. Silica is considered as “Generally
Recognized As Safe” (GRAS) by the FDA (ID Code: 14808-6).
He et al. discover that MSNs exhibit a three-stage degradation
behavior in simulated body fluid, and almost completely
degrade in 15 days (He et al., 2010a). Recently several in vivo
biosafety evaluations of MSNs have been reported (Liu T.
et al., 2011; Fu et al., 2013; Choi et al., 2015), indicating MSNs
have low in vivo toxicity and can be excreted from the body
through feces and urine.

These distinctive features endow MSNs with unique
advantages to encapsulate a variety of therapeutic and bioimaging
agents and implement the desired functions. To give an overview
of recent progress of MSNs in theranostic for HCC, this review
is arranged as follow. Firstly, it outlines precision delivery
strategies of the agents in MSNs to HCC sites and cells. Next,
the current state of the research of using MSNs in the field of
HCC theranostics are highlighted. Finally, we vision the future
advancements for MSNs.

PRECISION DELIVERY STRATEGIES OF
MSNS IN HCC

Nanoparticles, designed to deliver agents preferentially to the
HCC tissues and cells, provide the precondition for overcoming
the shortcomings of conventional treatment and diagnose
approaches (Bae et al., 2011). The targeting ability to tumor not
only enhances the effects of agents, but also controls dose-limiting
side effects in other tissue. A well-designed nanosystem always
includes multiple delivery strategies to reach a high accumulation
in tumor. In this part, we discuss the delivery strategies developed
in MSN-based HCC theranostics (Figure 3).

Passive Targeting
It is well recognized that liver tumors display remarkable
extensive angiogenesis with defective vascular structure,
accompanying with impaired lymphatic drainage system (Zhu
et al., 2011). Therefore, the vascular networks of HCC have an
increased permeability to circulating nanoparticles, while the
lymphatic system has a reduced disposal rate to internalized
nanoparticles, which allow MSNs to accumulate in HCC tumor
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FIGURE 2 | TEM of samples (A) (MSNs-1), (B) (MSNs-2), (C) (MSNs-3), (D) (MSNs-4), (E) (MSNs-5), (F) (MSNs-6) with different size and shape. (A) Reproduced
with permission from Li et al. (2018b). (B) Reproduced with permission from Li et al. (2018c). (C) Reproduced with permission from Xing et al. (2018).
(D) Reproduced with permission from Liu et al. (2017). (E) Reproduced with permission from Lee et al. (2016). (F) Reproduced with permission from Lv et al. (2015).

interstitial space (Maeda et al., 2000). This so-called enhanced
permeation and retention (EPR) effect has been considered
as basics for achieving passive targeting in the nanosystems
(Maeda et al., 2013).

Particle size, shape, and surface chemistry of MSNs could
greatly influence the EPR effect of the nanoparticles (Lee
et al., 2009; Maeda et al., 2013; Li et al., 2016). For instance,
Meng et al. demonstrated 50 nm MSNs coated with PEI-PEG
copolymer yield a intratumoral accumulation of about 12%
of the total dose, which is significantly higher compared to
1% of 100 nm phosphonate-coated MSNs and 3% of 50 nm
PEGylated MSNs. The additional cationic polymer coated on
the MSNs ameliorated the potential downside of PEG surface.
In conclusion, size tuning and decoration of the MSNs with
PEI-PEG copolymer lead to an dramatic enhancement of EPR
effect and sufficient accumulation in tumor (Meng et al.,
2011a). Besides, a research from Harvard Medical School showed
that combined radiation and cyclophosphamide could enhance
tumor-associated vascular leaking, leading to a sixfold increase of
nanoparticles accumulation in tumor (Miller et al., 2017).

Active Targeting
EPR-mediated passive targeting always lacks specificity for
different tumor tissues and tumor development stages (Natfji
et al., 2017). To improve the targeting efficiency, active targeting
strategies have gained much attention recently.

Owing to the overgrowth and abnormality of HCC, many
receptors are usually upregulated on the surface of HCC cells,
compared to other normal cells. Through the recognition
of these receptors by targeting ligands on MSNs, more
smart targeting strategies have been achieved. The targeting
ligands now used for MSN-based HCC theranostics include
lactobionic acid (Zhang et al., 2012), folic acid (Chen et al.,
2019), arginine-glycine-aspartate (RGD) (Chen et al., 2012),
transferring (Hao et al., 2017), hyaluronic acid (Lee et al.,
2018), low-density lipoprotein (LDL) (Ao et al., 2018), and
others (Table 1).

