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Abstract
Despite	the	strategic	localization	of	Tunisia	in	the	Mediterranean	Sea,	no	phylogeo-
graphic	study	on	sponges	has	been	 investigated	along	 its	shores.	The	demosponge	
Chondrosia reniformis,	descript	only	morphologically	along	Tunisian	coasts,	was	cho-
sen to estimate the influence of natural oceanographic and biogeographic barriers on 
its	genetic	differentiation	and	its	Phylogeography.	The	cytochrome	oxidase	subunit	I	
(COI)	gene	was	amplified	and	analyzed	for	70	Mediterranean	Chondrosia reniformis,	
collected	from	eight	localities	in	Tunisia.	Polymorphism	results	revealed	high	values	of	
haplotype	diversity	(Hd)	and	very	low	nucleotide	diversity	(π).	Thus,	these	results	sug-
gest that our sponge populations of C. reniformis	may	have	undergone	a	bottleneck	fol-
lowed	by	rapid	demographic	expansion.	This	suggestion	is	strongly	confirmed	by	the	
results	of	neutrality	tests	and	“mismatch distribution.” The important number of haplo-
types	between	localities	and	the	high	genetic	differentiation	(Fst	ranged	from	0.590	to	
0.788)	of	the	current	C. reniformis	populations	could	be	maintained	by	the	limited	gene	
flow Nm	(0.10–	0.18).	Both	haplotype	Network	and	the	biogeographic	analysis	showed	
a structured distribution according to the geographic origin. C. reniformis populations 
are	subdivided	into	two	major	clades:	Western	and	Eastern	Mediterranean.	This	pat-
tern seems to be associated with the well- known discontinuous biogeographic area: 
the	Siculo-	Tunisian	Strait,	which	separates	two	water	bodies	circulating	with	differ-
ent	hydrological,	physical,	and	chemical	characteristics.	The	short	dispersal	of	pelagic	
larvae of C. reniformis and the marine bio- geographic barrier created high differentia-
tion	among	populations.	Additionally,	it	is	noteworthy	to	mention	that	the	“Mahres/
Kerkennah”	group	diverged	from	Eastern	groups	in	a	single	sub-	clade.	This	result	was	
expected,	the	region	Mahres/Kerkennah,	presented	a	particular	marine	environment.
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1  |  INTRODUC TION

Phylum Porifera,	 commonly	 known	as	 sponges,	 are	 the	evolution-
ary	 oldest	multicellular	 animal.	 These	 invertebrates	 are	 found	 in	
all	oceans	and	at	all	depths	(Hooper	&	Van	Soest,	2002;	Van	Soest	
et	al.,	2012).	According	to	the	World	Porifera	Database,	the	num-
ber	of	described	taxa	are	more	than	9000	(Van	Soest	et	al.,	2021).	
The latest classification divides sponges into four classes; Calcarea,	
Hexactinellida,	 Homoscleromorpha,	 and Demospongiae,	 to	 which	
more	than	90%	of	sponge	species	belong.	Unlike	the	other	animals,	
sponges are the simplest group that lacks true tissues and organs. 
They	are	only	 formed	by	specialized	cell	 types	 (e.g.,	choanocytes	
and	pinacocytes),	which	are	embedded	in	a	complex	matrix	called	
mesohyl	(Junqua	et	al.,	1974;	Simpson,	2012).	Despite	their	simple	
morphology,	sponges’	genome	is	complex	(Harcet	et	al.,	2010).	Due	
to	their	higher	filtering	capacity,	sponges	play	 interesting	roles	 in	
biogeochemical	cycling	and	in	the	benthic-	pelagic	coupling	of	nu-
trients	within	the	ecosystem	(De	Goeij	et	al.,	2013;	Lesser,	2006;	
McMurray	 et	 al.,	 2017).	 Contrarily	 to	 most	 benthic	 organisms,	
these	 invertebrates	 have	 the	 capacity	 to	 pump	 large	 volumes	 of	
seawater	through	the	water	column.	Crossing	through	the	body	of	
the	sponge,	seawater	is	chemically	transformed	due	to	feeding,	ex-
cretion,	and	the	activities	of	microbial	symbionts,	with	significant	
effects	 on	 the	 carbon	 and	 nutrient	 cycling	 (Pawlik	 &	McMurray,	
2020).	To	defend	against	predators,	and	pathogens,	sponges	have	
developed	numerous	secondary	metabolites,	which	present	a	high	
biotechnological	 potential	 in	 different	 domains	 (Genta-	Jouve	 &	
Thomas,	2012).

The	sponge	can	reproduce	sexually	(gametes	are	produced	from	
two	types	of	somatic	stem	cells)	or	asexually.	Sexual	 reproduction	
in	sponges	is	varied,	it	can	be	gonochoric,	sequential,	or	simultane-
ous	 hermaphrodites,	 it	 also	 can	 be	 through	 viviparity	 or	 oviparity	
(Maldonado,	2006).	Their	larvae	are	characterized	by	low	dispersal	
potential	(Vacelet,	1999).	This	disperse	over	short	distances	poten-
tial	 has	 important	 consequences	 for	 the	 connectivity	 and	 genetic	
structuring	 of	 sponge	populations	 (Avise,	 1994;	 Scheltema,	 1971).	
Thus,	 larval	dispersal	potential	 is	 a	key	 factor	 that	can	be	used	 to	
understand	 the	 spatial	 patterns	 of	 genetic	 diversity,	 which	 is	 the	
main	goal	of	phylogeographic	 studies	 (Cowen	&	Sponaugle,	2009;	
Palumbi,	2003).	Phylogeography,	which	combines	genetic	and	geo-
graphic	 data,	 allows	 comprehension	 of	 the	 distribution	 of	 genetic	
differentiation	in	terrestrial	and	aquatic	ecosystems.	Thus,	this	ap-
proach confers to understanding the spatial patterns of genetic di-
versity	and	both	the	historical	and	contemporary	factors	acting	on	
taxa	(Avise,	2000;	Rissler,	2016).	Moreover,	phylogeographic	studies	
are substantial for the development of effective conservation strat-
egies	 in	 the	 increasingly	 threatened	 marine	 realm	 (Moritz,	 2002;	
Moritz	&	Faith,	1998).

