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ABSTRACT

The chromosome conformation capture (3C) tech-
nique and its variants have been employed to re-
veal the existence of a hierarchy of structures in
three-dimensional (3D) chromosomal architecture,
including compartments, topologically associating
domains (TADs), sub-TADs and chromatin loops.
However, existing methods for domain detection
were only designed based on symmetric Hi-C maps,
ignoring long-range interaction structures between
domains. To this end, we proposed a generic and ef-
ficient method to identify multi-scale topological do-
mains (MSTD), including cis- and trans-interacting
regions, from a variety of 3D genomic datasets. We
first applied MSTD to detect promoter-anchored in-
teraction domains (PADs) from promoter capture Hi-
C datasets across 17 primary blood cell types. The
boundaries of PADs are significantly enriched with
one or the combination of multiple epigenetic fac-
tors. Moreover, PADs between functionally similar
cell types are significantly conserved in terms of
domain regions and expression states. Cell type-
specific PADs involve in distinct cell type-specific
activities and regulatory events by dynamic interac-
tions within them. We also employed MSTD to de-
fine multi-scale domains from typical symmetric Hi-C
datasets and illustrated its distinct superiority to the-
state-of-art methods in terms of accuracy, flexibility
and efficiency.

INTRODUCTION

Folding of mammalian chromosomes into the nucleus has
increasingly been recognized as an important factor in

gene regulation, cell fate decisions, and so on (1-3). How-
ever, how chromosomes fold into the nucleus is still ob-
scure. The chromosome conformation capture (3C) tech-
nique and its variants such as Hi-C, ChIA-PET and cap-
ture Hi-C have been employed to uncover the chromatin
loops and hierarchical chromatin structural domains in
three-dimensional (3D) genome architecture. Specifically,
recent studies have revealed direct physical interactions,
such as long-range chromatin contacts between enhancer
and target genes (4), actively co-regulated genes (5) and
Polycomb-repressed genes (6). In addition, researchers have
provided evidence for topologically associating domains
(TADs) or sub-TADs (7-12). Furthermore, interactions be-
tween TADs at a variable distance result in active and in-
active compartments, which are further subdivided into six
different sub-compartments according to distinct patterns
of histone modifications (4,13). Therefore, with the rapid
accumulation of 3D genomic maps, developing efficient
computational methods for detecting topological domains
in chromosomal architecture is urgently needed.

Several methods have been developed to address these is-
sues. For example, Dixon et al. adopted a hidden Markov
model (HMM) method based on the directionality index
from Hi-C maps to detect TADs (7). Lévy-Leduc et al. pro-
posed a block-wise segmentation model for TAD detection
and proved that maximization of the likelihood on the block
boundaries is a one-dimensional (1D) segmentation prob-
lem (14). Similarly, Crane et al. developed an approach to
transform the Hi-C contact matrix into an 1D insulation
score vector for detecting topological structures (15). Shin
et al. employed an efficient and deterministic method to sys-
tematically identify TADs with a set of statistical measures
to evaluate their quality (16). However, these methods were
only designed for detecting single-scale domains.

Recently, a few methods have been designed to explore
the hierarchical organization of chromosomal architecture
from symmetric Hi-C maps. For example, Filippova et al.
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introduced a dynamic programing model to identify hierar-
chical domains by adjusting a single parameter (17). Wein-
reb et al. proposed a matrix decomposition model to infer a
hierarchy of nested TADs based on ideal empirical distribu-
tions (18). Zhan ez al. presented a method CaTCH to detect
hierarchical trees of chromosomal domains given a certain
degree of reciprocal insulation from Hi-C maps (19). How-
ever, these methods can only detect cis-interacting regions
from Hi-C maps.

Very recent studies have revealed that both cis- and trans-
interacting DNA regions exist in the cell nucleus (20). With
the emerging higher resolution genome-wide interaction
maps of chromatin such as promoter capture Hi-C maps
(21) and ChIA-PET maps (22), many distal DNA fragments
regulate their targets bypassing long chromatin regions have
been observed. Therefore, how to develop a generic method
to infer both cis- and trans-interacting regions from diverse
types of 3D genomic data is still a grand challenge in com-
putational biology.

To this end, we proposed a generic and efficient method
to identify multi-scale topological domains (MSTD) from
both asymmetric and symmetric 3D genomic datasets with
a single adjustable parameter controlling domain scales.
MSTD can detect long-range interacting domains such as
those bewteen promoters and regulatory elements at vari-
able distances, which can not been addressed directly by
existing methods. We detected promoter-anchored interact-
ing domains (PADs) from promoter capture Hi-C datasets
across 17 primary blood cell types. We observed that the
boundaries of these PADs can be well specified by one or
the combination of a few epigenetic factors, indicating that
these factors should play a key role the formation of ge-
nomic conformation. The analysis of the affinity relation-
ship among cell types showed that PADs between function-
ally similar cell types have distinctly high conservation and
consistent expression levels. Furthermore, dynamic PADs
might perform specific cellular functions, while common
ones take into account the underlying conditions of regu-
lar cell activities and participate in cell-specific regulatory
events by dynamic interactions within each PAD. This sug-
gests that PADs are important and basic units of genomic
structure and function influencing gene regulation and cel-
lular differentiation. We also employed MSTD to define
multi-scale domains from symmetric Hi-C datasets with
distinctly superior accuracy and efficiency compared to ex-
isting methods. Interestingly, the conservation of TADs be-
tween cells during continuous differentiation cycles is signif-
icantly higher than those between interval cycles. Last but
not least, TADs are strongly correlated with epigenetic and
transcriptional features.