In another way, magnetic mesoporous silica nanoparticles
(M-MSNs) with superior magnetic properties maintaining the
excellent advantages of MSNs could achieve magnetic-mediated
targeting functions under external magnetic fields (EMFs) (Shao
D. et al., 2016; Wang Y. et al., 2016; Tang et al., 2017). The
targeting capacity guided by EMFs including two aspects: on
the one hand, M-MSNs would mainly accumulation around
the tumor site under the EMFs, which could apply a magnetic
force on nanoparticles to enhance the EPR effect and overcome
the drag experienced in the blood flow (Thorat et al., 2019a);
on another hand, EMFs effect could enhance endocytosis of
the tumor cells. Interestingly, under the EMFs about 15%
higher fluorescence intensity of nanoparticles was detected in
HepG2 cells than that of the non-magnetic field untreated
HepG2 cells, while this phenomenon is absence in HL-7702
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FIGURE 3 | Schema of the delivery strategies of MSNs in HCC. In vivo process of precision delivery, when MSNs arrive the vasculature of tumor, passive targeting
would first work based on EPR effects. Next, active targeting by conjugation of targeting ligand/receptor and EMF effects would promote MSNs into tumor tissues
and cells. Final, stimuli-responsive release in tumor tissues and cells would realize by virtue of pH, redox, light, and so on.

cells, which means the effect of EMFs is selective for HCC cells
(Xing et al., 2018).

Stimuli-Responsive Release
Nano delivery systems are ideal with “zero premature release”
before arriving the disease foci. The stimuli-responsive release
can realize this point in response to internal stimuli in tumor
microenvironment or external stimuli (Thorat et al., 2019b).

Internal Stimuli
Among internal stimuli, PH-responsive release plays the most
promising role in HCC, since a more acidic extracellular
(pH ≈ 6.8) environment is usually formed around solid tumor
tissues than normal tissues and blood (pH ≈ 7.4) due to
increased acid production resulting from high glycolysis (Lu
et al., 2018). It has been found that electrostatic interactions
between the positively charged agents [such as doxorubicin
(DOX)] and negatively charged MSNs were greatly reduced by
protonation in a low pH condition, which results in a pH-
responsive release of DOX (Chen et al., 2018). Similarly, some
gatekeepers over the pore entrance to reduce premature release of
agents could be protonated under acidic pH, rapidly collapsing,
thus the agents would be released from the nanoparticles

(Chen et al., 2019). Besides, some chemical bonds connecting the
gatekeepers and MSNs, which would be broken down by pH
stimulation, are also be used in pH-responsive release (Liu et al.,
2016). Differentiated from the common single pH-responsive
systems, a novel cascade pH stimuli triggering nanosystem
had been developed (Figure 4A). At first, benzoic-imine bonds
would be dissociated in the tumor microenvironment pH
signal (6.8) to release PEG and improve cellular uptake. Then,
boronic acid-catechol ester bonds would be hydrolyzed in the
endosome/lysosome pH signal (4.5–6.5) to release more drug in
tumor cells, which leads to significant tumor growth inhibition.
In tumor-bearing mice, the increased life span of mice treated
with this nanoparticles was raised 42.4% than no pH-responsive
nanoparticles (Liu et al., 2016).

In addition, HCC cells always undergo oxidative stress, which
means the overproduction of various reactive oxygen species
(ROS) in tumor cells. In the meantime, HCC cells also have an
elevated glutathione (GSH) level to protect themselves under
ROS cytotoxicity (Cheng S.B. et al., 2017; Jiang et al., 2017).
Consequently, GSH-responsive become one of most popular
redox-responsive precision delivery strategies because of the
higher GSH level in intracellular matrix of HCC cells than
that in extracellular matrix or intracellular matrix of normal
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TABLE 1 | Summary of targeting ligands and receptors on MSN-based HCC theranostics.

Ligand Receptor Cell type Animal model References

Lactobionic acid Asialoglycoprotein receptor
(ASGPR)

HepG2,Huh7,
SMMC-7721

HepG2 mice model,
H22 mice model

Zhang et al., 2012; Dai et al., 2014;
Wang et al., 2017d; Zhao et al., 2017;
Pei et al., 2018; Zheng et al., 2018

Folic acid Folate receptor HepG2,SMMC-
7721

SMMC-7721 mice
model, HepG2 mice
model, H22 mice model

Chen et al., 2010, 2019; Gao B.
et al., 2015; Lv et al., 2015; Wang Y.
et al., 2016; Wang et al., 2017a,b; Xu
et al., 2017

RGD Integrin SMMC-7721,
HepG2, Huh7

SMMC-7721 mice
model, H22 mice model

Chen et al., 2012; Liao et al., 2014;
Yu et al., 2015; Zeng et al., 2016; Fei
et al., 2017; Li et al., 2018b

