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ABSTRACT  With increasingly fierce competition for jobs, the pressures on people have risen in recent
years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease.
Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure
measurement devices are relatively heavy. When multiple measurements are required, the user experience
and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection
module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into
a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use
a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and
ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach
that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an
improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of
blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion

association standards, which demonstrate the feasibility of our measurement system.

INDEX TERMS Pulse wave, ECG, continuous blood pressure measurement, wavelet transform.

I. INTRODUCTION
As the economy has developed, people’s diets and lifestyle
habits have become worse, indirectly raising the risks of
cardiovascular disease. Most importantly, hypertension is a
direct factor in developing this disease. The most recent
medical approach is to monitor the hypertension. Monitoring
is currently undergoing a major shift, gradually transform-
ing from manual measurements to machine measurements.
Importantly, machine measurements can accurately acquire
both blood pressure and other related data. In recent years,
the development of industrial internet [1], Internet of Things
is also used in health care such as in [2] and [3]. Moreover,
it can make precise judgments as described in [4].

Currently, however, there is a problem in the processing
of the machine-acquired data. At present, the main forms
of noninvasive blood pressure measurement are divided into

intermittent and continuous blood pressure measurements.
The intermittent blood pressure measurements include both
auscultation and oscillographic methods, while currently,
the continuous blood pressure measurement method primar-
ily involves pulse wave characteristics, pulse wave velocity,
tension measurement, and the volume compensation law [5].

The main advantage of the auscultation method is that
it is simple and convenient, but it has many drawbacks.
For example, the accuracy of the results are related to the
experience and hearing of the person taking the measurement
and are highly dependent on the measurement environment.
The oscillographic method improves these two shortcomings,
but tends to make the measured person uncomfortable and
increase the cuff pressure error [6]. The principle behind
measuring pulse wave characteristics involves an analysis of
the pulse wave parameters and arterial blood pressure results
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to establish a corresponding mathematical model of blood
pressure measurement [7].

The pulse wave velocity measurement method, also known
as the pulse wave conduction time measurement method,
is based on the blood pressure of the artery and can be
calculated indirectly by measuring the velocity of the pulse
wave. A large number of studies have shown a positive
correlation between arterial pulse wave velocity and blood
pressure.

In 1957, the American medical scientist Landowne sug-
gested that a certain linear relationship exists between the
pulse wave conduction time (PTT) and blood pressure [8].
In 1995, Hu Zhang and others in the blood pressure field
extracted the characteristic values of the pulse wave to estab-
lish the pulse wave characteristics for diastolic and systolic
blood pressure using a regression equation and used this
method successfully to detect the blood pressure of pregnant
women [9].

In 2006, Payne et al. [10], extended the previous
pulse wave measurement of blood pressure by adding
ECG signals as a reference to calculate the pulse wave
conduction time. Experimental results have shown that sys-
tolic blood pressure changes and pulse wave conduction
velocity have a good positive correlation; however, the cor-
relation between diastolic blood pressure and blood pres-
sure is not as high as that of systolic blood pressure.
Li et al. [11], at Zhejiang University, proposed a normalized
pulse wave model in 2008 and established a measurement
model for the relationship between cardiovascular system
parameters and blood pressure. Experimental results showed
that the model is consistent with the AAMI (American
Medical Instrument Promotion Association) measurement
standards and can be used for noninvasive continuous
measurement [11].

In 2016, the American scientist Chenxi Yang placed a
custom wearable sensor at the auricle. This sensor included an
acoustic device and a three-axis MEMS accelerometer. The
device successfully collected the pulse signals and ECG sig-
nals and then used the pulse conduction time to obtain a
blood pressure measurement. Experimental results revealed
that pulse wave conduction time and blood pressure have a
strong relation [12].

This paper describes the design of a continuous blood
pressure measurement system based on pulse waves. The
system hardware is small and unobtrusive. It can comprehen-
sively collect the body’s pulse wave signals and ECG signals,
effectively filter the noise, and complete eigenvalue detec-
tion. In this paper, the evaluating indicator and diagnostic
criteria of the pulse wave waveform are proposed for the
first time, overcoming the shortcomings of blood pressure
measurements using the original pulse wave velocity method.
The experimental results show that this new blood pressure
measurement model is more accurate than the original pulse
wave velocity measurement model. We also show that our
measurements are highly feasible. The main contributions in
this paper are as follows.
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o A hardware circuit is designed based on medical the-
ory concerning blood pressure pulse wave velocity
measurements.

« Second, for pulse wave analysis, this paper presents both
a pulse wave waveform evaluating indicator and a pulse
wave waveform diagnosis standard, and combines these
in an example of pulse wave waveform analysis and
diagnosis.

« Finally, to overcome the shortcomings of pulse wave
velocity blood pressure measurements, this paper pro-
poses a new blood pressure measurement model that
uses a stepwise regression equation combined with
the experimental data. The accuracy of the new
blood pressure measurement model was improved by
58% compared with the original pulse wave velocity
measurement method. The error range meets the AAMI
standard, demonstrating the system’s high feasibility for

continuous blood pressure measurements.
The rest of this paper is organized as follows: Section II

describes the medical principles and measurement systems.
Section III introduces the analysis and processing of the
physiological signals. Section IV explains the blood pressure
diagnosis algorithm, and Section V suggests future works and
concludes this paper.

Il. MEDICAL PRINCIPLES AND MEASUREMENT SYSTEM
A. PULSE SIGNAL

In the heart, when the ventricle contracts, blood from the
ventricle passes into the aorta. However, because of vascular
wall resistance, the blood cannot immediately flow into the
artery; instead, the blood temporarily remains in the proximal
aorta and vascular wall pressure increases. When the ventricle
is diastolic, the blood stops being injected into the aorta,
and the pressure on the vessel wall decreases. This pressure
reduction begins at the proximal end of the aorta, and pressure
waves spread to the distal aorta and the main arteries of the
various branches, forming a pulse wave [13].

A typical circle of pulse wave ————

FIGURE 1. Typical pulse wave.

Fig. 1 shows a common radial artery pulse wave waveform:
Point A is the starting point of the pulse wave and the
lowest point of the whole pulse wave. B is the highest point
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of the pulse wave, called the ““main peak height” by medical
professionals. The waveform between point C and point D
is called a tidal wave, E is called the lower gorge, and the
F points represent the height of the bow wave [14], [15].
In addition to these pulse wave feature points, there are some
typical pulse wave eigenvalues, such as the K value. The K
value refers to the complete wavefront area of the pulse wave
and contains all the information carried by the pulse wave,
which is highly important in clinical trials [14].
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FIGURE 2. A complete circle of typical pulse wave.