Despite	its	strategic	localization,	opening	on	the	sides	of	the	two	
Mediterranean	 sub-	basins	 separated	 by	 the	 Siculo-	Tunisian	 Strait,	
no	phylogeographic	study	on	sponges	has	been	investigated	along	
Tunisian	 shores.	 Thus,	 only	 morphological	 descriptive	 studies	 on	
sponges	have	been	mentioned	by	Ben	Mustapha	et	al.	(2003),	Ben	
Mustapha	et	al.	(2007),	Bouamama	et	al.	(2009),	and	Zarrouk	et	al.	
(2005).	Thereby,	we	chose	the	sponge	Chondrosia reniformis,	which	
is	present	along	Tunisian	shores	according	to	the	work	of	Bouamama	
et	al.	(2009)	to	investigate	its	phylogeographic	structure	and	to	es-
timate the influence of natural oceanographic and biogeographic 
barriers on its distribution.

Chondrosia reniformis	Nardo,	1847	(Demospongiae,	Chondrosiidae),	
is	 a	 thick	 encrusting,	 smooth,	 and	 cushion-	shaped	 sponge.	 Under	
the	 effect	 of	 light	 intensity,	 its	 body	 colors	 vary	 to	white,	 brown,	
black,	and	sometimes	orange.	This	species	was	considered	to	have	
a	worldwide	distribution,	 including	the	Atlantic,	Pacific,	and	Indian	
Oceans	and	Mediterranean	Sea	(Di	Camillo	et	al.,	2011;	Idan	et	al.,	
2020;	 Lazoski	 et	 al.,	 2001).	 Chondrosia reniformis	 lives	 on	 shady	
rocky	coasts	at	a	depth	of	up	to	50	m	and	it	can	be	found	in	shallow,	
mesophotic,	and	oligotrophic	habitats	(Di	Camillo	et	al.,	2011;	Idan	
et	al.,	2020).

This demosponge is a gonochoric broadcaster sponge that also 
can	reproduce	asexually	via	drop-	like	propagules	(Di	Camillo	et	al.,	
2011;	 Riesgo	 &	 Maldonado,	 2008).	 Both	 the	 dispersal	 capability	
of the lecithotrophic larvae and the gamete's dispersal are proba-
bly	low.	Its	reproductive	cycle	is	believed	to	be	influenced	by	tem-
perature	(Idan	et	al.,	2020).	Among	areas,	oogenesis	appears	to	be	
varied	from	seasonal	 to	continuous,	 it	 is	obtained	before	the	tem-
perature	peak	around	May	to	August	(Di	Camillo	et	al.,	2011;	Riesgo	
&	Maldonado,	2008).	Spermatogenesis	in	C. reniformis seems to be 
rapid	and	probably	synchronized	with	the	last	developmental	stage	
of	the	oocytes	(Di	Camillo	et	al.,	2011).

The	incorporation	of	the	foreign	particles	to	strengthen	its	body,	
the	creeping	phenomenon	used	to	reproduce	asexually;	the	repro-
ductive	 cycle	 and	 the	 high	 production	 of	 collagen	 have	 been	 ex-
tensively	studied	for	Chondrosia reniformis	(Bavestrello	et	al.,	1995;	
Bonasoro	et	al.,	2001;	Di	Camillo	et	al.,	2011;	Fassini	et	al.,	2014,	
2017;	Nicklas	et	al.,	2009;	Pozzolini	et	al.,	2018;	Silva	et	al.,	2016).	
However,	few	genetic	studies	have	been	performed	on	this	species.	
Indeed,	Lazoski	et	al.	(2001)	have	investigated	the	levels	of	genetic	
variation	 within	 and	 between	 geographically	 distant	 populations	
of	 this	 species	 from	 the	 Atlantic	 (North	 and	 South	 America)	 and	
Western	Mediterranean	sea	coasts.

In	the	last	two	decades,	DNA	sequences	have	been	extensively	
used	 to	 understand	 the	 evolutionary	 history	 and	 spatio-	temporal	
genetic	divergence	of	 species,	 and	 it	 is	mitochondrial	DNA	 that	 is	
commonly	used.	 Indeed,	since	 its	maternal	 inheritance	without	re-
combination,	 high	mutational	 rate,	 shorter	 coalescence	 times,	 and	

J E L  C L A S S I F I C A T I O N
Biodiversity	ecology



    |  3 of 13MOUSSA et al.

high	 copy	 numbers	 in	 the	 organism	 (Avise,	 2000,	 2009;	 Palumbi	
et	al.,	2001),	this	genome	is	commonly	used	as	a	genetic	marker	to	
identify	the	taxa	as	well	as	to	investigate	phylogeographic	relation-
ships	in	most	marine	organisms	(Avise,	2000).	However,	no	nuclear	
or	mitochondrial	DNA	molecular	studies	have	been	undertaken	on	
C. reniformis	to	analyze	its	population	structuring	and	its	phylogeog-
raphy.	The	only	studies	carried	out	have	focused	on	the	cytochrome	
oxidase	subunit	I	DNA	marker	(COI)	 in	order	to	position	the	genus	
Chondrosia	 in	the	phylogenetic	tree	of	demosponges	(Riesgo	et	al.,	
2014;	Rot	et	al.,	2006;	Rua	et	al.,	2011;	Vacelet	et	al.,	2000;	Villamor	
et	al.,	2014;	Xavier	et	al.,	2010).