MATERIALS AND METHODS
Materials

We first downloaded a comprehensive catalog of cap-
ture Hi-C datasets of 31 253 annotated promoters and
230 525 unique promoter-interacting regions (PIRs) in 17
human primary blood cell types (21). The datasets de-
tect 698187 high-confidence unique promoter interactions,
of which 9.6% are promoter-promoter interactions and
90.4% are promoter-PIR interactions. The 17 cell types
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are from different nodes of the hematopoietic tree, which
can be roughly divided into two categories, including eight
myeloid cell types (megakaryocytes (MK), erythroblasts
(Ery), neutrophils (Neu), monocytes (Mon), endothelial
precursors (Endp), macrophages M0 (Mac0), macrophages
M1 (Macl), macrophages M2 (Mac2)) and nine lym-
phoid cell types (naive B cells (nB), total B cells (tB),
fetal thymus (FetT), Naive CD4+ T cells (nCD4), To-
tal CD4+ T cells (tCD4), non-activated total CD4+ T
cells (naCD4), activated total CD4+ T cells (aCD4), naive
CDS8+ T cells (nCDB), total CD8+ T cells (tCD8)). Inter-
action scores were computed for each fragment pairs be-
tween promoters and promoter interacting regions (PIRs).
As described by (21), the scores were computed by the
CHiCAGO pipeline for each cell types. We collected avail-
able histone modification ChIP-seq datasets, including
H3Kd4me3, H3K4mel, H3K27ac, H3K36me3, H3K9me3,
H3K27me3, H3K9ac and DNase-seq datasets for seven
cell types (Neu, Mon, FetT, nCD4. tCD4, nCDS, tCDS8)
from the Roadmap Epigenetics project (http://egg2.wustl.
edu/roadmap/web_portal/). In addition, we collected avail-
able RNA-seq datasets for 8 cell types (MK, Ery, Neu, Mon,
Mac0, Macl, Mac2, nCD4) from (21).

We also collected two sets of Hi-C maps. The first dataset
includes mouse cortex, ES and human ES cell types binned
at 40 kb resolution (7). For mouse cortex and ES cell
types, we collected ChIP-seq datasets from the ENCODE
project (http://www.genome.ucsc.edu/ENCODE/), includ-
ing the architectural protein CTCEF, seven histone mod-
ifications (H3K4me3, H3K9ac, H3K36me3, H3K4mel,
H3K27ac, H3K27me3, H3K9me3), RNA Polymerase 1I,
EP300, DNase-seq and RNA-seq data from (23). For hu-
man ES cell type, we obtained human housekeeping genes
from (24) and TSS of protein coding genes of hgl9 Ref-
Seq in GENCODE database. The second dataset contains
proliferating mouse embryonic stem cells (ESC), interme-
diate neuronal precursor cells (NPC) and post-mitotic neu-
rons (neurons) Hi-C datasets through different differentia-
tion periods, binned at S0Kb resolution from (25). We nor-
malized these Hi-C maps as previously described by Yaffe
and Tanay (26).

Definition of chromatin domains for Hi-C and promoter cap-
ture Hi-C datasets

The whole-genome Hi-C generates the chromatin interac-
tions from all genomic regions to all genomic regions, while
promoter capture Hi-C generates the chromatin interac-
tions from promoters to a set of genomic regions. If the data
are expressed in chromatin interaction matrixes, the rows
and columns of the interactions matrixes from the whole-
genome Hi-C are the same, while the rows and columns of
the interactions matrixes from promoter capture Hi-C are
different (the rows could be the promoter regions, and the
columns could be any genomic regions).

The whole-genome Hi-C maps and the promoter capture
Hi-C maps can be represented as symmetric and asymmet-
ric data matrices respectively. Here, the ‘asymmetric’ 3D ge-
nomics maps mean the latter case. Specifically, a promoter
capture Hi-C data matrix can be considered as an asymmet-
ric submatrix sampled from a corresponding Hi-C data ma-
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trix about all promoters. This results in a rectangle map in
which the rows are promoters and the columns are promoter
interacting regions respectively. Existing methods designed
for TADs detection cannot be applied to such asymmetric
maps. In contrast, MSTD can identify topological domains
from both asymmetric and symmetric 3D genomic datasets.