Transferrin Transferrin receptor Huh7 N/A Chen X. et al., 2017; Hao et al., 2017

Hyaluronicacid CD44 HepG2 N/A Lee et al., 2018

LDL LDL receptor HepG2 HepG2 mice model Ao et al., 2018

Galactose/lactose ASGPR HepG2,
SMMC-7721

N/A An et al., 2015; Quan et al., 2015

SP94 Unknown receptor(s) Hep3B N/A Ashley et al., 2011; Epler et al., 2012

AS1411 aptamer Nucleolin HepG2 HepG2 mice model Zhang et al., 2014

Epithelial cell adhesion molecule
(EpCAM)aptamer

EpCAM HepG2 HepG2 mice model Babaei et al., 2017

TLS11a aptamer Unknown receptor(s) HepG2 N/A Hu et al., 2017

Glycyrrhetinic acid (GA) GA receptor HepG2 N/A Lv et al., 2017

Cetuximab Epidermal growth factor receptor
(EGFR)

HepG2 HepG2 mice model Wang J.K. et al., 2017

Tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL)

Death receptors 4/5 HepG2 HepG2 mice model Liu et al., 2017

Anti-CD155/anti-CD112
monoclonalantibodies

CD155/CD112 SMMC-7721,
HHCC

SMMC-7721 mice
model

Tao et al., 2016

Avidin Carcinoembryonic antigen (CEA) Huh7, LM-9 N/A Chen et al., 2014

Phenylboronic acid Sialic acid HepG2 H22 mice model Tang et al., 2017

Concanavalin A Glycoprotein receptors Huh7, ML-1 N/A Chen et al., 2018

HepG2 cell membranes Unknown receptor(s) HepG2 HepG2 mice model Yue et al., 2018b

cells (Chen X. et al., 2017). The disulfide bond which could be
cleaved by GSH is widely used to connect the gatekeepers and
MSNs (Chen X. et al., 2017; Tang et al., 2017; Wang J.K. et al.,
2017). In one study, the surfaces of MSNs were functionalized
by cytochrome c (CytC) via disulfide bonds, which would be
rapidly cleaved in HCC cells to release the loaded drug. Around
78.9% of agents was released from MSNs with stimulus of
reductive signals after incubation for 3 h, whereas only 5.11%
of agents was released for the group without reductive signals
(Zhang et al., 2014). Moreover, Yue et al. presented mesoporous
organosilica nanoparticles (MONs) containing disulfide bridges
inside, synthesized on the framework of MSNs (Figure 4B). In
cancer cells with the high concentration of GSH, MONs would
be broken into small pieces leading to greater targeting drug
release. The fluorescence intensity of DOX in the MONs treated
cells was approximately 20% higher than MSNs treated cells (Yue
et al., 2018a). In a similar way, the ROS-responsive MSNs are also
developed for HCC theranostics (Pei et al., 2018).

In other reports, it has been well established that there is over
expression of some enzymes in HCC, such as protease (Menard
et al., 2019), glycosidase (Hakeem et al., 2016), and esterase (Xia
et al., 2017). Once the enzyme is found at higher level in the
tumor site, the MSNs can be programmed to targeting release of

agents via enzymatic conversion of the carrier. Some microRNAs
such as miR-122 are abundant in liver cancer. Therefore, one type
of microRNAs-responsive MSNs in Huh7 cells by hybridization
between antagomir-122 and endogenous miR-122 obtained a
unequivocal success (Yu et al., 2015).

External Stimuli
Compared with the above microenvironment-responsive
systems, external stimuli-responsive systems can be easily
manipulated to precisely achieve spatiotemporal control
and on-demand agents release (Lin et al., 2018). The main
drawback of intrinsic stimuli is that internal environment
of body is complicated and unmanageable, especially for the
highly heterogeneous tumor tissues, which maybe results in an
uncontrolled release (Thorat et al., 2019a).

Among the various light stimuli, near-infrared (NIR) has the
great advantages of minimal absorption and deep penetration
into tissue (Wu et al., 2015; Sun et al., 2017). The NIR-I (700–
950 nm) and NIR-II (1000–1350 nm) are the most widespread
regions for light-responsive systems. The MSNs hybridized with
photoabsorbing materials exploit the fine photothermal effect
limited within tumor tissues through converting light energy to
thermal energy, which is a particularly promising phenomenon
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FIGURE 4 | Different stimuli-responsive MSNs. (A) Fabrication illustration of dual-pH-responsive MSNs. (B) Schematic illustration of MONs. (C) Schematic illustration
of NIR-responsive MSNs. (A) Reproduced with permission from Liu et al. (2016). (B) Reproduced with permission from Li et al. (2018b). (C) Reproduced with
permission from Lee et al. (2016).

for use in light-responsive agents release (Figure 4C; Lee et al.,
2016). NIR-thermal agents precision delivery can be reasonably
attributed to the following reasons: first, the Brownian motion of
agents would be accelerated by the photothermal effect; second,
the photothermal effect could increase tumor cells membrane
permeability; third, the photothermal effect may destabilize the
membrane of endosome and thus facilitate escape of the agent
from the endosome (Lee et al., 2016; Shao T. et al., 2016;
Chen et al., 2018).