The	aim	of	this	study,	using	COI	mitochondrial	DNA	marker	is	to	
estimate	 levels	 of	 diversity	 and	 differentiation	 of	 Tunisian	 coastal	
populations	of	the	two	east	and	west	Mediterranean	basins,	to	an-
alyze	 the	effects	of	natural	oceanographic	and	biogeographic	bar-
riers	between	these	two	basins	and	finally	to	establish	for	the	first	
time	the	phylogeography	of	Chondrosia reniformis along its Tunisian 
coastal	distribution	(Figure	1).

2  |  MATERIAL AND METHODS

2.1  |  Sample collection and genomic DNA 
extraction

A	total	of	70	specimens	of	Chondrosia reniformis	(Nardo,	1847)	were	
collected,	between	January	and	September	2020,	from	eight	sam-
pling	 locations	along	the	Tunisian	coasts	 (Figure	2,	Table	1).	These	
samples covered the western and eastern board of the Mediterranean 
(Tabarka,	 Beja,	 Sousse,	 Monastir,	 Mahdia,	 Chebba,	 Mahres,	 and	
Kerkennah).	From	each	specimen,	100	mg	of	tissue	were	preserved	
in	100%	ethanol	and	stored	at	20	°C	for	subsequent	DNA	extraction.	

DNA	of	sponge	specimens	was	extracted	using	EZ-	10	Spin	Column	
Kits	 (Bio	 BASIC	 INC,	 Canada)	 as	 described	 by	 the	 manufacturer.	
DNA	quantity	and	quality	were	performed	using	a	spectrophotome-
ter	(Gold	S54T,	Shanghai)	and	agarose	gel	electrophoresis	(Sambrook	
et	al.,	1989).

2.2  |  Mitochondrial DNA amplification and  
sequencing

The	 mitochondrial	 fragment	 of	 the	 cytochrome	 oxidase	 subunit	 I	
(COI)	gene	was	amplified	using	a	pair	of	universal	primers	(COI-	Frwd:	
5'-	GGTCAACAAATCATAAAGAYATYGG-	3’;	COI-	Rev:	55'-	TAAACTT
CAGGGTGACCAAARAAYCA-	3’)	(Folmer	et	al.,	1994).	PCR	reactions	
were	performed	in	a	total	volume	of	25	μl including 2 μl	(25	ng/μl)	of	
DNA,	2.5	μl	of	PCR	Buffer	(10×	final	concentration),	3.2	μl of MgCl2 
(20	mM),	0.5	μl	of	each	primer	(10	μM),0.5	µl	of	dNTP	mix	(10	mM),	
0.1μl	(1	U/μl)	of	Taq	DNA	polymerase,	and	sterile	ddH2O.	PCR	ampli-
fications	were	carried	out	in	an	Applied	Biosystems®	2720	Thermal	
Cycler,	programmed	to	perform	an	 initial	denaturation	at	94°C	for	
2	min;	followed	by	35	cycles	at	94°C	for	50	s,	52°C	for	55	s,	and	72°C	
for	1	min;	and	a	final	extension	at	72°C	for	7	min	(Duran	et	al.,	2004	
with	modifications).	Amplicons	were	separated	on	1.5%	agarose	gels	
at	100	V.	The	agarose	gel	was	photographed	by	a	Compact	Digimage	
System,	UVDI	series	(Major	Sciences,	USA).

Amplified	 PCR	 products	were	 purified	 and	 sequenced	 (Sanger	
et	 al.,	 1977);	 sequences	 were	 aligned	 using	 ClustalW	 (Thompson	
et	al.,	1994)	implemented	in	Bioedit	(Hall,	1999).

2.3  |  Statistical analyses

Since	the	number	of	samples	from	each	 locality	 is	unequal,	we	di-
vided	 the	 sample	 into	 four	 groups	based	on	 geographic	 proximity	
(Beja/Tabarka,	 Monastir/Sousse,	 Mahdia/Chebba	 and	 Mahres/
Kerkennah).

The	 level	 of	 DNA	 polymorphism,	 the	 haplotype	 diversity	 (Hd; 
Nei,	1987)	as	well	as	the	nucleotide	diversity	(π;	Nei,	1987;	Tajima,	
1983),	 were	 measured	 for	 each	 group	 and	 for	 the	 total	 datasets	
using	DnaSP	version	5.10	(Librado	&	Rozas,	2009).	The	percentages	
of	 GC	 and	AT,	 the	 number	 of	 variable	 and	 parsimony-	informative	
nucleotides	sites	were	calculated	with	MEGA	version	7.0.18	(Kumar	
et	al.,	2016).