Generally, Hi-C maps are summarized as a sym-
metric matrix 4 with bins of a fixed width (e.g.
40 kb). Considering the symmetry of Hi-C matrix, in
which4; ;(1 <i <n,1 < j <n) represents the interacting
frequencies between bins i and j, we first define the
diagonal blocks Dy of high intensity with relative strong
interactions as the topologically associating domains
(TADs) (Figure 1A),

Dy ={(, j) : bax—1 <0 < bog, b1 < j < b},
k=1,..K).

where byi_1, box (1 < box—1 < by < n) represent the true
TAD boundaries of the k;, TAD and K is the number of
TADs. We further define the non-diagonal blocks N, as
pairwise topologically associating domains (PTADs) (Fig-
ure 1B),

No={(i, )by Si<by.by_ <j<by,}.
(=1,.. 1),

where b}, |, b}, (1 <b), | <b} <n) and b3 |, b3 (1 <
b3, < b3, < n)denote the boundaries of two distinct chro-
matin regions forming the /,, PTAD and L is the number
of PTADs. In this study, we denote promoter capture Hi-
C map as an asymmetric rectangular contact matrix B, in
which B; ;(1 <i <n,1 < j < m)representsinteraction fre-
quencies between promoters and PIRs. As a special type
of PTADs, we define the special non-diagonal blocks S, as
promoter-anchored interacting domains (PADs) from pro-
moter capture Hi-C maps (Supplementary Figure S1A),

S‘C = {(l’ ]) : b;x—l = i = béx’ b%x—] = ] = b%x—]} ’
(x=1,.., X),
where b}, b} (1 <b) | <b) <m)yand b3 . b3 (1<
b%x_l < b%x < m) represent respectively the boundaries of

promoters and PIRs forming the x;;, PAD and X'is the num-
ber of PADs.

MSTD

MSTD was inspired by a fast density-based clustering
method, which is designed for grouping data points (27).
Here, we group the strong contact interactions, which form
square or rectangle submatrices corresponding to domains
defined as above (Figure 1). Given a symmetric or asymmet-
ric matrix A4, where 4; ;(1 <i <n,1 < j < m) denotes the
interaction frequencies between bin i and ;. Firstly, for each
element (i, j) (a diagonal element (i.e., i = j) for a symmet-
ric matrix in Figure 1C or a non-zero element for an asym-
metric matrix in Figure 1E), MSTD computes two indexes:
(1) local densityp;j(w) defined as the average of the inter-
action frequencies with a cutoff radius window w (Supple-
mentary Figure S1B, C and Supplementary Methods), and
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Figure 1. Illustration of MSTD for detecting TADs and PTADs in a
symmetric and asymmetric matrix respectively. (A, B) Examples of TADs
{D1, D, ..., D} and PTADSs{N;, N, ..., Np}. The color depth represents
the density of domains. (C) MSTD computes two indexes including local
density and minimum distance of higher density (MDHD) for each diag-
onal element & in the symmetric matrix. The value of heatmap represents
normalized interacting scores. (D) The decision graph of clustering results
for (C). Clustering centers are marked by big dots with different colors.
Starting with the centers, the remaining elements are assigned to the same
cluster as its nearest neighbor element of higher density layer by layer. The
clustering boundaries are defined to be the outermost elements of the same
cluster in the two directions. (E) MSTD computes two indexes similar to
(C) for each non-zero element k in the asymmetric matrix. (F) The decision
graph of clustering results for (E). For the asymmetric matrix, MSTD em-
ploys all non-zero elements and defines the clustering boundaries in four
directions. Noise elements were colored by black.

(2) 8;; is computing by minimum distance between the ele-
ment (/, j) and any other element with a higher local density
(MDHD),

8,‘]‘ = min d[(l, ]),(k, l)], (8,']' < Max),

Pil > Pij
where d[(i, j), (k,[)] is the distance between the element
(i, j) and element (k, /). For the efficiency of the algorithm,
We search for a nearest neighbor element of higher density
of the element (7, j) in the range of Max(100 is used as the
default value), which is not sensitive to the results (Supple-
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mentary Materials). Note that local density p;; of the clus-
tering center element is locally or globally maximum, and
its 8;; are much larger than those of its neighbors. Thus,
MSTD determined clustering centers as elements for which
the value §;;is anomalously large, and the scale of domain
is control by an adjustable parameter 67(5;;>87). Next, the
remaining elements are assigned to the same cluster as its
nearest neighbor element of higher density layer by layer.
Meanwhile, individual outlier elements with high § and low
o (Figure 1D) and the elements associated with these out-
lier elements will not be assigned to any cluster. Finally, the
boundaries for each cluster are defined as the outermost el-
ements of the same cluster in all directions. If the elements
whose local density is significantly lower than their centers’
(8ij < 0.2 X 8censer ), this element is removed from this clus-
ter.