B. ECG SIGNAL

As the heart pulses, the cardiac muscle will be excited.
The weak current produced in this process is called the
ECG signal [16], which is extremely weak, and when directly
collected includes considerable noise. Subsequent circuit
amplifications also amplify the noise in the ECG signal.
Fig. 2 shows some typical ECG signals, which are mainly
divided into P, Q, R, S, T and U waves. The most important
of these is the QRS wave group or complex, which is also
the focus of this system. QRS waves are the most important
feature of ECG signals. The ECG signal amplitude changes
dramatically over a brief time period, and the differences
between the highest and lowest points of the ECG signal
amplitude are very large. Where the Q wave is a “trough”
before the peak, the R wave is ECG signal peak amplitude,
and the S wave is the band in the lowest point of the ECG sig-
nal amplitude [17].

C. MEASUREMENT SYSTEM FRAMEWORK

The hardware system primarily involves the use of the
HK?2000B pulse wave sensor to collect the pulse wave analog
signal. It uses a silver chloride-based flexible electrode to col-
lect the ECG analog signal, then performs filtering, amplifi-
cation, AD conversion and other preprocessing steps. Finally,
a smooth digital signal is output for subsequent processing.
Because the pulse wave signal frequency is low, and the
signal amplitude is small, the measurement is highly suscep-
tible to interference from external electromagnetic noise. The
ECG signal strength is weak. The ECG signal collected by the
ECG electrode ranges from approximately 50uV 5mV, and
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its frequency range is 0.05Hz-100Hz. Influences from exter-
nal factors interfere with the subsequent signal analysis and
processing. Interference commonly stems from noise sources
such as power frequency, EMG interference and baseline
drift. Therefore, after collecting the pulse wave and ECG sig-
nals, signal amplification and denoising are necessary. The
hardware system includes a signal amplification circuit, a pre-
class buffer circuit, a notch filter and a band-pass filter, which
perform initial hardware-based signal filtering. The overall
system framework is shown in Fig. 3.

Hardware Module

—r—e——————————————_———————— 1
| Pulse wave I
| collection |
| | e Sigial STM32 |

| processing module
TG module |
I collection |
| module I
- - -

Bluetooth Interface
Software Module

rr—=== |
I - . Modeling [
| | Pigiel Stepwise building of BP |
| ata regression meastTament |
[ Digital Digital Feature points ] BP I
data filtering extraction measurement |
- -

FIGURE 3. Measurement system framework.

D. PULSE WAVE SIGNAL ACQUISITION

The pulse wave propagates in wave form to the aorta and
its branch vessels as the blood travels. Therefore, the pulse
wave can be measured in the shallow surfaces of multiple
arteries; however, the pulse wave waveforms are different in
different positions. The radial artery located at the wrist is
easy to detect, relatively close to the heart, and is suitable for
determining a wealth of physiological information about the
cardiovascular system. This system uses the pulse wave at the
radial artery as the signal acquisition source. The system’s
signal acquisition device is the HK-2000B pulse sensor. The
sensitivity of this sensor is 2000uV /mmHg, the correspond-
ing blood pressure range is —50 +300 mmHg, and the sensor
can output a complete pulse wave voltage signal.

E. ECG SIGNAL ACQUISITION
The system consists of a flexible silver chloride electrode
attached to the surface of the human body to collect the
ECG signal. The system involves some other hardware
devices as well; the entire system performs initial filtering
and amplification processing of the collected signal, which,
overall, functions a a good preparation for the subsequent
signal processing and analysis.

The pulse wave and ECG signals collected from the sen-
sor first undergo the relevant hardware processing in the
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circuit module. These operations amplify the weak phys-
iological signals, and filter out some noise, but do not
achieve the expected result. Consequently, a further filter-
ing algorithm is required, all of these are described in the
next section.

Modules
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FIGURE 4. Software system signal processing.

Ill. ANALYSIS AND TREATMENT OF

PHYSIOLOGICAL SIGNALS

With the goal of collecting the pulse wave and ECG sig-
nal data, using the STM32 interrupt function at a certain
frequency can achieve the desired effect. Then, the data
must undergo some in-depth data processing, includ-
ing digital filtering, pulse wave and ECG signal fea-
ture detection, and waveform detection. Based on these
operations, mathematical modeling is performed based on
the conduction time of the pulse wave, the characteris-
tic point of the pulse wave and the waveform characteris-
tics of the pulse wave. The relevant flow chart is shown
in Fig. 4.
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A. WAVELET TRANSFORM
Traditional signal analysis is based on the Fourier transform.
A Fourier transform is a global transformation that has some
limitations regarding time domain signal information [18].
Thus, the wavelet transform method was proposed by the
French engineer J.Morlet. This method inherits and was
developed on the basis of the Fourier transform, which is an
emerging branch of mathematics. Wavelet transform plays an
important role in signal processing, image processing, voice
processing and other fields. The wavelet transform inherits
and extends the idea of Short-time Fourier Transform (SIFT)
localization, and overcomes its shortcomings. Compared with
a Fourier transform, a wavelet transform can effectively
extract valid information from both the time domain and
the frequency domain. Through expansion, translation and
other computing operations, wavelet transforms can solve
many of the remaining problems in analyzing signal functions
in multi-scale refinement analysis. Wavelet transforms can
be applied to both time windows and frequency windows.
The signal resolution is higher in the low frequency part of
the signal; in contrast, the time resolution is higher in the
high frequency part of the signal. Therefore, it is suitable
for detecting the details of transient anomalies entrained in
the detection signal. For this reason, we use the continuous
wavelet transform to detect extreme and abnormal signal
points [19]. In wavelet analysis, the continuous wavelet trans-
form of the signal is defined as in [11]:
1 [t x—t
Wof () = fF()ds(x) = < foy <—> dr (1)
S J_x S

In the preceding formula, S is the scale of the signal, also
known as the expansion factor, T is called the translation
factor, and ¥¢(x) = %(p(%) is the expansion and contraction
of the mother wavelet ¥ (x) on the S scale.

The reconstruction formula (wavelet transform inverse
transformation) is as follows:

1 +o00 +00 1 x —t
fx) = C_w/oo [m ;Wf(a, 131 <T> dadb (2)

Because the wavelet v, ,(x) generated by the mother
wavelet ¥ (x) during the wavelet transform must conform to
the analysis signal, the mother wavelet i (x) also needs to
satisfy the general function of the constraint:

+00
| < oc 3
—00

Therefore, the mother wavelet ¥ (x) is a continuous func-
tion. To satisfy the full reconstruction condition, ¥ (x), the ori-
gin must be equal to zero. Thus, we have the following
condition:

+00

¥(0) = Y(x)dx =0 )

To ensure that the signal reconstruction implementation
is numerically stable, in addition to signal reconstruction,
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it is required that the Fourier transform of the wavelet 1 (x)
satisfies the following conditions:

+00

A<) WQTw) 5)

In the formula 0 < A < B < o0, the signal frequency is w.