Besides aforementioned applications, M-MSNs are not only
for magnetic-mediated targeting, but also for stimtli-responsive
release. Alternating magnetic field (AMF) can heat M-MSNs by
the magnetothermal effect, and then, the thermal fluctuations
within M-MSNs trigger agents release (He and Shi, 2014; Wang
et al., 2018). The mechanisms of the magnetothermal effect
by these nanoparticles are related to brownian motion, neel
relaxation, and hysterysisloss. And the release profile of agents
can be regulated by changing the field strength and frequency of

AMF. By the way, magnetic fluid hyperthermia will cause damage
on tissues surrounding the nanoparticles to kill cancer cells. But
for safety of healthy tissues, combination of field amplitude of
about 10 kA m−1 and a frequency of about 400 kHz was suggested
for stimulation (Thorat et al., 2019a).

In the future, with advance of nanotechnology, more various
stimuli-responsive will be realized in MSNs for precision delivery.

MSNS IN HCC DETECTION AND
DIAGNOSIS

MSNs-Assisted Bioimaging
Ultrasound (US) is still the most common technique to screen
the HCC since it is safe, economical and accessible (Verslype
et al., 2012). However one study reported that the sensitivity of
US for the small lesion (<2 cm), which is important for early
detection and diagnosis of HCC, is only 27.3% (Kim et al., 2017).
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To improve diagnostic accuracy and sensitivity for early stage
tumor, photoacoustic (PA) imaging integrating optical and
ultrasound advantages have been developed which has the
highest resolution in deep tissue compared with any conventional
imaging tools (Liu Y. et al., 2019). So in the integrated system,
PA imaging easily combined with ultrasound imaging can
strongly enhance the clinical diagnosis (Kim et al., 2016). To
this end, Lee et al. synthesized a MSNs-based liver targeting
PA contrast agent, hyaluronate–silica nanoparticle (HA–SiNP)
conjugate. Because of strong photoacoustic signal of SiNP in NIR
windows, the PA amplitude in liver after HA–SiNP conjugates
injection was remarkably enhanced 95.9% compared to normal
liver beyond other PA contrast agents, which provides more
detail anatomical and functional information for HCC diagnosis
(Lee et al., 2018).

Before treatment, dynamic contrast-enhanced magnetic
resonance imaging (MRI) is considered as the best approach
to define the tumor staging and assist in choosing a suitable
treatment strategy. Non-specific contrast agents, Gd complexes,
have been the most widely applied agents for liver MRI (Bellin
et al., 2003). Nevertheless, for HCC diagnosis, liver-specific MRI
contrast agents, which mainly target the liver tissue, maybe an
alternative choice. Aim to make up the limitations of non-specific
contrast agent, Kim et al. investigated the liver-specific MRI
contrast agent, Mn2+-doped SiO2 nanoparticles (Mn-SiO2),
enhancing the visibility of HCC lesion. The nanoparticles
engulfed in Kupffer cells would release the Mn2+ ions, thus
T1-weighted MRI shows hyperintense in healthy liver tissues
with abundant Kupffer cells over lesions, which are always lack
of Kupffer cells (Kim et al., 2013).

Furthermore, it has been reported that intraoperative
fluorescent imaging for imaging-guided surgery by virtue of
MSNs could dramatically improve surgical intervention of tumor
(Zeng et al., 2016). This RGD-conjugated MSN highly loaded
with ICG dye could precisely delineate the margins of HCC
intraoperatively by NIR. Depend on the subjective experience,
only the conspicuous tumors (5.09 ± 2.31 mm) could be
visually discriminated by surgeons intraoperatively. This lesion
is also confirmed by fluorescent imaging. The microtumor
lesions (0.4 ± 0.21 mm), which could not be recognized
with the nake eye, are accurately detected by fluorescent
imaging. Currently in operations, surgeons mainly rely on
conventional preoperative imaging methods and subjective
experience. However, in most cases, tumor microfoci can’t
be discovered which is regarded as one of the etiology
for tumor recurrence. But in the intraoperative fluorescent
imaging by MSNs, tumor microfoci in liver could easily be
distinguished and resected resulting in better surgical outcomes.
It is helpful to reduce the high postoperative recurrence
rate of HCC.