In summary, MSTD can identify multi-scale topologi-
cal domains from both asymmetric and symmetric datasets
with a single adjustable parameter controlling domain
scales. As the adjustable parameter increases, the number
of clusters decreases and the size increases. This process
furthermore controls the scale of domains, which together
form the hierarchical chromatin structure.

Definition of high (low) co-expressed PADs

We first defined high (low) expression genes for a given cell
type if their expression level is higher (lower) than their cor-
responding median of gene expression level across all avail-
able cell types. We defined a PAD to be high- (low-) co-
expressed or not by evaluating the difference between the
number of high (low) expression genes in the genome region
of this PAD, and the average number of high (low) expres-
sion genes in cyclically permutated genomes with the same
number of genes, which is weighted by its standard devia-
tion (P-value < 0.05). Every PAD obtains a z-score value to
describe the level of co-expression.

Parameter selection for MSTD and other methods

In order to compare MSTD with three popular methods
including DI (7), TopDom (16) and HicSeg (14) for identi-
fying TADs, we next applied these four methods onto Hi-C
datasets of mouse embryonic stem cells (ESC), intermediate
neuronal precursor cells (NPC) and post-mitotic neurons
(Neurons) through different differentiation periods (ESC-
NPC-Neurons), binned at 50 Kb resolution (25). Since DI
has been generally accepted to detect TADs in a number of
existing studies, here we regard the size range of its TADs
(from 700 to 1200 kb) as the standard scale. In order to
get a similar domain scale for a fair comparison, we set
the adjustable parameters window = 12 for TopDom, and
87 = 7 for MSTD, respectively. For HicSeg, we set the max-
imum number of boundary points (Maxk = chromosome
length/850Kb) and data distribution (distrib = 'G’) respec-
tively. Based on the above parameter settings, all four meth-
odsidentify TADs with nearly identical domain scales (Sup-
plementary Table S1).
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Figure 2. Illustration of PADs detected from promoter capture Hi-C
datasets. (A) Examples of PADs detected by MSTD with §7 = 100 (blue)
and §7 = 200 (red). The value of heatmaps represents CHiCAGO score.
(B) Comparison of the average contact frequency of intra-PADs and inter-
PADs in 17 human primary blood cell types with §7 = 100.

The statistical measurements for TADs quality

We compared the four methods using two quality
measurements: the average Pearson’s correlation co-
efficient (PCC) of chromosome-wide contact profile
of m bins within the TAD D;, which is defined as

m m . R
PCC(Dy) = 702 21 Z+ ] corr(D{”, DY), and the differ-
i=1j=i
ence of average interaction frequency between intra-domain
and the corresponding inter-domain (DIFF), which is de-
fined as DIFF(Dy) = Intra(Dy) — Inter(Dy, Djy1),
where [Intra(Dy)denotes the average of interaction fre-
quency between bins within the same TAD D, and
Inter(Dy, Dy.1) denotes the average of interaction fre-
quency between bins in TAD Dy and bins in adjacent TAD
D41 (16).

RESULTS

Identifying PADs from asymmetric promoter capture Hi-C
datasets

Firstly, we applied MSTD to identify multi-scale PADs
from promoter capture Hi-C maps across 17 human pri-
mary blood cell types (Figure 2A and Supplementary Meth-
ods) (21). MSTD can not only find cis-interacting PADs
within the continuous genome, but also identify trans-
interacting PADs between distal regulatory elements and
target promoters (Figure 2A). The results below are based
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on parameter §7 = 100 for detecting PADs, unless noted
otherwise.

MSTD costs only about 7.3 minutes for each chro-
mosome (Supplementary Table S2). Also, the size of the
most of PADs detected by MSTD is in the range between
200Kb and 2Mb (Supplementary Figure S2A), as suggested
by TADs from symmetric Hi-C maps in previous studies
(8,15). Moreover, we noted that the same chromosome be-
tween functionally similar cell types obtains very similar
number of PADs (Supplementary Figure S2B), and average
interaction frequency of intra-PADs is significantly higher
than that of inter-PADs across 17 human primary blood cell
types (Figure 2B), indicating that PADs relate to cell activ-
ities distinctly.