The	 demographic	 history	 of	 the	 Mediterranean	 population	 of	
C. reniformis was investigated. The mismatch distribution test was 
performed	 with	 DnaSP	 v5.10.01	 (Librado	 &	 Rozas,	 2009)	 for	 all	
datasets	 and	 each	 group.	 To	 study	 the	 hypothesis	 of	 population	
expansion,	 additional	 tests	 were	 performed	 using	 the	 total	 num-
ber of mutations: Tajima's D-	test	 (Tajima,	1989),	Fu's	Fs	 test	 (Fu	&	
Li,	1993),	raggedness	index	(rg)	and	Ramos-	Onsins,	and	Rozas's	R2	
test	(Ramos-	Onsins	&	Rozas,	2002).	These	analyses	were	executed	
using	coalescent	simulations	implemented	in	DnaSP	software,	with	
1000 simulated re- sampling replicates.

F I G U R E  1 Photo	of	Chondrosia reniformis	specimen	collected	by	
Wissem	Dallai	diver	from	the	Beja	locality	in	September	2020	at	10	
depth
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2.4  |  Phylogeographic analysis and Genetic 
differentiation

To infer the relationships of C. reniformis	haplotypes,	we	used	 the	
NETWORK	software	(Bandelt	et	al.,	1999).	Phylogenetic	reconstruc-
tions	were	 performed	 using	 (1)	Neighbor- Joining	method	 in	MEGA	
v6.06	(Tamura	et	al.,	2013),	(2)	Bayesian MCMC	(Markov	Chain	Monte	
Carlo	method)	analyses,	in	MrBayes	v.	3.2.2	(Ronquist	et	al.,	2012).	
Bayesian	analysis	was	performed	using	the	HKY	+	I	+	G	model,	as	
determined	by	the	JModel	Test	(Posada,	2008)	using	the	model	cor-
rection	based	on	AIC	 (Hasegawa	et	al.,	1985).	One	sequence	from	
Chondrilla nucula	 (GenBank	 accession	 numbers:	 EF519598.1)	 was	
used as outgroup.

The	 analysis	 of	 molecular	 variance	 (AMOVA)	 (Excoffier	 et	 al.,	
1992)	was	conducted	by	Arlequin	3.5	software	(Excoffier	&	Lischer,	
2010)	 to	 assess	 the	 level	 of	 genetic	 differentiation	 of	 Tunisian	
Chondrosia reniformis	 populations.	 Two	 supplementary	 AMOVA	
tests	were	carried	out:	for	the	first	analysis,	we	tested	the	genetic	
variation	between	the	four	groups	according	to	geographic	proxim-
ity:	 Beja/Tabarka,	Monastir/Sousse,	Mahdia/Chebba	 and	Mahres/

Kerkennah.	 The	 second	 analysis	 was	 performed	 to	 evaluate	 a	
comparison between the group Mahres/Kerkennah and the other 
localities.	 In	 addition,	 the	 genetic	 differentiation	 for	 both	 eastern	
and	western	Mediterranean	localities	in	Tunisia	was	tested	too.	All	
AMOVA	analyses	were	calculated	with	10,000	permutations	under	
null distributions.

The	 extent	 of	 genetic	 differentiation	 between	 populations	
was	estimated	using	 the	 fixation	 index	FST	and	the	gene	 flow	 (Nm)	
(Hudson	et	al.,	1992).	Values	were	calculated	with	1000	data	permu-
tations	using	the	software	DnaSP	v	5.10.01	(Librado	&	Rozas,	2009).

3  |  RESULTS

3.1  |  Genetic diversity and molecular evolution

A	 total	 of	 70	 C. reniformis	 COI	 sequences	 were	 obtained.	
Mitochondrial	sequences	varied	from	619	to	727	pb.	Among	them,	
30	different	haplotypes	were	specified;	63	sites	were	variable	and	
51	 were	 parsimony	 informative.	 Polymorphism	 analysis	 revealed	

F I G U R E  2 Geographic	distribution	of	
Chondrosia reniformis samples

Collection region Collection site N Geographic coordinates

Western	
Mediterranean

Beja 12 37°	06’	14”	N,	8°	58’	51”	E

Tabarka 8 36°	57’18”	N,	8°	45’	18”	E

Eastern	
Mediterranean

Monastir 18 35°	46’	40”	N,	10°	49’	34”	E

Sousse 6 35°	49’	34”	N,	10°	38’	24”	E

Mahdia 5 35°	30’	16”	N,	11°	03’	43”	E

Chebba 12 35°	14’	14’	N,	11°	6’	54”	E

Mahres 4 34°	31’	39”	N,	10°	30’	3”	E

Kerkennah 5 34°	39’	29”	N,	11°	04’	07”	E

All	datasets 70

TA B L E  1 Information	on	demosponge	
Chondrosia reniformis sampling including 
collection	region,	collection	site,	number	
of	specimens	(N),	and	geographic	
coordinates
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high	values	of	haplotypic	diversity	(Hd)	and	very	low	nucleotide	di-
versity	 (π).	The	percentage	of	GC	is	from	40%	to	42%,	and	the	AT	
percentage	is	from	58%	to	60%	(Table	2).