MSNs-Assisted Liquid Biopsy
Liquid biopsy refers to non-invasive tests analyzing the bodily
fluids and is a promising option to detect early stage HCC
(Zhou et al., 2016; Ye et al., 2019). The source from tumor for
liquid biopsy covers circulating tumor cells (CTCs), nucleic acids,
proteins and circulating exosomes (Lee et al., 2018). Currently,

several new MSNs have been reported for detection of tumor cells
and their associated molecules. Hu et al. developed functionalized
MSNs for specifically detecting HCC cells with assist of a biotin-
labeled aptamer. The binding rate with hepG2 cells could reach
approximately 90%, while the binding rate with L02 cells was
close to 2%, which means the nanoparticles established a sensitive
detection system for HCC cells (Hu et al., 2017). In another
research, MSNs are utilized to detect the apoptotic tumor cells
for evaluation of treatment response. This detection system
contains two steps: (1) the HCC cells among various cells would
be immobilized on the nanotubes; (2) the apoptotic HCC cells
would be quantitated through the specific interaction between
antiphosphatidyl serine antibody and phosphatidylserine. This
cytosensor has a high sensitivity, which even could respond as
low as 800 cells mL−1 (Wu et al., 2012). Besides, MSNs are also
used to enrich phosphopeptides from serum of HCC patients.
And then the phosphopeptides could be extract from MSNs for
further analysis (Hu et al., 2009).

MSNS IN HCC TREATMENT

Drug Therapy
Systemic chemotherapy usually is the only option for patients
in advanced cancer, however, no satisfactory results have been
obtained in HCC (Bruix et al., 2015; Gao J. et al., 2015). Thus,
numerous studies focusing on MSNs to improve the drug effect
have been reported. Awing to the unique structure of MSNs,
they are suitable for delivery of both hydrophobic/hydrophilic
anticancer drugs. Moreover, drugs release in MSNs always
experience a decrease in release rate, resulting in sustained
release pharmacokinetics (Kumar et al., 2015; He et al., 2017).
DOX, which is easily tracked through fluorescence effects, is
widely used as a model drug for assessing drug loading and
delivery capacity in MSNs (Rudzka et al., 2013; Xie et al.,
2014; Yang et al., 2015). Although DOX in MSNs had showed
a good antitumor effects, other drugs that is more sensitive
for HCC should be explored. It’s worth noting that many
hydrophobic drugs loaded in MSNs overcome their poor water
solubility, including paclitaxel (Li et al., 2010; He et al., 2017;
Xu et al., 2017), curcumin (Lv et al., 2017; Xing et al., 2018),
berberine (Yue et al., 2018b), and so on. Co-delivery multiple
drugs have been recognized as a more efficient treatment
than a single drug. Thus a MSNs-based nanoparticle had
been developed for co-delivery of SO and ursolic acid (UA).
Compared with the SO or UA respectively treated group, the
expression of EGFR and VEGFR2 in SO + UA treated group
decreased about 60%, which tremendously increase apoptosis
of tumor cells and inhibit proliferation, adhesion, migration
and angiogenesis. The further in vivo increased therapeutic
efficacy of nanoparticles demonstrate the synergistic effect of
SO and UA (Zhao et al., 2017). UA, which possesses significant
antitumor activity, is limited in clinical application with its
poor water solubility. By virtue of MSNs, UA can be delivered
to tumor tissues, exhibiting a synergetic antitumor effect with
SO. It suggested a promising approach for exploiting the
potential of the drugs.
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Protein Therapy
Proteins have been explored as potential therapeutic candidates
in cancer therapy since they have a low amount of side effects
and the immunity to multidrug resistance mechanism (Epler
et al., 2012; Deodhar et al., 2017). However, due to their facile
degradation and fragile structure in vivo, effective delivery of
proteins is a great challenge in spite of the vehicles (Escoto, 2013;
Deodhar et al., 2017). Thus, MSNs have been used as promising
vehicles to deliver proteins in HCC therapy (Zhang et al., 2014;
Liu et al., 2017). The porous and stable nature of MSNs allows
proteins encapsulated inside nanoparticles and provides a stable
shelter to protect proteins. Lipid bilayer-modified MSNs had been
designed to deliver ricin toxin A-chain (RTA) in which a few
of RTA prematurely release and the activity of the remanent
proteins was retained. RTA-loaded MSNs induce apoptosis in
Hep3B at picomolar concentrations of RTA, which is 3500-fold
less than the IC50 values of free RTA. These excellent functions
enable protein-based therapies to reach their full potential (Epler
et al., 2012). Covalent modification of protein on the MSNs
surface was another approach for protein delivery. The proteins
in this MSNs release via cleavage of the covalent bond in the
pH/redox stimulation. Moreover, the proteins immobilized on
the surface can be used as gatekeepers mentioned previously since
the hydrodynamic diameters of the proteins are sufficient to cover
the pores of MSNs. Relatively, in this way, the protective effects
for proteins may be weaker (Pei et al., 2018).