Epigenetic feature is a good predictor of PADs

We only defined the boundaries and centers of PADs along
promoter interacting regions (PIRs) axis not promoters’
axis (Materials and Methods) and found that epigenetic fea-
tures of PADs show strong difference on these PIRs’ re-
gions compared with random ones (Figure 3, Supplemen-
tary Figures S3-S5). Specifically, for monocytes cell type,
the promoter mark H3K4me3 is strongly enriched in the
boundaries of PADs (even more than twice that of intra-
PADs) and the transcribed region mark (H3K36me3) is en-
riched in the regions slightly deviating from boundary re-
gions, indicating that the boundary elements of PADs are
significantly associated with promoters (Figure 3A). Mean-
while, the enhancer marks (H3K4mel, H3K27ac) are also
enriched around topological boundaries, which might be re-
lated with chromatin loops in the boundary regions (Fig-
ure 3A). The transcribed region mark (H3K36me3) and the
enhancer marks (H3K4mel, H3K27ac) demonstrate sig-
nificant changes between intra-PADs and inter-PADs, sug-
gesting PADs play key roles in active gene regulation and
expression (Figure 3A). Meanwhile, the repressive mark
(H3K27me3) is enriched in topological boundaries, which
can be associated with the formation of repressive domains.
Interestingly, the signals of H3K9me3 in inter-PADs are
slightly higher than those in the intra-PADs, and both of
which are significantly lower than random ones, revealing
that PADs can segregate the spread of the heterochromatin
(Figure 3A). Thus, multiple epigenetic features can identify
different functional PAD boundaries. We also observed that
multiple epigenetic features (except the heterochromatin
mark) are enriched around the regions with high interac-
tion intensity (PAD centers) (Figure 3A). Furthermore, we
guess that one or the combination of several epigenetic fea-
tures contributes to the formation of PADs, which can be as-
sociated with different functional units (Figure 3B). For ex-
ample, H3K27ac tends to combine H3K4me3 or H3K4mel
to mark active boundaries of PADs, while H3K27me3 tends
to mark repressive boundaries alone (Figure 3B). Therefore,
histone modifications and DNase signal seem to be a good
predictor of PADs and different functional units may have
different strategies to specify chromatin domains.

PADs can well capture the hematopoietic tree structure

The distribution of PADs among different cell types should
reflect the affinity relationship of the 17 blood cell types.
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Figure 3. PADs are relating to epigenetic factors. (A) Enrichment anal-
ysis of seven epigenetic factors around boundaries and centers of PADs
along PIRs axis not promoters’ axis in the human monocytes cell type.
The observed and random signals are marked with red and gray colors, re-
spectively. (B) Hierarchical clustering of boundaries of PADs according to
their epigenetic factors. The value of heatmap represents normalized score
of columns of different epigenetic signals (min-max normlizatiion to [0,1]).

We regarded that the PADs are conserved between differ-
ent cell types if their boundaries are adjacent (Supplemen-
tary Methods) and noted that 40-70% of PADs are con-
served between the same type of cells, yet only 30-50% of
PADs are conserved between the different type of cells, in-
dicating the conservation and dynamics of chromatin struc-
ture during cell development and differentiation (Supple-
mentary Figure S6A). Furthermore, we derived five distinct
classes based on the overlapping ratio of their PADs, which
is highly consistent with the hematopoietic tree (28), sug-
gesting dynamic chromatin structures contribute to gene
cellular functions (Figure 4A). The expression level of genes
within these PADs distinguishes them into high (low) co-
expressed ones and divided them into four categories of
cell types consistent with hematopoietic tree, indicting these
PADs play important roles in gene expression and regula-
tion (Figures 4B, C and Materials and Methods) (28). In-
terestingly, the gene sets tend to be very diverse across cell
types within high and low co-expressed PADs respectively,
indicting their underlying dynamical characteristics (Fig-
ure 4D). The above results reveal that the gradual change
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Figure 4. PADs can well capture the hematopoietic tree structure with dis-
tinct expression features. (A) Hierarchical clustering of the 17 cell types
in terms of overlapping ratio of their PADs. Five clusters are marked by
different colors. The value of heatmap represents Pearson’s correlation co-
efficient about the overlap ratio of PADs. (B) The expression level of genes
within high (low) expression level and other domains. (C) Hierarchical
clustering of the eight cell types in terms of the correlation of z-score of
PAD:s expression levels. The value of heatmap represents Pearson’s corre-
lation coefficient based on the expression level of PADs. (D) The genes of
high (low) expression domains are marked by red and green respectively
across eight cell types.

of the chromosomal structures (e.g. PADs) regulate the ex-
pression level of specific genes, which in turn promote the
occurrence of cell development and differentiation. There-
fore, it is important to distinguish these cell-specific PADs
compared with stable ones for understanding the formation
mechanism and cellular functions of PADs.

Next, we identified 693 lymphoid-specific, 426 myeloid-
specific and 3808 common PADs according to the occur-
rence features among 17 human primary blood cell types to
explore their cellular functions (Supplementary Methods).
We further obtained 308 lymphoid-specific, 195 myeloid-
specific and 1380 common PADs, whose two interacting
chromatin regions containing more than one marker genes
(Supplementary Methods and Supplementary Table S3).
Among those PADs, MSTD pioneered the discovery of 180
trans-interacting PADs without any overlap between their
two interacting chromatin regions (Figure 5, Supplemen-
tary Figures S7-S14 and Supplementary Tables S4 and S5).