Wavelet filtering with time-frequency localization and
multi-resolution allows the choice of the wavelet base to
be both flexible and diverse, and is a suitable approach for
signal denoising because it not only removes noise but also
retains the signal details. Also useful in other industries such
as in [20] and [21]. We selected the method called Modu-
lus Maximum Reconstruction Based on Signal Singularity,
which was proposed by Mallat. The main idea is that signal
and noise propagation show different characteristics at differ-
ent wavelet transform scales. Based on this method, to obtain
the effect of baseline drift in the filtered signal, the coeffi-
cient closest to the baseline drift is removed from the origi-
nal signal by dividing the physiological signal into separate
components.

The baseline drift of the general frequency is relatively
low, generally within an approximate range of 0.15-0.6Hz,
while the pulse wave signal frequency mainly lies between
0.4 and 40Hz, and the normal frequency of the pulse wave
is concentrated in the 1-20Hz. Therefore, we can use the
wavelet transform method to filter out the baseline drift.

The main steps of wavelet transform to remove baseline
drift are as follows [22]:

(1) read the physiological signal data;

(2) perform wavelet decomposition of the physiological
signals;

(3) Extract the scale and wavelet coefficients of the layers
after decomposing the physiological signals;

(4) remove the coefficient closest to the baseline drift from
the original signal;

(5) perform waveform reconstruction.
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FIGURE 5. Pulse wave signal spectrum.

The wavelet transform removes the baseline drift of the
pulse wave. The original collected pulse wave signal is shown
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in Fig. 5. As shown, this group of pulse wave waveforms
exhibits a clear baseline drift.

The wavelet transform is used to eliminate the effects of
baseline drift. The first step breaks down the pulse wave. The
system uses the sym6 wavelet.

The low-frequency approximation coefficients of the orig-
inal pulse wave signal after wavelet decomposition are shown
in Fig. 6, while the high frequency approximation coefficients
are shown in Fig. 7.
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FIGURE 6. Low frequency approximation of a pulse wave.

The wavelet decomposition needs to be performed on sev-
eral layers that need to be determined based on the signal
situation. The hardware provides a pulse wave divided into
six layers. as can be seen from Fig. 6. The approximate
coefficients of the first to third layers are similar to the third.
When the pulse wave is a low-frequency signal, we cannot
find any obvious effect, but as the number of layers increases,
the frequency of the lower baseline drift gradually becomes
apparent by the sixth (bottom) layer. The sixth layer of the
low-frequency approximation coefficients is most similar to
the baseline drift shown in Fig. 7; consequently, we only need
to filter the approximate value of the sixth layer from the
original signal. Based on the above conclusions, we only need
to set the original sixth layer of the approximate coefficient
of the array set to a zero-based array in the program design to
achieve the desired effect of filtering the baseline drift.

The effect of filtering the baseline drift is shown in Fig. 8,
which shows the pulse wave after the wavelet analysis signal
processing, The original signal waveform information is no
longer distorted, and the wavelet processing largely elimi-
nates the effects of the original baseline drift. This provides a
good basis for the subsequent detection of the characteristic
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FIGURE 8. Filter the pulse wave after baseline drift.

pulse wave points, especially the starting points of the pulse
waves.

Using the same approach, we can also perform wavelet
filtering on the ECG signal to remove baseline drift inter-
ference. However, due to the particular characteristics of
ECG signals, the ECG signal amplitude is small; after the
circuit performs signal amplification, the original weak inter-
ference will also be amplified. Specifically, the result is
that there are more blurred edges in the signal. Therefore,
in addition to removing the interference after baseline drift,
we also need to perform simple ECG signal denoising. For
this system, we selected a relatively simple smooth denoising
operation.
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B. DETECTION OF PULSE WAVE CHARACTERISTIC

POINTS BASED ON WAVELETS

In this system, the main role of the ECG signal is to calculate
the pulse wave conduction time based on a reference point;
therefore, we need to calculate only the peak values. Because
of the nature of the ECG signal itself, the R wave is prominent
in the full ECG signal wave group; consequently, there is no
need to analyze the ECG signal using wavelet transforms;
we can obtain the peak values simply by setting a threshold
and comparing the values at the peaks of the ECG signal.
However, for the wave pulse signal, in addition to the peak
value, we also need to obtain the starting value, the tidal wave
height value, the lower gorge height value, the value of the
wave height, and so on. Detecting these pulse wave feature
points is the key to the system.

Feature point detection is performed on the pulse wave and
ECG signal waveforms to discover some of the special points,
such as the waveform signal at its extreme points (maximum
and minimum), inflection points, crests, and troughs, These
feature points are usually physiologically significant, and
they have a large influence on the subsequent waveform
diagnosis.

While many methods exist for detecting the characteris-
tic pulse wave points, considering the subsequent waveform
detection used here, there are three main approaches [14]. The
first approach is the differential method. Generally, feature
points exist primarily at extreme points and inflection points;
therefore, signal derivation can find these characteristic fea-
tures. This method is simple, involves less computation and
is easy to implement. However, it also has severe limitations
and works well only in the case of an ideal waveform. Noises
in the signal often form the extreme points; when using the
differential method, we cannot eliminate interference from
such noise points. The second approach is the computa-
tional intelligence method, which uses a neural network.
This method can find the point positions of features and,
compared with other methods, this approach has been bet-
ter researched, works at large scales, is more advantageous,
and produces results suitable for the subsequent waveform
analysis. However, this approach is also time-consuming and
requires a large number of samples for training to obtain good
results; therefore, the development process is more difficult.
The third approach uses wavelet transforms. This approach
is both accurate and is robust to interference. Its calculation
time is moderate, but its development is difficult.

Compared with other methods, the wavelet transform
method can meet the accuracy requirements for detecting fea-
ture points and also meets the time consumption constraints
of the system. Therefore, wavelet analysis was adopted in this
study to detect the feature points.

When the wavelet function is regarded as the first deriva-
tive of a smoothing function, the extreme point of the wavelet
transform of the signal corresponds to a sudden change in the
signal. When the wavelet function is regarded as the second
derivative of a function, the zero-crossing of the wavelet
transform also corresponds to the sudden point of the signal.
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FIGURE 9. Removing the pulse wave after baseline drift.

Therefore, we can use the wavelet transform system model
of the zero-crossing and local extreme points as a method to
detect the pulse wave signal feature points [23], [24].