Gene Therapy
Gene therapy has been regarded as a new opportunity to satisfy
the needs in treatment of cancer (Das et al., 2015). With the
advancement in RNA biology, gene therapies not only introduce
the exogenous genes by DNA but also change the gene expression
at the mRNA level through by virtue of short interfering RNAs
(siRNAs), miRNAs and antisense oligonucleotides (ASOs) (Shim
et al., 2018). Recently, Clustered regularly interspaced short
palindromic repeats/CRISPR-associated nuclease 9 (CRISPR-
Cas9) also opens a new avenue in gene therapy to correct
the mutations of cancer (Karimian et al., 2019). However, the
development of an efficient and safe vector for therapeutic
genetic materials is still a major issue. MSNs are promising
carriers for gene delivery for their versatile payload of various
genetic materials without chemical modification. For forming a
stable complex with electronegative nuclei acid, MSNs are often
modified to possess net positive charges by methods including
amination-modification (Xiao et al., 2010; Yu et al., 2015; Zheng
et al., 2018) and cationic polymer functionalization (Xue et al.,
2017; Wang et al., 2018). In these terms, the modified surface can
not only increase the adsorption capacity of negatively charged
nuclei acid molecules, but can also facilitate MSNs to escape from
endosome/lyposomes by “proton sponge effect” (Tang et al., 2012;
Wang et al., 2018).

To overcome multidrug resistance in HCC, Xue et al.
prepared lipid-coated MSNs containing DOX and miR-375 which
can inhibit P-glycoprotein (P-gp) expression via inhibition of
astrocyte elevated gene-1 (AEG-1) expression in HCC. P-gp,
which is overexpressed in multidrug resistance cells in HCC,

could impede the effectiveness of chemotherapy. So augment
the level of miR-375 in HCC cells would serve as a credible
way to overcome multidrug resistance. Further evaluation of
antitumor effect in the DOX-resistant HepG2 cells xenograft
tumor mouse model showed the tumor volume in DOX and
miR-375 nanoparticles treated group is only about half of that
in DOX nanoparticles treated group in 1 month, suggesting an
alternative option to overcome multidrug resistance in HCC by
these nanoparticles (Xue et al., 2017).

Phototherapy/Sonodynamic Therapy
(SDT)
Recently, phototherapy has emerged as a promising strategy for
HCC. Photothermaltherapy (PTT) and photodynamic therapy
(PDT) are two main types of phototherapy. PTT destroies
the tumor cells by light-induced photothermal effects, while
PDT damages the tumor cells by light-induced cytotoxic singlet
oxygen (1O2), one kind of the most representative ROS (Liu H.
et al., 2011; Zhao et al., 2012). NIR is widely used in PTT and
PDT because of its superiority compared to other lights. In recent
reports, MSNs prepared with photothermal agents including
MoS2, C, Au, CuS and indocyanine green (ICG) showed a strong
photothermal effect (Wu et al., 2015; Lee et al., 2016; Wang Z.
et al., 2016; Wang et al., 2017a; Chen et al., 2018). Usually normal
cells possess a higher heat tolerance over cancer cells at elevated
temperatures around 43◦C, so the heat generated (43◦C) would
trigger the death of tumor cells only (El-Boubbou, 2018). Gao B.
et al. (2015), reported MSNs with gold core acted as a radiation
sensitizer, thereby inducing the more effective radiotherapy by
iodine 125 seed. Furthermore, Wang et al. (2019) rethink that
radiosensitization strategy is not sufficient because of the hypoxic
microenvironment in HCC, so they fabricated Janus-structured
gold triangle-mesoporous silica nanoparticles to ameliorates
hypoxia through PTT generated by gold triangle. This research
indicated synergistic radio-photothermal therapy is a reasonable
combination scheme. And there are some photosensitizers, such
as Zinc(II)-phthalocyanine, Chlorin e6, Photosan-II loaded in
MSNs for PDT in HCC (Liu et al., 2014; Lv et al., 2015; Lin
et al., 2018). The success of PDT depends on the potential of
photosensitizers to transfer energy from light to tumor dissolved
oxygen (O2) to generate 1O2. Pre-existing hypoxia in HCC and
O2 consumption during PDT can remarkably lower down the
PDT efficacy (Thorat et al., 2019a). To address this problem,
in situ synthesized Pt nanoparticles as a catalyst to convert H2O2
into O2 on MSNs was constructed. And 4.2-fold O2 and 1.6-
fold 1O2 generation ability compared to normal MSNs greatly
improved the PDT efficacy in HCC and exhibited threefold tumor
suppression ability in HCC mice model (Lan et al., 2019).