For example, we found two interesting trans-interacting
PADs within the same region of genome—one myeloid-
specific PAD and a common PAD shared by 16 cell types
(except aCD4) (Figure 5 and Supplementary Figures S7
and S8). For the myeloid-specific PAD, we can see that
active TSS and transcription states occupies the two in-
teracting chromatin regions of this PAD based on the
ChromHMM annotations and active markers including
H3K4me3, H3K27ac and DNase are significantly enriched
in them too, which may suggest the chromatin loops within
this PAD bring active promoters into the same nuclear
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space to initiate transcription (29). Moreover, E2F, p53
motifs and E2F, E2F1 motifs are enriched in the up-
stream and downstream regions of this PAD, which con-
tain genes related to innate immune response of myeloid
tissues (upstream: HISTIH2BC, downstream: HIST1H2BJ
and HISTIH2BK) (Supplementary Tables S4 and S95) (30).
This suggests that the chromatin loops among this myeloid-
specific PAD play a special role in the cooperation between
E2F1 and p53 to specifically activate innate immune re-
sponse genes in myeloid tissues, which could promote the
occurrence of apoptosis (31).

For the lymphoid and myeloid common PAD, the two in-
teracting chromatin regions contain several genes from his-
tone families (H1, H2A, H2B, H3 and H4), which regulates
circulating iron and mediates the regulation of lymphocyte
and leukocyte (such as activation, cell-cell adhesion, im-
mune response, antigen processing and presentation) (Fig-
ure 5 and Supplementary Table S4) (30). Furthermore, we
identified 529 common and 40 dynamic chromatin loops
between lymphoid and myeloid tissues from high-density
chromatin loops of this PAD (P-value < 0.01) (Supplemen-
tary Methods). Surprisingly, we found all of dynamic chro-
matin loops occur in lymphoid tissues and these dynam-
ics interacting regions contains BTN3A2 gene involved in
the adaptive immune response of lymphoid tissues (Sup-
plementary Figure S6B and Supplementary Table S4) (30).
Thus, this PAD might participate in the underlying func-
tions of regular activities of blood cells while enforce the
adaptive immune response in lymphoid tissue. It can be seen
that the upstream region of the common PAD contains that
of the myeloid-specific PAD, and compared with the com-
mon PAD, the myeloid-specific PAD performs specific cel-
lular functions by dynamic interactions with the different
remote-region (Figure 5).

Another example is a lymphoid-specific PAD, which is
characterized by a handful of active marks (Supplementary
Methods and Supplementary Figure S9). Both chromatin
regions of this PAD contain more than one motifs asso-
ciated with lymphocyte (Supplementary Table S5). Specif-
ically, GATA3 motif is a transcriptional activator, which
binds to the enhancer of the T-cell receptor alpha and delta
genes and Nur77 motif participate in modulating apopto-
sis in developing thymocytes (32). Both GATA3 and Nur77
motifs are enriched in the upstream regions of this PAD,
while TFE3 and SPIB motifs are enriched in its downstream
regions. Previous studies have showed that TFE3 motif reg-
ulates T-cell-dependent antibody in aCD4 cell type and
thymus-dependent humoral immunity, and SPIB motif is a
lymphoid-specific enhancer (32). In addition, Dontje et al.
revealed that Delta-likel-induced Notchl signaling path-
way directs T cells and plasmacytoid dendritic cells decision
by controlling the levels of GATA3 and SPIB (33). More in-
terestingly, within the genome region of the PAD, RC3H2
gene participates in T cell activation and differentiation in-
volving in immune response and PTGS1 gene is related to
blood pressure and circulation (Supplementary Table S4)
(30). Thus, this PAD could perform lymphoid-specific func-
tions by T cell specific marker gene expression, which are
regulated by GATA3, SPIB and other transcription factors
corporately (e.g. TEF3 and Nur77) (Supplementary Meth-
ods).
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Figure 5. Illustration of a myeloid-specific PAD and a common PAD. Both PADs appears within the same genomic region using monocytes cell type
as an example (chr6:26001891-27865483). Chromatin modification signals of seven epigenetic factors are shown in the monocytes cell type. The PADs
connected with red arcs and blue arcs are a myeloid-specific one and a common one respectively. The image is drawn based on WashU epigenome browser
with RefSeq gene annotations. The color depth of arcs represents CHICAGO scores of chromatin interactions.

Identifying multi-scale topological associated domains from
symmetric Hi-C datasets

We next applied MSTD onto Hi-C datasets of mouse cortex
cell binned at 40 kb resolution (7). MSTD can detect a few
of larger topological domains with 87 increasing, indicat-
ing the existence of a hierarchy of structural domains (Fig-
ure 6A, Supplementary Figure SISA and B). The average
of contact frequency within a domain is significantly higher
than that between domains and both of them decrease as
the domain scale increasing (Supplementary Figure S15C-
E). Interestingly, inflection points appeared along parame-
ter §7 between 5 and 10 for the two statistic measurements
evaluating the quality of domains, which might be related to
the presence of topologically associating domains (TADs)
(Supplementary Figure S15E and F).