There are three main steps involved in detecting pulse wave
characteristic points using the wavelet transform approach:

(1) perform wavelet decomposition of the pulse wave
signal;

(2) find the extremum and zero-crossing of the modulus of
the layer coefficients at different levels;

(3) find the signal value of the extreme value of the die and
the zero-crossing point.

Based on the waveform characteristics of the pulse wave
and the results of experiments with different wavelet bases,
for this system, we use the first derivative and the second
derivative of the Gaussian function as the wavelet basis.

After using wavelet analysis to eliminate the baseline drift
due to AC, we need to detect the characteristics of the pulse
wave. To recognize the starting point of the pulse wave,
the wavelet basis used in this system is the Gaussian wavelet
gausl. The wavelet signal is decomposed at the same time
as the pulse wave signal. Some examples of the result of
Gaussian wavelet decomposition are shown in Fig. 9:

As shown in Fig. 9, the starting point (trough) of the pulse
wave is located at the zero point of the wavelet transform
coefficient. As shown in Fig. 10, the wavelet transform coef-
ficient is zero, and the zero-crossing point also represents the
extreme value of the pulse wave signal, that is, the main wave
height, including the pulse wave at the height of the wave.

To accurately locate the trough corresponding to the zero-
crossing, you need to find a rule. By observing, we can see
that the beginning of the pulse wave start point corresponds
to the zero crossing before the minimum value of the wavelet
coefficients. Therefore, we need to find the minimum value
of the pulse wave corresponding to those coordinates, and
then search for the wavelet coefficient modulus correspond-
ing to the previous zero-crossing, which can be zero. There-
fore, the first step in finding the pulse wave valley is to find
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FIGURE 10. Wavelet Coefficient Zero-crossing and its corresponding
pulse wave signal.

the minimum value of the wavelet transform coefficients.
Finding the minimum value involves these specific steps.
First, find the wavelet transform coefficient of the small-
est value. Then, using that as a threshold, the modulus can
be found by multiplying the threshold value. Consequently,
by finding the minimum value of the wavelet transform coef-
ficient and then the minimum value of the abscissa corre-
sponding to the original pulse wave signal, you can find the
minimum value of the corresponding pulse wave signal point.
The results are shown in Fig. 11.
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FIGURE 11. Wavelet modulus minimum and its corresponding pulse wave
signal.

As shown in Fig. 11, the minimum value of the wavelet
coefficients corresponds to the maximum slope of the pulse
wave signal, and the wavelet signal modulus corresponds
to the first zero-crossing corresponding to the pulse wave
signal, then the pulse wave starting point (trough) occurs.
In the program design, the minimum value of the wavelet
coefficients and the zero-crossing of the wavelet coefficients
are stored in an array. The minimum value of the corre-
sponding array index before the wavelet coefficient of the
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zero-crossing array subscript is the starting point of the pulse
wave of the abscissa, through which the abscissa can be
found in the corresponding pulse wave trough. The results
are shown in Fig. 12.
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FIGURE 12. Pulse wave starting point and corresponding wavelet
coefficient zero-crossing.

Similar to the method for finding the starting point of the
pulse wave, it is necessary to identify the main wave and
the beat of the pulse wave through the zero-crossing of the
wavelet coefficients.

C. PULSE WAVEFORM DETECTION

The pulse wave waveform can be measured by a number
of indicators. In addition to characteristic pulse wave points
such as the starting point, the main peak, the peak of the
tidal wave, the height of the lower gorge, and the peak value
of the hit wave, there are several other important waveform
evaluation indicators.

(1) The kurtosis coefficient mainly reflects how sharp or
flat the top of the curves are in a digital waveform sequence.
In statistics, the second-order central moment represents the
variance of the data and can reflect the kurtosis of the data
sequence waveform to a certain extent. However, for a dig-
ital sequence with the same variance and its own kurtosis,
the second-order central moment is not sufficient. For exam-
ple, a fourth order center moment is required to describe
the sharpness of the top of the curves in a digital waveform
sequence.

N
Y (i —D)Y;
K = i=1 Ns4 (6)

In the preceding formula, K represents the kurtosis coef-
ficient, N represents the number of samples, S* represents
the standard deviation of the fourth power, M represents
the number of types of each frequency component in the
sample, f; represents the number of occurrences of each fre-
quency component, x; represents the value of each type, and
X represents the average of the samples.
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Because the kurtosis coefficient of the normal distribution
is 3, the waveform is considered to be at a peak when the
kurtosis coefficient K of the waveform exceeds 3, and when
the crest factor K of the waveform is less than 3, the waveform
is considered to be flat.

(2) The skewness coefficient is a characteristic number
(asymmetry of time) describing the deviation of a number
sequence distribution from symmetry. The formula for cal-
culating the skewness coefficient is shown in Equation 7.

N
20 =%
i=
T = NG @)

When a waveform is symmetrical, the skewness coeffi-
cient T of the waveform is 0; when the skewness coefficient T
is greater than 0, the waveform has a positive skew; conse-
quently, the right end of the waveform is thicker. When the
skewness coefficient T is less than 0, the waveform has a
negative skew and the left end of the waveform is thicker.

(3) The pulse coefficient represents the ratio between the
peak and the mean of the signal and is calculated as shown in
Equation 8.

V= Xmax 8)
X

The larger the kurtosis coefficient V is, the more obvious
the shock in the waveform is. In a pulse wave, this value
denotes that the heart ventricle has a greater ability to pump
blood.

In this system, the kurtosis coefficient of the evaluation
index is used as a primary metric. Specifically, the kurtosis
coefficient refers to the kurtosis coefficient of the waveform
between the starting point of the pulse wave and the descend-
ing gorge. A normal pulse wave kurtosis coefficient is large,
has a sharp peak, the rise time is very short, and the decline
period is relatively flat. The kurtosis coefficient of a normal
distribution is 3; the kurtosis of the pulse wave is steeper than
a normal distribution. Therefore, the kurtosis coefficient of
the pulse wave is greater than 3.

The skewness coefficient refers to the skewness coefficient
over the entire pulse wave period. A normal person’s pulse
wave has a steep front and a slow descent. The skewness
of a normalized distribution is O; the pulse wave descending
period is significantly longer than the listing period. There-
fore, the pulse wave skew coefficient is greater than zero:
under normal circumstances the it exceeds 0.5.

The pulse coefficient consists of two items, one is the
pulse coefficient of the main wave and the other is the pulse
coefficient of the red wave in Fig. 15. The height of the
normal pulse wave is between 1 / 3—1 / 4 the height of the
main wave, The main wave pulse coefficient of the wave is
greater than the pulse coefficient of the pulse wave.