However, when tumor locates in the deeper tissue, which
is common for HCC, the lights arriving to the tumor are so
weak that hardly produce an enough cytotoxic effects. Therefore,
MSNs-based SDT has been developed account for the advantage
of deeper tissue-penetrating of ultrasound (Li et al., 2018b).
In spite of the ROS cytotoxic effects on the tumor cells,
moreover, SDT can enhance the chemotherapeutic sensitivity
of tumor cells by activating the cellular internalization and the
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mitochondrial apoptotic pathway, and inhibiting ATP-binding
cassette transporter (Xu et al., 2013; Qian et al., 2016). For
example, Li et al. (2018b) chose MONs as nanocarriers for
the delivery of both sonosensitizer (protoporphyrin, PpIX) and
DOX. The tumor-inhibiting rates in mice increased about 21.6%
with the US irradiation (Li et al., 2018b). So the combination of
SDT and chemotherapy is a hopeful strategy for HCC treatment.

DUAL EFFECTS OF THERAPY AND
DIAGNOSIS IN MSNS

As described, MSNs-based therapy and diagnosis for HCC have
been investigated a lot separately. More importantly, MSNs-based
theranostic nanostructures are capable of detecting the tumor
not only before or after, but also during the treatment anytime.
Recently, Chen H. et al. (2017) offered a proposal extending the
concept of nanotheranostics from nanomedicine owning both
diagnostic and therapeutic functions, to the approaches that use
diagnosis to aid nanoparticle therapy procedures. With such
approaches, medical treatments can be tuned promptly on the
basis of the detection results, which means more specific therapies
for individual patient (Figure 5; Xie et al., 2010).

The easiest way to achieve theranostics is co-delivery of
therapeutic and imaging agents. Ashley et al. modified MSN
with supported lipid bilayers resulting in nanostructures
(“protocells”), which could be loaded with mixtures of
therapeutic (drugs, proteins, genes) and diagnostic (quantum
dots) agents (Ashley et al., 2011). Quantum dots as a fluorescent
dyes could trace the biodistribution of content in nanostructures
because mixtures of therapeutic agents and quantum dots will be
released from nanostructures simultaneously. Within a certain
period of time, quantum dots remaining in nanostructures
could show the location of nanoparticles targeting to tumor for
diagnosis. Therefore, in this way, the fluorescent dyes mainly
tracked the therapeutic agents in tumor rather than diagnosis
for HCC. The meaning of this monitoring is to investigate
tumor accumulation and release of agents, which is an important
factor for nanoparticle therapy procedures. On the contrary, if
diagnostic agents stay in nanoparticles throughout, the diagnosis
and therapy for tumor could be implemented at the same time
(Fan et al., 2019).

In another way, because many nanomaterials are already
imaging agents, hybrid nanostructures fabricated with these
nanomaterials and MSNs could make diagnosis and therapy
together. Among all hybrid nanostructures, the physically
responsive (light/magnetic/ultrasonic) nanostructures widely
explored as innovative “theranostics” in cancer have been
described in excellent reviews (Thorat et al., 2019a,b). The
greatest strength for these nanostructures is that their properties
to physically stimulus accord with the diagnosis mode (MRI/US)
in clinic. Li et al. successfully coat a mesoporous-silica
layer onto the surface of Ti3C2 (Ti3C2@mMSNs). Ti3C2
has a high photothermal-conversion efficiency and enables
Ti3C2@mMSNs to possess the potential contrast-enhanced PA-
imaging and heat production property. So these nanostructures
can monitor the photothermal hyperthermia treatment process

in real-time (Li et al., 2018c). In another study, Liu et al.
prepared the capping MSNs-coated iron oxide nanoparticles
with programmable DNA hairpin gates to form M-MSNs, which
could decrease T2-weighted tumor signal in MRI for HCC
diagnosis. Interestingly, BHQ1 (fluorescence quencher) and 6-
carboxyfluorescein (FAM) were linked to the tail extension of
the DNA hairpin structure. When DNA hairpin gates change
the conformation after addition of HCC- specific miRNA-21,
the fluorescence of FAM will significantly “ON” to monitor
the release of DOX in nanostructures (Liu J. et al., 2019). In
spite of the therapeutic functions, the above nanostructures
have two diagnostic functions: positioning tumor tissues and
monitoring drug release.