Selective	neutrality	was	estimated	by	Tajima	(1989)	and	Fu	and	
Li	(1993)	tests.	These	statistic	tests	were	negative	and	insignificant	
for	the	three	groups	(Beja/Tabarka,	Monastir/Sousse,	and	Mahdia/
Chebba)	and	all	datasets	(Table	3).	Selective	neutrality	tests	for	the	
group	 “Mahres/Kerkennah”	 were	 positives	 but	 insignificant.	 The	
overall	 (for	 the	entire	 sample)	negative	values	 resulting	 from	both	
tests	indicate	that	there	is	an	excess	of	rare	mutations	in	the	pop-
ulations	but	 the	excess	 is	statistically	nonsignificant.	Alternatively,	
these	values	can	result	from	balancing	selection	on	a	nearby	locus,	
although	studies	demonstrating	direct	or	indirect	selection	(through	
hitchhiking)	on	the	mitochondrial	genome	in	natural	populations	are	
rare	(Ruiz-	Pesini	et	al.,	2004).	Population	size	changes	or	“mismatch 
distributions” were tested for the four different groups and all data-
sets	(Figure	3).	Population	size	changes	showed	unimodal	distribu-
tion,	 for	 all	 tested	 localities	 and	 all	 datasets,	 suggesting	 a	 case	of	
populations	in	demographic	expansion.

We	also	calculated	Ramos-	Onsins	and	Rozas's	R2 and the rag-
gedness	 index	 under	 the	 demographic	 expansion	 model	 for	 each	
population.	We	found	that	all	populations	had	a	nonsignificant	rag-
gedness	 index,	which	 indicates	 that	data	has	 relatively	good	 fit	 to	
a	 model	 of	 a	 population	 in	 demographic	 expansion	 (Harpending,	
1994).

3.2  |  Phylogeography and genetic differentiation

The	 haplotype	 network,	 as	well	 as	 the	 biogeographic	 trees,	 were	
built to discover genealogical relationships between Chondrosia re-
niformis	haplotypes	in	Tunisia	(Figure	4).	Among	the	70	sequences,	
30	 haplotypes	were	 identified.	 Two	 clear	 haplogroups	 can	 be	 de-
fined:	 Hap	 I	 grouping	 three	 groups	 Monastir/Sousse,	 Mahdia/
Chebba,	and	Mahres/Kerkennah,	the	second	Hap	II	corresponding	to	
the	Tabarka/Beja	group.	It	is	a	clear	distribution	according	to	the	ge-
ographic	origin:	Western	Mediterranean	and	Eastern	Mediterranean	
coasts.	Haplotypes	H2	 (from	Beja)	 and	H10	 (from	Monastir)	were	
the	most	branched	haplotypes,	which	suggests	that	they	are	the	an-
cestral ones.

To	 test	 the	 phylogenetic	 relationships	 between	 specimens,	
Neighbor- Joining	 and	 Bayesian	 MCMC	 analyses	 were	 conducted.	
Both	analysis	built	trees	with	strong	values	of	bootstraps.	All	C. re-
niformis	 sequences	were	clustered	 into	 two	major	 clades,	 strongly	
supported.	 Median-	joining	 network	 analysis	 showed	 the	 same	
subdivision	 of	 our	 populations	 (Figure	 4):	Western	 versus	 Eastern	
Mediterranean.	It	is	noteworthy	to	mention	that	the	group	“Mahres/
Kerkennah” diverges from eastern ones in a single sub- clade.

The	AMOVA	test	of	Tunisian	C. reniformis sponge revealed that 
46.47%	(ΦCT =	0.464,	p <	.05)	of	the	genetic	variation	was	detected	
between	the	four	studied	groups	(Beja/Tabarka	vs.	Monastir/Sousse	
vs.	Mahdia/Chebba	vs.	Mahres/Kerkennah).	AMOVA	results	for	the	
western Mediterranean and the eastern Mediterranean localities 
showed that more than 44% of the variation was between these two 
groups	 (ΦCT =	 0.441,	p <	 .05	 (Table	 4));	 these	 haplogroups	were	
suggested	by	the	network	and	phylogeographic	trees.	“Mahres”	and	
“Kerkennah”	localities	are	parts	from	the	Gulf	of	Gabes,	this	region	
of	Mediterranean	is	well	known	to	have	extreme	environmental	con-
ditions	(Bejaoui	et	al.,	2004;	Ghannem	et	al.,	2011),	for	that,	we	test	
the	opportunity	to	have	a	specific	genetic	differentiation	in	this	area.	
AMOVA	results	revealed	that	more	than	73%	of	variation	occurred	
between populations within this group.

The entire pairwise comparisons of groups based on FST and 
Nm	were	 significant	 (Table	5).	The	FST values between group pairs 
were	 considerable,	 indicating	 a	 high	 interpopulation	 divergence.	
Moreover,	very	low	genetic	values	of	gene	flow	(Nm)	were	detected,	
indicating a remarkable differentiation among tested groups.

4  |  DISCUSSION

The	 cytochrome	 oxidase	 subunit	 I	 (COI)	 gene	 was	 amplified	 and	
analyzed	for	70	Mediterranean	Chondrosia reniformis.	Polymorphism	
results	 revealed	 very	 low	 nucleotide	 diversity	 (π).	 These	 results	
were	 congruent	 with	 previous	 studies,	 which	 reported	 low	 se-
quence	 variation	 for	 mtDNA	 in	 several	 sponge	 species:	 Crambe 
crambe,	Astrosclera willeyana,	Chondrilla nucula,	Suberites diversicolor,	
Ianthella basta,	and	Xestospongia	spp	(Andreakis	et	al.,	2012;	Becking	
et	al.,	2013;	Duran	et	al.,	2004;	Duran	&	Rützler,	2006;	Swierts	et	al.,	
2017;	Wörheide,	2006).	Moreover,	a	lower	nucleotide	diversity	was	

Collection site N Geographic group Nh Hd Π

Beja
Tabarka

12
8

Beja/Tabarka
(20)

15 0.952 0,00817

Monastir
Sousse

18
6

Monastir/Sousse
(24)

7 0.707 0.0033

Mahdia
Chebba

5
12

Mahdia/Chebba
(17)

4 0.713 0.00418

Mahres
Kerkennah

4
5

Mahres/Kerkennah
(9)

4 0.833 0.00714

All	datasets 70 30 0.939 0.00875

Abbreviations:	Nh,	number	of	haplotypes;	Hd,	haplotype	diversity;	π,	nucleotide	diversity.