D. PULSE WAVE WAVEFORM DETECTION

RESULTS AND ANALYSIS

This experiment was developed on the basis of the previous
pulse wave eigenvalue detection and extends it. The unit cycle
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FIGURE 13. Normal pulse wave waveform detection resuits.

of the pulse wave (the period from the starting point of the
pulse wave to the starting point of the next pulse wave period
is the unit cycle) is the research objective. Two representative
sets of pulse wave data were selected, and the test results are
shown in Fig. 13 and Fig. 14.

(1) Normal pulse wave waveform detection results

This group of data was acquired directly from the system
hardware sensors. After removing baseline drift and detecting
feature points, from Fig. 13 it can be seen that the set of
pulse wave eigenvalues are complete and that the kurtosis
coefficient, skew coefficient, main wave pulse coefficient and
pulse wave coefficient are all at normal levels; therefore, the
diagnosis results are also normal. This set of data is suitable
for subsequent diagnosis of blood pressure values.

(2) Abnormal pulse wave waveform detection results

Due to limitations of the experimental setup, the sample
data available from our system included no information about
hypertension or aortal sclerosis. Therefore, the abnormal
pulse wave of the system comes from a publicly available
database from MIT-BIH, led by the Massachusetts Institute of
Technology [25], and derived from the Beth Israel Hospital in
Boston, USA. This database contains extensive physiological
information, including pulse and ECG signals. We down-
loaded the MIT-BIH database of abnormal pulse wave files
and extracted the data according to the BIT-BIH format to
obtain the pulse wave information. The results are shown
in Fig. 14.

In Fig. 14, the pulse wave is missing from the typical
wave, the kurtosis coefficient and the re-wave coefficient are
low, the crest is flat, and the bounce wave is low; therefore,
the initial diagnosis of this pulse wave is not Normal. It would
be recommended that the subject be re-measured or go to the
hospital for further testing.

IV. BLOOD PRESSURE DIAGNOSIS ALGORITHM

After the initial filtering and the digital filtering performed
by the hardware, noise is suppressed in the pulse wave signal
and the ECG signal. Then, after the signal has undergone
wavelet transform, the number of extreme points, the largest
point and the maximum value of the ECG signal are obtained.
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FIGURE 14. Atypical pulse wave waveform detection results.
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FIGURE 15. The PTT pulse wave conduction time.

Next, the sampling frequency is used to derive the PTT pulse
wave velocity. Then, based on the pulse wave velocity and
blood pressure measurement statistical model recognized by
eh medical community, a new blood pressure measurement
model is proposed. Finally, we verify the pulse wave based
real-time blood pressure measurement system by comparing
it with the actual situation.

A. PULSE WAVE CONDUCTION TIME MEASUREMENT
Pulse wave velocity and blood pressure have a very close
relationship. The pulse wave velocity is the pulse wave con-
duction time. The pulse wave signal and ECG signal are
combined to measure the pulse wave conduction time. The
pulse wave signal includes a number of harmonic syntheses
and is highly impacted by the surrounding environment [26].
However, the ECG signal acquisition device is a flexible
electrode, which adheres tightly to the human body and is
easy to relocate. Therefore, the ECG signal pulse signal is a
more suitable reference point than the pulse signal.

The pulse wave signal and the ECG signal are recorded at
the same time, and the maximum values of the pulse wave
and the ECG signal over a single cycle are determined as a
reference point. These are the peak value of the pulse wave
signal in a single cycle, and the vertex of the R wave of
the ECG signal in a single cycle. After calculating the char-
acteristic points of these two signals, because the sampling
frequency of the two signals is the same, the sample time
difference between the two feature points can be deduced to
calculate the PTT pulse conduction time.

The PTT is the time difference between the two signals.
PTT is calculated as shown in Fig. 15, where Xpy represents
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the sequence number of the sampling point of the pulse signal
feature point in the cycle, Xgcg indicates the characteristic
point of the ECG signal, and fsumpiing is a serial number
indicating the sampling frequency.

Xpw — X,
PIT = 2PV ECG )

fSampling

B. PULSE WAVE CONDUCTION TIME ESTIMATION

OF BLOOD PRESSURE

In 1957, the American physician Landowne [8] suggested
that if the elasticity of blood vessels remained constant, there
is a positive correlation between the conduction time of the
pulse wave and the blood pressure within a certain range. The
specific relationship is:

BP — BPp = b x PTT — PTTy
= BP = BPp + b x (PTT — PTTp) (10)

Therefore, blood pressure BP and pulse wave conduction
time PTT have the following approximate relationship:

BP =a+b x PIT (11)

In the preceding equation, a and b are undetermined coeffi-
cients that can be determined by regression analysis. Based on
the analysis of the sample data, an improved blood pressure
model based on pulse wave conduction time is proposed
based on the pulse wave conduction time method of blood
pressure measurement. However, before proposing a new
blood pressure measurement model, it is necessary to verify
the relationship between the pulse wave conduction time and
blood pressure.

C. ESTABLISHMENT OF NEW BLOOD PRESSURE
MEASUREMENT MODEL BY

REGRESSION EQUATION

The relationship between the pulse wave conduction time
and blood pressure are verified through an experiment. First,
the pulse wave signal and ECG signal of the subject are
collected by the system. Then, the pulse wave conduction
time, the pulse wave characteristic value, and the pulse wave
waveform are calculated. At the same time, the blood pres-
sure of the subjects was measured again using a mercury
sphygmomanometer and an Aurora 2006-2 arm-type elec-
tronic sphygmomanometer. Finally, we can propose a new
blood pressure measurement model based on the regression
equation we established.

D. EXPERIMENT

The human subjects experiments were performed under
the approval of the Shenzhen University IRB. The human
subjects gave their informed consent before participating
in the trial. The subjects consisted of 10 young men,
2 young women, and 3 middle-aged men. From each group,
we collected 10 sets of data: 5 before exercise, 5 after
exercise. These measurements were collected five times
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per day. In addition, we collected continuous measurements
over 3 days. There were a total of 1800 data measurements.

The purpose of these experiments was to establish a new
type of blood pressure measurement using the regression
equation; thus, we needed to capture the data in different sce-
narios. Similar experimental models and experimental data
processing reference articles [27] and [28]. The selected test
times were after breakfast, before lunch, after lunch, before
dinner and after dinner: five time periods. The experiment
lasted two days. There were two test scenarios: resting state
and post-motion state. Excluding interference data (wave-
form abnormal data), there were 800 number of valid sample
data was 800 group, part of the data are list in the Table 1.