The most amazing theranostic nanostructure is developed
using mesoporous silica layer as shells and up-conversion
luminescent (UCL) GdOF:Ln (Ln = 10%Yb/1%Er/4%Mn) as
cores by Lin et al. Under NIR irradiation, GdOF:Ln could
efficiently transfer NIR energy to the conjugated PDT agent
(ZnPc) and emit bright red up-conversion emission. The shell
decorated with carbon dots also can generate photothermal
effect at the same time. Gd/Yb has the strong X-ray attenuation
endowing nanostructures for computed tomography (CT)
contrast agents, meanwhile Gd-based particles can be harnessed
as contrast agents for MRI. This nanostructure with excellent and
rational design is appropriate for both various imaging (UCL, CT,
MRI, PT) and various therapies (PDT, PTT, chemotherapy), thus
achieving multimodal imaging guided combination therapies
(Lv et al., 2015).

With the development of nanotheranostics, many researchers
believe that the integration of diagnosis and therapy to
single modality would really benefit patient over independently
managed diagnosis and therapy (Kelkar and Reineke, 2011).
However, recent development of theranostics in MSNs was
limited to “how can theranostics modalities in nanoparticles
be realized” rather than “why can theranostics modalities in
nanoparticles benefit the patients.” In hospital, patients have no
opportunity to occupy the diagnostic tools all the time, so the
concept of real-time monitoring translating to clinic may be
only few hours monitoring time to examine patients totally. And
multimodal imaging provides good alternatives for patients, but
we should weigh advantages and disadvantages. It is because
that the more imaging modes nanoparticles can be applied in,
the more complicated structure nanoparticles possess. In most
cases, four or more imaging modes in nanostructures make no
benefits to the patient compared to one imaging mode. We
suggest that development of theranostic nanostructures should
be based on clinical demand and clinical practice, which is the
key for translational medicine.

CONCLUSION AND OUTLOOK

In this review, we summarized the recent progress in HCC
theranostic applications based on MSNs. We generalized
the precision delivery strategies applied for HCC in recent
researches, including passive targeting, active targeting and
stimuli-responsive release. The multiple therapy and diagnosis
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FIGURE 5 | Schematic illustration of theranostic MSNs. MSNs with rational design could integrate various diagnosis and treatment function, which is similar to Tai
Chi all-embracing.

approaches had been realized in MSNs. Among a large
amount of applications, we highlighted theranostic hybrid
nanostructures, in which combination of the modalities
of diagnostic imaging and therapy endowed MSNs-based
nanostructures the ability to image and monitor the tumor
tissue during treatment making possible more timely adjustment
of therapy.

Despite the extensive researches, some emerging therapy and
diagnosis approaches have not been used in MSNs for HCC. Most
recently, cancer immune therapy is growing obviously, including
cancer vaccinations, chimeric antigen receptor (CAR) T-cell
therapy and immune checkpoint blockade therapy (Zhang and
Chen, 2018). Actually, many MSNs-based immune therapies have
been reported in other cancers (Ding et al., 2018; Li et al., 2018a;

Xie et al., 2019). In addition, a lot of clinical trials about
immune checkpoint blockade therapy such as PD-1 therapy for
HCC are underway. Therefore, immune therapy is a potential
development point for MSNs-based HCC therapy. Positron
Emission Tomography (PET) is important for metastasis and
prognostic assessment in patients with HCC (Filippi et al., 2019).
Some Radiolabeling MSNs also have been reported for PET
(Ni et al., 2018), thus it is hopeful to accomplish for more
accurate diagnosis of HCC due to its smart recognition to
tumor cells.

Although the preclinical trials of MSNs are successfully
completed, currently, there are no MSNs that have been approved
applied in clinic. There remain several critical challenges that
need to be overcame for MSNs. First, the current small animal
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models are not suitable to evaluate the delivery efficiency and
long-term toxicity of nanoparticles in humans. Second, the
laboratory scale production of MSNs cannot easily repeat in the
industrial scale of production for clinical application, especially
for the complicated modified MSNs. Third, there is no thorough
evaluation criterion, which may confuse the researchers to
improve the existing MSNs. Nevertheless, there are some clinical
trials in silica nanoparticles, the prospect of clinic translation
for MSNs was less than good. We should focus our efforts in
the following aspects: (1) Try to use big animals to assess safety
and efficacy of the MSNs; (2) Improve and simplify production
process of MSNs; (3) Establish a homogenized evaluation system;
(4) modulate the theranostic functions of MSNs closer to
the clinic. The long-wind road for clinical translation and
commercialization of MSNs still needs researchers going on.
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