TA B L E  2 Sampling	information	and	
diversity	measures	for	the	populations	of	
Chondrosia reniformis studied
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reported for other Mediterranean marine animals using the same 
COI	sequences	(π =	0.0022,	π =	0.0054,	π =	0.0043,	π = 0.0034 for 
Penaeus melicertus,	Palaemon elegans,	Arbacia lixula,	and	Eriphia ver-
rucosa,	respectively)	(Deli	et	al.,	2018;	Deli,	Kiel,	&	Schubart,	2019;	
Deli,	Mohamed,	et	al.,	2019;	Zitari-	chatti	et	al.,	2009).

Polymorphism	 results	 showed	 also	 that	 C. reniformis harbors 
high	haplotype	diversity	(Hd)	throughout	Tunisia	coasts	(Hd =	0.939).	

Compared	with	 the	previous	data,	 this	value	was	higher	 than	 that	
detected	 in	other	marine	sponges	 (Andreakis	et	al.,	2012;	Becking	
et	 al.,	 2013;	 DeBiasse	 et	 al.,	 2010;	 Duran	 et	 al.,	 2004;	 Duran	 &	
Rützler,	2006).	This	value	is	also	higher	than	that	detected	in	other	
marines	 species	 in	 Tunisia:	 Green	 crab	 (Deli	 et	 al.,	 2015,	 2017),	
Caramote	prawn	(Zitari-	chatti	et	al.,	2009).

Diversity	indices	Hd and π were calculated to estimate the genetic 
architecture of populations and retrace possible historical events 
that	may	have	acted	on	observed	genetic	diversity.	It	is	generally	ac-
cepted that small values of π	suggest	recently	diverged	populations	
due	 to	 founder	effects	or/and	bottlenecks.	Large	values	of	π indi-
cate deep genetic divergences between populations accumulated in 
isolation	over	long	periods	of	time.	According	to	Grant	and	Bowen	
(1998),	 the	 values	of	π	 vary	 from	0	 to	>0.1; the values close to 0 
indicate the absence or presence of slight divergences between the 
sequences	of	the	haplotypes,	while	values	>0.01	suggest	very	 im-
portant	divergences	between	haplotypes	and/or	a	secondary	con-
tact between differentiated populations. These authors introduced 

TA B L E  3 Tajima's	D,	Fu's	FS,	Ramos-	Onsins	and	Rozas's	R2 tests 
and	raggedness	index	(rg)	for	each	group	of	Chondrosia reniformis as 
well as for the entire sample

Geographic group D FS R2 Rg

Beja/Tabarka −0.83905 −6,489 0.160 0.092

Monastir/Sousse −0.95817 −2,531 0.161 0.091

Mahdia/Chebba −0.31203 −0,672 0.161 0.09

Mahres/Kerkennah 1.31944 1,071 0.163 0.089

All	datasets −1.14657 −12,487 0.096 0.053

F I G U R E  3 Pairwise	mismatch	distribution	among	groups;	(a)	Mahdia/Chebba,	(b)	Monastir/Sousse,	(c)	Beja/Tabarka,	(d)	Mahres/
Kerkennah	and	(e)	all	datasets
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a framework of four categories to describe the histories of some 
marine	organisms	according	 to	 their	 indices	of	diversity	Hd and π. 
The	values	of	the	diversity	indices	recorded	in	this	study	on	C. reni-
formis	from	Tunisia	(Hd =	0939,	π =	0.0087)	agree	with	the	second	
category	 proposed	by	 these	 authors	 (large	 value	 for	Hd and small 
value for π; Hd >	0.5	and	0.5–	0.8%	< π	≤	1%).	Thus,	we	can	consider	
that our sponge populations of C. reniformis	may	have	undergone	a	
bottleneck	followed	by	rapid	demographic	expansion	as	mentioned	
by	these	authors	for	this	category.	This	suggestion	is	strongly	con-
firmed	by	the	results	of	neutrality	tests	and	“mismatch distribution.” 
However,	the	lower	nucleotide	diversity	recorded	could	be	derived	

from	the	synergy	between	the	small	sample	size	per	population	and	
the	low	polymorphism	of	mitochondrial	region	analyzed.