The source of the sample signal was collected mainly
from the pulse wave and ECG signals. After processing the
signal as described previously, we obtain the related statistics,
including the peak value of the ECG signal (R), the height of
the pulse wave starting point (A), the main wave height (B) of
the pulse wave, the starting point of the waveform of the pulse
wave, the end of the waveform of the pulse wave (Point D),
the pulse wave drop height (G), the height of the pulse
wave (F), the pulse wave conduction time sampling coordi-
nate difference (PTTS), the kurtosis coefficient (K), the skew
coefficient (T), the main wave pulse coefficient (V1),
and the buoy wave pulse coefficient (V2). Meanwhile,
we used third-party blood pressure measurement instruments
to measure systolic blood pressure (SP) and diastolic blood
pressure (DP).

According to Landowne [8], pulse wave conduction time
and blood pressure have the linear relationship BP = a %
PTT + b. Therefore, we first analyzed the relationship
between the pulse sampling time difference and the systolic
blood pressure (SP) and then linearly fit the measured data.

For a linear one-time fitting, the coefficients can be esti-
mated by the least squares estimation method. The least
squares method is a mathematical optimization technique that
minimizes the square of the error and finds the best match-
ing function of the data. Using the least squares method,
the unknown values can be easily obtained by minimizing
the squared sum of the errors between the obtained data
and the actual data. In this system when dp = 159.3,
d) = —1.589 the relationship between the systolic and pulse
wave conduction time sampling coordinates is as follows:

Sp = —1.589 % PTTS + 159.3 (12)

In linear correlation analysis, the correlation coefficient
between the two variables is generally described by the
correlation coefficient R [29]. When the trend change of
the two variables is the same, their relationship is called a
linear positive correlation, and when the two variables have
opposite trends, their relationship is called a linear negative
correlation. The mathematical expression of the correlation
coefficient is shown in Equation 13:

cov(x,y) _ Y —-x—»
0,0y VY -2 —9)?
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TABLE 1. Part of the pulse wave signal and ECG signal data.

R |A| B C D E F F/B K T V1 V2 | PTTS | SP | DP
98 | 83 | 160 | 129 | 122 | 82 | 95 | 0.59 | 2.37 | 0.75 | 1.44 | 1.08 26 110 | 67
97 | 81 | 158 | 124 | 120 | 92 | 100 | 0.63 | 242 | 0.74 | 1.42 | 1.07 27 111 | 69
104 | 71 | 225 | 205 | 180 | 93 | 104 | 0.46 | 3.31 | 1.24 | 2.34 | 1.31 20 128 | 74
91 | 76 | 135 | 117 | 107 | 89 | 97 | 0.72 | 2.74 | 0.83 | 1.31 | 1.04 27 109 | 73
136 | 98 | 155 | 134 | 112 | 96 | 108 | 0.70 | 3.89 | 1.82 | 1.46 | 1.09 28 118 | 73
106 | 94 | 253 | 194 | 173 | 104 | 113 | 045 | 3.97 | 1.41 | 2.41 | 1.61 18 135 | 79
106 | 63 | 244 | 151 | 116 | 93 | 106 | 0.43 | 3.68 | 1.26 | 2.24 | 1.35 22 125 | 70
137 | 90 | 154 | 130 | 113 | 101 | 108 | 0.70 | 3.97 | 1.74 | 1.46 | 1.08 27 119 | 72
106 | 79 | 141 | 120 | 110 | 98 | 102 | 0.72 | 4.67 | 1.59 | 1.43 | 1.03 27 126 | 78
94 | 75 | 195 | 130 | 123 | 97 | 102 | 0.52 | 427 | 1.43 | 1.91 | 1.05 28 119 | 74
103 | 89 | 151 | 112 | 103 | 90 | 98 | 0.65 | 4.45 | 1.50 | 1.42 | 1.02 26 129 | 76
117 | 87 | 158 | 117 | 111 | 103 | 110 | 0.70 | 4.34 | 1.45 | 1.47 | 1.15 29 113 | 60
106 | 63 | 244 | 151 | 116 | 93 | 106 | 0.43 | 3.62 | 1.25 | 2.21 | 1.31 21 127 | 71
99 | 87 | 153 | 113 | 96 | 92 | 102 | 0.67 | 432 | 1.46 | 1.47 | 1.14 28 116 | 60
95 |79 | 213 | 130 | 128 | 96 | 99 | 047 | 4.10 | 1.41 | 1.87 | 1.29 29 117 | 70
88 | 86 | 130 | 110 | 97 87 | 104 | 0.80 | 2.71 | 0.87 | 1.29 | 1.03 28 108 | 72
134 | 91 | 155 | 132 | 113 | 101 | 108 | 0.70 | 3.94 | 1.76 | 1.51 | 1.08 28 118 | 71
101 | 65 | 216 | 170 | 133 | 100 | 109 | 0.50 | 3.33 | 1.28 | 2.39 | 1.26 26 120 | 77
95 | 81 | 164 | 115 | 114 | 95 97 1059 | 408 | 1.45 | 1.59 | 1.06 26 114 | 67
95 | 72 | 162 | 115 | 107 | 96 | 102 | 0.62 | 4.10 | 1.42 | 1.48 | 1.03 26 116 | 70
104 | 80 | 154 | 116 | 109 | 103 | 106 | 0.88 | 4.09 | 1.30 | 1.44 | 1.06 31 104 | 66
98 | 98 | 133 | 124 | 117 | 105 | 116 | 0.87 | 3.04 | 1.02 | 1.24 | 1.01 29 106 | 66
114 | 83 | 159 | 122 | 118 | 82 | 95 | 0.60 | 2.78 | 0.88 | 1.47 | 1.03 21 110 | 69
109 | 92 | 136 | 114 | 102 | 97 | 102 | 0.75 | 3.15 | 1.12 | 1.25 | 1.05 26 124 | 87

In Equation 13, R represents the correlation coefficient,
which lies in the range: —1 < R < 1, and cov(x,y) is
the covariance of two variables, oyandoy, which represent
the standard deviations of the x and y variables, respectively.
When the correlation coefficient R is closer to 1, the degree
of correlation between the two variables is larger. In the
linear regression equation, in addition to the correlation coef-
ficient R, a more commonly used evaluation index is the
coefficient of determination, RZ, which is the square of the
correlation coefficient. The range of values is: 0 < R*> < 1.
As with the correlation coefficient R, the closer the coeffi-
cient of determination R is to 1, the greater the degree of
correlation is between the two variables.

The calculated coefficient, RZ = 0.6976, between the
two sets of PTTS variables, calculated from systolic pressure
SP and pulse wave conduction time, demonstrates a very
good correlation between the systolic pressure SP and the
coordinate difference PTTS of the pulse wave conduction
time.

The relationship between the pulse sampling time differ-
ence and diastolic blood pressure (DP) was analyzed, and the
measured data were linearly fitted. The results of the linear
fitting are: dy = 87.09 andd; = —0.5592.