Comparison between MSTD and previous methods for iden-
tifying TADs

Previous studies suggested that the size of TADs should be
between 200Kb and 2Mb, which is used as one of the qual-

ity evaluation indicators (8,15). MSTD achieves remark-
ably higher consistency for all three cell lines compared with

those of other methods with similar median of domain size
at 7 = 7 (Supplementary Table S1 and Methods). For ex-
ample, we discovered 2965 qualified TADs, while DI, Top-
Dom and HicSeg detect 1993, 1982, 2714 ones in Neuron
cell line. MSTD tends to choose relatively dense elements
compared with neighbor elements as centers, instead of ab-
solute dense ones. Moreover, MSTD obtains TADs with
smaller variance in domain scale (Figure 6B and Supple-
mentary Figure S16A).

Furthermore, MSTD shows superior performance than
other three methods in terms of PCC and DIFF (Figure
6C, Supplementary Figure S16B, Materials and Methods),
indicating that MSTD can detect more accurate TADs with
coherent contact profiles. For a fair comparison, we em-
ployed the same number of domain boundaries of the top
rank in terms of PCC and DIFF scores. MSTD generally
shows much better performance for all the three cell lines
in the most cases (Supplementary Figures S17 and S18).
MSTD supposes that domain centers are surrounded by el-
ements with lower local density and that they are relatively
far away from the higher density elements. Thus, MSTD can
well identify more consistent local density areas, which co-
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Figure 6. Illustration of multi-scale domains determined by MSTD from
Hi-C datasets. (A) Multi-scale topological domain examples detected by
MSTD with different MDHD thresholds (i.e. 7 = 3, 10, 20) of chrl9:
2350-2500 bins of Hi-C maps in the mouse cortex cell (40 kb resolution).
The value of heatmap represents normalized interacting scores. (B) The
size distribution of TADs detected by DI, TopDom, HicSeg, MSTD in
three mouse cells (P-value < 7.9 x 10719, F-test). (C) Quality evaluation of
TADs detected by the four methods in three cells using PCC measurements
(P-value < 3.0 x 1073 except one case, T-test). The dark horizontal lines in
boxes represent mean. The box surrounding each mean indicates the mid-
dle part of the data, which is the range from the 15th to 85th percentile. (D)
Computing time of the four methods for domain detection across mouse
ESC, NPC and Neurons cells.

incides well with compacted and elongated domain confor-
mations in biology (27,34).

MSTD is friendly to users in parameter selections with
very short computing time. Specifically, users can set an ad-
justable parameter 87 to control the domain scale (Supple-
mentary Figure S15 and Supplementary Methods). Mean-
while, MSTD takes ~5.04 min, while TopDom takes ~7.85
min, DI takes ~27.5 min and HicSeg spends 55.4 min
approximately for detecting TADs of all chromosomes of
three cell lines (mouse ESC, NPC and Neurons) in same
computer environment (inter core 3.4 GHz and 24G RAM)
(Figure 6D).
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TADs show distinct biological conservation and specificity
among ESC, NPC and Neurons

Previous studies have shown that TADs are conserved be-
tween cell types (7,35). We observed the average of common
boundary ratio (CBR) is about 50%-80% and the average
of TADs overlap ratio (TOR) is approximately 35%-70%
during cell differentiation, which is similar with previous
studies (Dixon et al., 2012) (Supplementary Methods and
Supplementary Figure S19). Interestingly, the conservation
between cells during continuous differentiation cycle is sig-
nificantly higher than those between the interval cycles. It
will be useful to further investigate the result and extend it
to specific functional and evolutionary events (25).

TADs are strongly correlated with epigenetic patterns and ex-
pressed features

The conservation of TADs during cell differentiation pro-
motes us to explore the mechanisms of TADs formation.
Recent studies showed that a common property of CTCF
and highly active housekeeping genes may create insulat-
ing force of TAD boundaries (24,35). Intriguingly, archi-
tectural protein CTCF is indeed highly enriched at TAD
boundaries in mouse ES and cortex cells (Figure 7A and
Supplementary Figure S20), and housekeeping exons and
genes tend to be located in the boundary region of hu-
man ES cell (Figure 7B). Furthermore, H3K4me3, H3K9ac
and RNA Polymerase II are significantly enriched and
H3K36me3 is slightly enriched in the boundary regions of
TADs for mouse ES and cortex cells, indicating the for-
mation of TADs is indeed promoter-related (35). Mean-
while, we found that transcription start sites (TSS) and ex-
pressed genes (FPKM>3) are also enriched around TAD
boundaries (Figures 7A and B). Those observations reveal
that factors associated active promoters and gene bodies
can contribute to the formation of TADs boundaries (Fig-
ure 7A and Supplementary Figure S20). These evidences
can help to explain the formation model of TADs, such as,
loop extrusion model (35,36). Moreover, enhancer-marks
(H3K4mel, H3K27ac and EP300) show a bimodal distribu-
tion around TAD boundaries (Supplementary Figure S20).
These peaks are located at 100-200 kb away from the TADs
boundaries, which may be associated with domains of gene
co-regulation patterns (35). H3K4mel has a different bi-
modal patterns between mouse ES and cortex cells, which
may be attributed to H3K4mel marks sequences with re-
gion of DNA methylation loss in human mesenchymal stem
cells (Supplementary Figure S20) (37). Interestingly, open
chromatin mark (DNase signal) shows a significant enrich-
ment in TAD boundaries of mouse ESC cell and a three
peaks distribution around TADs boundaries of cortex cell
(Figure 7A and Supplementary Figure S20). In addition, in-
active chromosome mark (H3K27me3) shows a slight peak
in TADs boundaries for mouse ESC cell but not for cortex
cell, which may be due to the responsibility of H3K27me3
for the repression of genes involved in cellular development
and differentiation (Figure 7A and Supplementary Figure
S20) (38). Finally, H3K9me3 is the mark of heterochro-
matin and shows no enrichment in both mouse ES and cor-
tex cells (Figure 7A and Supplementary Figure S20).
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boundaries of TADs identified by MSTD in human ES cell.