The	important	number	of	haplotypes	between	localities	and	the	
high	genetic	differentiation	(FST	ranged	from	0.590	to	0.788)	of	the	
current C. reniformis	populations,	could	be	maintained	by	the	limited	
gene	flow.	In	this	sense,	very	low	genetic	values	of	Nm	 (0.10–	0.18)	
were	 detected,	 indicating	 a	 remarkable	 genetic	 structuring	 of	 the	
tested	 groups.	 It	 is	well	 known	 that	 gene	 flow	 in	marine	 inverte-
brates	is	usually	expected	to	be	related	to	larval	dispersal	capacity	
or	marine	bio-	geographic	barrier.	Larval	dispersal	capacity	strongly	
affects the geographic distribution and genetic differentiation of 

F I G U R E  4 (a)	Phylogenetic	trees	(Bayesian	Inference/Neighbor- Joining)	and	(b)	Median-	joining	network
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habitats	 (Deli	 et	 al.,	 2015;	 Kelly	 &	 Palumbi,	 2010).	 However,	 de-
creased	 time	 that	 larvae	 spent	 in	 plankton	 is	 usually	 correlated	
with	high	differentiation	among	populations	and	vice	versa	 (Avise,	
1994;	Scheltema,	1971).	Several	studies	have	reported	that	the	dis-
persal	ability	of	C. reniformis	larvae	is	very	low	(Lazoski	et	al.,	2001;	
Maldonado	et	al.,	2021).	The	pelagic	larval	dispersal	of	C. reniformis is 
very	short	and	lasts	only	a	few	days	or	even	a	few	hours	(Maldonado	
&	Young,	 1996;	Uriz	 et	 al.,	 1998).	 Though,	 using	 allozyme	marker,	
Lazoski	et	al.	 (2001)	have	revealed	high	genetic	similarity	between	
Chondrosia	 populations	 along	 Atlantic	 coasts	 of	 North	 and	 South	
America	(Bermuda	and	Brazil).	Indeed,	contrary	to	what	is	expected,	
these	 authors	 found	 a	 fairly	 high	 gene	 flow	 (Nm =	 1.27)	 between	
populations	 (Lazoski	 et	 al.,	 2001).	 In	 these	 conditions,	 this	 unex-
pected find can be related to anthropogenic transport that had been 
reported	for	many	marine	invertebrate	species	(Holland,	2000).

Even	 though	 the	 genetic	 diversity	 of	 sequences	was	 low,	 ge-
netic	 differentiation	 was	 strong.	 Both	 haplotype	 Network	 and	
biogeographic	trees	analysis	showed	a	structured	distribution	ac-
cording	 to	 the	 geographic	 origin.	 The	AMOVA	analysis	 also	 con-
firmed the partition of genetic variation among populations. The 
current C. reniformis populations are subdivided into two major 
clades:	 Western	 and	 Eastern	 Mediterranean	 coasts.	 The	 same	
pattern	of	genetic	differentiation	has	been	previously	observed	in	
other	Tunisian	species,	such	as:	the	caramote	prawn	Penaeus kera-
thurus	(Zitari-	Chatti	et	al.,	2008),	the	brackish	fish	Pomatoschistus 
tortonesei	(Mejri	et	al.,	2009),	the	green	crab	Carcinus aestuarii	(Deli	
et	al.,	2015),	the	banded	Murex	Hexaplex trunculus	(Marzouk	et	al.,	
2016),	and	the	black	sea	urchin	Arbacia lixula	(Deli	et	al.,	2017).	This	
pattern seems to be associated with the well- known discontinuous 
biogeographic	zone:	the	Siculo-	Tunisian	Strait,	which	separates	two	

Source of variation Fixation index
Sum of 
squares

Variance 
components

Percentage of 
variation

AMOVA	groups:	Beja/Tabarka	vs.	Monastir/Sousse	vs.	Mahdia/Chebba	vs.	Mahres/Kerkennah

Among	groups ΦSC =	0.655 111.532 1.51315 46.46157*

Among	populations	
within groups

ΦST =	0.815 36.817 1.14327 35.10428*

Within	populations ΦCT =	0.464 37.222 0.60036 18.43416*

Total 185.571 3.25677 100

AMOVA	groups:	Mahres/Kerkennah	vs.	Beja/Tabarka/Monastir/Sousse/Mahdia/Chebba

Among	groups ΦSC =	0.660 17.604 0.24507 7.59179*

Among	populations	
within groups

ΦST =	0.817 130.745 2.38263 73.81005*

Within	populations ΦCT =	0.452 37.222 0.60036 18.59817*

Total 185.571 3.94381 100

AMOVA	groups:	Western	Mediterranean	vs.	Eastern	Mediterranean

Among	groups ΦSC =	0.727 67.441 1.73960 44.10959*

Among	populations	
within groups

ΦST =	0.847 80.908 1.60385 40.66759*

Within	populations ΦCT = 0.441 37.222 0.60036 15.22282*

Total 185.571 3.94381 100

The	AMOVA	test	of	Tunisian	C.	reniformis	sponge	revealed	that	46.47% of the genetic variation 
was	detected	between	the	four	studied	groups.	AMOVA	results	for	the	western	Mediterranean	
and the eastern Mediterranean localities showed that more than 44% of the variation was between 
these	two	groups.	these	haplogroups	were	suggested	by	the	network	and	phylogeographic	trees.	
“Mahres”	and	“Kerkennah”	localities	are	parts	from	the	Gulf	of	Gabes,	this	region	of	Mediterranean	
is	well	known	to	have	extreme	environmental	conditions,	for	that,	we	test	the	opportunity	to	have	
a	specific	genetic	differentiation	in	this	area.	AMOVA	results	revealed	that	more	than	73% of 
variation occurred between populations within this group.