Similarly, the coefficient of determination of difference
between the two variables diastolic blood pressure DP and the
pulse wave conduction time difference PTTS is R? = 0.0842;
there is not a large correlation between the two. In contrast,
the relationship between diastolic blood pressure and pulse
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wave conduction time is not particularly close either. As the
pulse wave conduction time increases, the change in diastolic
blood pressure is very small. It is also known from the litera-
ture [11] that the correlation between pulse wave conduction
time and diastolic blood pressure is relatively small. Thus,
in this system, the PTT pulse wave conduction time is used to
estimate systolic blood pressure, while diastolic blood pres-
sure requires more pulse wave parameters to be estimated.

Next, to perform further analysis, we calculated the corre-
lation between the parameters of the pulse wave and the dias-
tolic blood pressure DP to determine whether the correlation
coefficient R and the coefficient of determination R> show
a correlation between the partial parameters and diastolic
blood pressure. In cardiovascular system theory, in addition
to pulse wave conduction time to estimate blood pressure,
the pulse wave parameters can also be used to estimate blood
pressure [11-13]. In the previous section, we calculated the
parameters of the pulse wave using wavelet filtering and
wavelet transform. Next, we need to analyze the relationships
between the pulse wave parameters and the blood pressure.

The process of analyzing all dependent variables,
y, to determine whether they significantly affect an indepen-
dent variable, x, is often referred to as regression analysis.
Stepwise regression analysis is based on multiple linear
regressions. The main idea is to find the size of the effect
of a dependent variable y on the independent variable x by
gradually introducing the dependent variable to the regression
equation [29].
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The general expression of a stepwise regression equation
is defined as follows:

y=ag+aix; +axy +azxz + ... + apx;m + ... (14)

The main idea behind stepwise regression analysis is that
the variables are gradually introduced into the model. After
each introduction of an explanatory variable, it is necessary
to carry out an F test. When the new explanatory variable
is introduced by the explanatory variable, and becomes no
longer significant, then remove it. In this system, we grad-
ually introduce the characteristic parameters related to the
pulse wave signal to explore the relationship between these
characteristic parameters and blood pressure.

The purpose of an F test is to calculate the significance
of the variable test. Taking the regression equation as an
example, in Equation 15, to test the relationship between
x and y, we need only test whether Hy : b = 0 is established.

y=a+bx+6,e~N(O,02) (15)

In probability statistics, it is generally assumed that b = 0,
which shows that the linear regression model is reasonable.
We construct the sum of the squares of the variance of the
variable y:

n
Ly=Y 0i—y° (16)
i=1
Decomposing formula 16, we obtain

n
Ly =Y (vi—5i+5 -y’

i=1

=Y i =Y+ Y (haty) =% (A7)
i=1

i=1

n
Let U = Y (3; —3)%, where U is the sum of the squared
i=1
deviations of the regression value y; from its mean y, and
¥i = @+ bx; can be regarded as a change in the y value due

to the change in X, and is called the regression square sum.
n
Let Q = Y (y;—;)?, which reflects the sum of the squares

of the deviéﬁil()ns between the observed and the regression
values and reflects all the factors other than the linear effect
of x to y, the change in the y value, which is called the sum
of the squares of errors, or residual squares.

When Hy : b = 0 is true, there are

F:Lva(l,n—Z) (18)
Q/(n—12)

When the test level is «, the inspection rule is: if the sample
is calculated by F <~ Fy(1,n — 2) = «, then accept Hy;
otherwise, reject Hy.

The smaller the value of the general test level « is, the more
stringent the criteria for selecting the variable are. In regres-
sion analysis, there are two test levels; one is «;,, and the other
is gy . For this system, aj;, = 0.25, oy = 0.30.
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It is more convenient to establish a stepwise regression
equation using PASW Statistics 18 software. The regres-
sion coefficients of the pulse wave are analyzed by step-
wise regression analysis. Thus, the model is derived as a
binary primary equation for diastolic pressure as follows:
DP = 0.122C — 0.472 % PTTS — 3.275 % V1 4 80.484.

Through the previous analysis, we used the pulse wave
conduction time and pulse wave characteristic parameters
to establish the systolic and diastolic pressure measurement
equation. Systolic blood pressure is mainly calculated by the
pulse wave conduction time. According to the characteristics
of pulse wave conduction time and diastolic blood pressure,
a regression equation is established by stepwise regression
based on the theory of the correlation between pulse wave
eigenvalues and blood pressure. This method is a good solu-
tion to the problem that the original pulse wave conduction
time measurement of diastolic blood pressure is not accurate.
The systolic and diastolic blood pressure measurement equa-
tions are as follows:

SP = —1.589 % PTTS 4 159.3 (19)
DP = 0.122C —-0.472 « PTTS —3.275 % V14-80.484 (20)

E. COMPARATIVE EXPERIMENTS AND RESULTS

The comparative experimental devices used here was an
AiOuYue 2006-2 type arm electronic sphygmomanometer,
which meets the GB3053 standard, a Yuyao mercury sphyg-
momanometer, and the device we designed. Subjects in
the experiments were divided into two groups, blood pres-
sure data was collected from one group of subjects under
a resting state. These data were mainly used to compared
the difference between blood pressure values measured by
the traditional mercury sphygmomanometer, the electronic
sphygmomanometer and our own device. Data from the other
group were used to compare the pulse wave velocity measure-
ments based on blood pressure and the new blood pressure
measurement proposed by this paper. The test subjects con-
sisted of 4 young men, 2 young women, and 2 mid-age men.

Results analysis

(1) For the first experimental group we compared the three
different measurements collected by the different instruments
as shown in Table 2.

In Table 2, C and D respectively represent the systolic
and diastolic blood pressure measured by the mercury sphyg-
momanometer meter; E and F respectively represent the
systolic and diastolic blood pressure measured by the elec-
tronic sphygmomanometer, and G and H represent the mean
diastolic blood pressure and mean diastolic blood pressure.
I and J represent the proposed system’s measured systolic
and diastolic blood pressure, K is the diastolic pressure single
error, and L is the average diastolic pressure error.

The results of the first group of experiments showed that
the results of the proposed continuous blood pressure mea-
surement system were more accurate. Compared with the
results of the electronic and mercury sphygmomanometers,
the systolic blood pressure error ranged from 3 +2.5 mmHg,
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TABLE 2. Blood pressure measurements from three different instruments.