The case study of PTADs

We also applied MSTD to identify PTADs on 5M away
from the diagonal of Hi-C maps of mouse cortex and
ES cell line at 40 kb resolution (7). We found 43 and
4 PATDs on chromosome 19 of these two cell lines re-
spectively (Supplementary Figure S21A and B). For ex-
amples, we found one PTAD is specific in mouse cor-
tex cell line (Supplementary Figure S21C). The two in-
teracting chromatin regions of the PTAD contains genes
(CPEB3 and DNMBP) involving in neural system, re-
spectively. Previous studies have shown that CPEB3 activ-
ity and CPEB3-dependent protein synthesis can facilitate
hippocampal plasticity and hippocampal-dependent mem-
ory storage (39) and DNMBP regulates actin cytoskele-
ton and synaptic vesicle pools, whose expression is lower
in neuropathologically-confirmed Alzheimer’s brains (40).
We also found that the two interacting chromatin regions
of the PTAD contains multiple genes (Cyp2c44, Cyp26cl
and Cyp26al) in CYP family. The CYP enzymes are tissue-
and cell type-specific expression in the brains and these

isozymes can metabolize a vast array of compounds includ-
ing centrally acting drugs, neurotoxins, neurotransmitters,
and neurosteroids (41). This suggests that PTADs could
play an important role in neural system of mouse. An-
other example is a common PTAD in the two mouse cell
lines (Supplementary Figure S21D and E). We found en-
hancer marks (H3K27ac and H3K4mel) are enriched in
two interacting chromatin regions of the PTAD. These en-
hancer regions may constitute ‘super enhancer’, which regu-
lates functional genes with the PTAD. Further investigation
shows that one end of the PTAD contains multiple genes
(Add3, Dusp5 and Adra2a) that regulate vascular process in
circulatory system (29). This suggests that the PTAD may
be an important and basic unit of genomic structure and
function in mouse cells.

DISCUSSION

The chromosome conformation capture (3C) and its vari-
ants produce billions of read pairs that are used to draw
genome-wide chromatin contact maps for multiple tissues
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and species. The accumulation of these data poses unprece-
dented challenges to computational biologists. Different
tools have been developed to detect domains from sym-
metric Hi-C maps (42). However, these methods pay no at-
tention to interaction structures between domains (trans-
domains) directly. MSTD begin to explore a variety of chro-
matin structures, including multi-scale TADs, PTADs and
PADs from diverse chromatin contact maps, especially pro-
moter capture Hi-C maps. Exploring a variety of chromatin
structures will help to better understand the formation of
spatial chromatin architecture and distinguish cellular func-
tion units. Meanwhile, 3D genomic maps of higher resolu-
tion will contribute to the presentation of landscape in the
nucleus clearly and accurately.

We believe that the identification of multi-scale cis- and
trans-domains will provide insights into local chromatin
structure and promote the construction of 3D genomic
model. Meanwhile, the analysis combining a variety of
functional factors gradually explain cellular functions and
biological processes of these structural units. With the de-
velopment of new technologies, more diverse chromatin
data will be generated for solving unknown biological prob-
lems. For examples, single cell Hi-C maps provide an oppor-
tunity to study the conservation and heterogeneity from cell
to cell, revealing more granular cellular functions and bio-
logical processes in cell cycle (43,44). Moreover, what the
difference is between PADs and TADs will be a very inter-
esting question. We hope to make some deep exploration
about their connection in the near future when both Hi-
C and promoter capture Hi-C maps are available from the
same cell lines or tissues. MSTD is a very flexible and power-
ful framework, which is expected to be applied to such new
data in near future.

DATA AVAILABILITY

MSTD (version 0.0.2) is free, open source soft-
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able at https://github.com/zhanglabtoolssMSTD  or

http://page.amss.ac.cn/shihua.zhang/software.html.
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