TA B L E  4 Molecular	variance	analysis	
(AMOVA)	of	Chondrosia reniformis,	
*p <	.05

TA B L E  5 Pairwise	comparisons	of	genetic	differentiation	of	Chondrosia reniformis	estimated	from	haplotype	frequency	(FST,	above	the	
diagonal)	and	gene	flow	(Nm,	below	the	diagonal)

Monastir/Sousse Mahdia/Chebba Mahres/Kerkennah Beja/Tabarka

Monastir/Sousse 0 0.605 0.703 0.66

Mahdia/Chebba 0.16 0 0.788 0.648

Mahres/Kerkennah 0.10 0.13 0 0.590

Beja/Tabarka 0.13 0.14 0.18 0
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water	bodies	circulating	with	different	hydrological,	physical,	and	
chemical	characteristics	 (Marzouk	et	al.,	2016).	The	hydrodynam-
ics was higher in the northern than in the southern Mediterranean 
coasts	 (Oueslati,	1993).	According	 to	Pinardi	 and	Masetti	 (2000),	
the	 eastern	 Mediterranean	 Basin	 is	 characterized	 by	 very	 weak	
circulation.

The	 Siculo-	Tunisian	 Strait,	 from	 Cap-	Bon	 (Tunisia)	 to	 Mazara	
del	Vallo	 (Sicily	 Island,	 southern	 Italy),	 has	 been	 inferred	 to	 be	 an	
oceanographic and biogeographic barrier between the two major 
Mediterranean	 sub-	basins	 (the	 western	 and	 eastern)	 (Bianchi	 &	
Morri,	2000).

On	the	other	hand,	Tunisian	coasts	are	distinguished	by	a	differ-
ence	in	temperature	and	salinity,	the	Eastern	coasts	being	warmer	
and	more	saline	than	the	Western	ones	(Serena,	2005).

In	addition,	the	Tunisian	coastline	has	different	habitat	textures	
varying	from	the	muddy	and	sandy	texture	in	the	East	to	the	rocky	
texture	 in	 the	West.	 Due	 to	 the	 different	 geographical	 range	 of	
habitats,	genetic	differentiation	between	the	western	and	the	east-
ern Mediterranean populations of C. reniformis has been observed 
along the Tunisian coastline. This genetic differentiation was con-
formed	to	the	apparent	morphology	of	C. reniformis collected along 
this	coastline.	Thus,	as	shown	in	the	photos	(Figure	5),	the	Western	
C. reniformis	 specimens	 exhibit	 a	 light	 color	 and	 flattened	 shape,	
which	contrasts	with	the	Eastern	specimens	of	dark	color	and	lobed	
shape.

Additionally,	 it	 is	 noteworthy	 to	 mention	 that	 the	 “Mahres/
Kerkennah”	group	diverged	from	Eastern	ones	in	a	single	sub-	clade.	
This	result	was	expected;	indeed	the	region	“Mahres	/	Kerkennah”	
belongs	to	the	Gulf	of	Gabes,	which	represents	a	particular	marine	
environment	seriously	 influenced	by	phosphate	 industries.	 In	 fact,	
since	 the	 industrialization	 in	 1970,	 the	 phosphogypsum	 discharge	
has	been	the	main	cause	of	the	disequilibrium	of	this	ecosystem	of	
this	important	gulf.	Currently,	three	regions,	Sfax,	Skhira,	and	Gabes	
generate phosphoric acid along the coasts and produce a large 
amount	of	phosphogypsum	as	a	waste	product	(Bejaoui	et	al.,	2004;	
Ghannem	et	al.,	2011).	The	degradation	of	the	ecosystem	in	these	
places	 has	 resulted	 in	 a	 degradation	 of	 water	 quality,	 a	 decrease	

in	 fish	 resources	and	a	 loss	of	marine	biodiversity	 (Hamza-	Chaffai	
et	al.,	2003;	Rabaoui	et	al.,	2014;	Salem	et	al.,	2015).

The genetic divergence of populations of Mahres/Kerkennah 
group	compared	to	those	of	 the	north	and	south	of	Siculo-	Tunisian	
strait in the sponge C. reniformis has not been observed for the other 
marine	 invertebrate	 species	 such	 as;	 the	 caramote	 prawn	 (Zitari-	
Chatti	et	al.,	2008,	2009),	 the	green,	and	marbled	Crab	 (Deli	et	al.,	
2015,	2017).	For	all	these	species	analyzed,	the	populations	of	Gulf	of	
Gabes	did	not	show	any	differentiation.	This	can	be	attributed	to	the	
dominant	sessile	phase	of	the	sponge	life	cycle	and	their	filter	lifestyle,	
which	puts	them	directly	in	the	face	of	selective	pollution	pressures.

Indeed	 pollution	 and	 climate	 change	 have	 created	 large	 dead	
zones	 in	 oceans;	 however,	 sponges	 are	 able	 to	 self-	organize	 and	
adapt	more	 than	 any	 other	 species.	 They	 develop	 in	 the	 environ-
ments	to	which	they	have	become	accustomed	over	the	millions	of	
years	of	their	evolution	(Leys	&	Kahn,	2018;	Müller	&	Müller,	2003).	
That	versatility	may	be	the	key	to	their	biodiversity	even	in	polluted	
environments.

In	 summary,	 Tunisian	 Chondrosia reniformis evolution was af-
fected	by	historical	vicariance	happening	in	Pleistocene	glacial	epi-
sodes.	The	variations	in	the	sea's	characteristics	probably	permitted	
the	difference	on	 either	 side	of	 the	 Siculo-	Tunisian	 Strait.	 Sponge	
gene	pools	are	under	the	control	of	physical	and/or	biological	factors.	
The short dispersal of pelagic larvae of C. reniformis and marine bio-
geographic barrier created high differentiation among populations.
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