C D E F G H | J K L
number | times | SP | DP | SP | DP SP DP SP DP SP | DP
1 1 116 | 62 | 113 | 64 | 1145 | 63 1132 | 69.2 | -1.3 | 5.2
2 115 64 | 114 | 62 | 1145 | 63 1164 | 682 | 19 | 5.2
2 1 122 | 72 | 125 | 69 | 1235 | 70.5 | 1259 | 71.8 | 24 | 1.3
2 120 | 70 | 123 | 70 | 121.5 | 70 1259 | 68.8 | 44 | -1.2
3 1 104 | 66 | 102 | 73 103 | 69.5 | 1084 | 67.7 | 54 | -1.8
2 104 | 68 | 103 | 70 | 103.5 | 69 106.8 | 71.8 | 3.3 | 2.8
4 1 105 | 67 | 106 | 65 | 1055 | 66 | 106.8 | 71.1 | 1.3 | 5.1
2 107 | 69 | 104 | 67 | 1055 | 68 1084 | 70.6 | 29 | 2.6
5 1 17 | 72 | 115 | 73 116 | 72.5 | 1164 | 71.8 | 04 | -0.7
2 116 | 71 | 114 | 72 115 | 715 | 1148 | 70.6 | -0.2 | -0.9
6 1 124 | 80 | 122 | 81 123 80.5 | 1259 | 76.8 | 2.9 | -3.7
2 126 | 81 | 121 | 84 | 1235 | 82.5 | 1259 | 76.8 | 24 | -5.7
7 1 110 | 67 | 112 | 69 111 68 114.8 | 67.7 | 3.8 | -0.3
2 111 | 68 | 113 | 67 112 | 675 | 1164 | 68.2 | 44 | 0.7
] 1 134 | 83 | 134 | 83 134 83 129.1 | 784 | -49 | -4.6
2 135 | 81 | 132 | 82 | 1335 | 81.5 | 129.1 | 76.8 | -4.4 | -4.7
TABLE 3. Parts of the pulse wave signal and ECG signal data.
Number B C D Vi F G H 1 J K L
SP | DP SP SP | DP1 | DP1 | DP2 | DP2
1 119 | 71 | 132 | 191 | 26 | 1148 | -42 | 680 | -3 | 725 | 1.5
2 127 | 71 | 151 | 221 | 21 | 1259 | -1.1 | 71.8 | 0.8 | 753 | 4.3
3 104 | 61 | 116 | 1.44 | 25 | 1196 | 5.6 | 68.1 | 7.1 | 73.1 | 12.1
4 125 | 70 | 151 | 2.24 | 22 | 1243 | -0.7 | 71.2 | 1.2 | 748 | 4.8
5 112 | 69 | 124 | 1.42 | 27 | 1164 | 44 | 68.2 | -1.2 | 72.0 3
6 116 | 61 | 113 | 1.47 | 28 | 1132 | -2.8 | 66.5 | 45 | 70.8 | 9.8
7 132 | 79 | 194 | 241 | 20 | 1275 | -45 | 76.8 | -2.2 | 759 | -3.1
8 118 | 71 | 132 | 1.51 | 28 | 114.8 | -3.2 | 684 | -2.6 | 714 | 04
9 105 | 66 | 116 | 1.44 | 25 | 119.6 | 4.6 | 68.1 | 2.2 | 73.1 | 7.1
10 1151 69 | 124 | 142 | 27 | 1164 | 1.4 | 68.2 | -0.8 | 72.0 3
11 140 | 84 | 212 | 231 | 15 | 1354 | 46 | 81.7 | -2.3 | 787 | -5.3
12 108 | 70 | 110 | 1.29 | 29 | 113.2 | 5.2 | 66.0 -4 709 | 0.9
13 114 | 71 | 122 | 147 | 25 | 1179 | 39 | 69.8 | -1.2 | 725 | 1.5
14 128 | 74 | 205 | 234 | 20 | 1259 | -2.1 | 779 | 39 | 754 | 14
15 116 | 70 | 115 | 1.48 | 26 | 119.6 | 3.6 | 674 | 2.6 | 72.6 | 2.6
16 116 | 60 | 113 | 1.47 | 28 | 1148 | -1.2 | 66.2 | 6.2 | 714 | 114

and the diastolic pressure error ranged from 4 + 3mmHg,
This error range meets the United States Medical Instrument
Association’s AAMI standards of control within an 8mmHg
range.

(2) Based on the pulse wave velocity measurement of
blood pressure and the system’s improved pulse wave veloc-
ity blood pressure measurement results, in the comparison
shown in Table 3, B SP represents the systolic blood pres-
sure measured by the mercury sphygmomanometer, C DP
is the diastolic pressure measured by the mercury sphyg-
momanometer, D is the starting point of the tidal wave of
the pulse wave, V1 is the pulse wave coefficient of the
pulse wave, F represents the sampling slope of the pulse
wave velocity conduction time, and G and H SP respectively
represent the systolic blood pressure and diastolic pressure
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estimated by the designed continuous blood pressure system.
K DP2 indicates the diastolic pressure estimated by the orig-
inal pulse wave velocity method, and L DP2 is the deviation
between a method and the measured value of the mercury
sphygmomanometer. When L DP2 is negative, the estimated
value is smaller than the measured value, and when it is pos-
itive, the estimated value is larger than the measured value.
From the Table 3, our system clearly achieves bet-
ter accuracy than the original pulse wave velocity mea-
surement method. The mean of the absolute value of
diastolic pressure errors in this system is shown by the for-
mula | DP1 |= 2.86. The mean measured the other way is
shown by | DP2 |= 4.51. Therefore, accuracy was improved
by 58%, indicating that the parameters C, PTTS and
V1 introduced by the system are helpful in improving the
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measurement accuracy of diastolic blood pressure and that
the new blood pressure scheme proposed by this system is
feasible within a certain range.

V. CONCLUSIONS

As concern about cardiovascular disease rises in communi-
ties, companies have increasingly invested in research for
this field. This system is a realization of the exploration of
portable continuous blood pressure measurement systems;
it includes the design for a portable hardware circuit and
using a series of hardware and software operations on the
collected pulse wave signal and the ECG signal, performs
signal processing, analysis and diagnosis, and obtains good
results. The main innovations of this system are summarized
in the following three points:

(1) Compared with an inflatable blood pressure measuring
device, our designed hardware system is compact, portable,
and has better accuracys; it acquires, amplifies, and filters the
physiological signals.

(2) We propose the concept of pulse wave waveform
detection for the first time, then propose diagnostic criteria
using the pulse wave waveform. Combined with the analysis
and diagnosis of the experimental data, this approach pro-
vides a good foundation for the subsequent blood pressure
calculation.

(3) In view of the shortcomings of pulse wave velocity
measurements, we proposed a new blood pressure measure-
ment model, which is based on a stepwise regression equa-
tion. In the experiments, this model improved the accuracy
of blood pressure measurement. The result meets the AAMI
standard, suggesting that the continuous blood pressure mea-
surement system has good feasibility.
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