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ABSTRACT

Despite the low overall prevalence of individual rare diseases,
rare diseases involving the cochlea causing hearing loss occur
quite often. The aim of this work was to provide a clear over-
view of rare cochlear diseases, taking into account the embry-
onic development of the cochlea and presenting a systematic
overview of the different disorders. Although rapid biotechno-
logical and bioinformatic advances may facilitate the diagnosis
of arare disease, a rare disease is often suspected only after an
interdisciplinary work up of the patient. Despite the same ge-
netic variance as underlying cause of hearing loss, the pheno-
type of a rare inner ear disease can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Thus,
it becomes clear that the phenotype of the individual rare di-
sease cannot be determined exclusively by classical genetics
even in monogenetic disorders.
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Introduction

The cochlea is a highly complex microsystem. In its completely de-
veloped stage, it consists of the spiral ganglion (neuronal tissue
supported by satellite cells), the organ of Corti (neuroepithelium
for sensory perception), the stria vascularis (highly vascularized epi-
thelium thatis responsible forion transportation), and the otic cap-
sule (specialized bony tissue). Although the cochlea was initially
considered an immune privileged organ, the immune system (en-
dolymphatic sac) also contributes to the hearing process. Subsets
of tissues in the cochlea are also found in other organ systems. For
example, the brain, as well as cranial and peripheral nerves have a
comparable network structure of neurons and glial cells; a complex
and highly structured sensory epithelium such as the organ of Corti
is also found in the retina; the stria vascularis and the renal corpus-
cles are both metabolically highly active tissues that maintain ionic
balance. These structural similarities of the cochlea and other tis-
sues are reflected in the clinical observation that many diseases of
the inner ear may also affect other organ systems.

Diseases of the cochlea are usually associated with hearing loss.
Even if the degree of hearing loss can be well assessed subjectively
and objectively, the actual cause of hearing loss remains unknown
in most cases. Frequently, rare diseases that affect cochlea are often
undiagnosed and represent a particular challenge because many
are unknown to most general practitioners and specialists.

Amongst diseases affecting the cochlea, Many diseases of the
cochlea are classified as rare (see Table). In recent years, modern
molecular biological procedures could define the cause and patho-
physiology of most rare diseases. Investigating rare diseases on a
molecular level led to the identification of novel mechanisms un-
derlying the pathophysiology of cochlear dysfunction and leading
to the discovery of new therapeutic interventions.

The present article summarizes all rare diseases to the authors
known where primary involvement of the cochlea resulting in sen-
sorineural hearing loss is present (summarized in » Table 1). Further
rare diseases occurring primarily in other organ systems of the field
of oto-rhino-laryngology that may also affect the cochlea are de-
scribed in other articles of this publication (Weiss NM, Rare disea-
ses of the middle ear and the lateral skull base; Scherl C, Rare disea-
ses of the head and neck part Ill: salivary glands and facial nerve;
Dlugaiczyk ], Rare diseases of the vestibular labyrinth: of zebras,
chameleons, and wolves in sheep’s clothing). The table organizes
the diseases based on their pathophysiology or pathogenesis and
gives a systematic overview.

In depth knowledge of the embryonic development of the coch-
lea allows for a better characterization of rare cochlear diseases.
This isimportant especially for malformations and syndromic hea-
ring loss. Common molecular principlesthe embryonic develop-
ment of the cochlea are shared with other organs such as the heart,
kidneys, and eyes. These common principles are revealed especially
in syndromic cases.

We illustrate the complexity of the evaluation of rare diseases
with clinical examples. For example, the role of interdisciplinary
and even international collaborations for the diagnosis of the rare
vascular disease called Susac’s syndrome is emphasized. It further
becomes obvious how difficult and long the way may be for pati-
ents to get a definite diagnostic assessment. Further examples
(CHARGE syndrome, X-linked deafness) also illustrate the impor-
tance of interdisciplinary approaches, in particular with regard to
imaging in the context of hearing restoration with cochlear im-
plants.

The majority of the rare diseases show a high variability of their
phenotype despite having the same genetic defect. This makes the
classic approach of symptom-based diagnostics difficult. On the
other hand, overlapping phenotypic patterns can be found for
certain diseases even if different genetic defects are present. These
observations emphasize the importance of electrophysiology,
imaging, and in particular modern molecular diagnostics including
proteome analysis that might be the basis for advances in oto-
rhino-laryngology.

1 Embryonic Development and Morphology
of the Cochlea

Accruing knowledge about the molecular evolution of its pheno-
typic developmentis a fundamental component of understanding
an organ system. Knowing the molecular mechanisms leading to
the development of the inner ear may contribute to better charac-
terization and classification of rare diseases and malformations. In
the following paragraphs, the embryonic development of the inner
ear will be described.

Different tissue layers lead to the development of different por-
tions of the inner ear. The membranous labyrinth is derived from
the otic vesicle, which invaginates from the ectoderm whereas the
bony labyrinth derives from the mesenchyme.

Beside morphogenesis, the formation of the inner ear also re-
quires the specification of cellular fate. Morphogenesis of the inner
earis initiated from a flat thickening of the ectoderm leading to the
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development of the fluid filled spaces of the labyrinth and the coch-
lea. Specification of the cellular fate means the development of
neurons, sensory cells as well as numerous non-sensory cells of the
inner ear. A multitude of genes and thus induced biochemical pro-
cesses contribute to the development that have a highly complex
spatiotemporal expression pattern. The exact mechanisms playing
arolein this context are only incompletely understood until now.

1.1 Morphogenesis of the inner ear

Most cell types forming the inner ear of adults have their develop-
mental origin in the otic placode. The otic placode is the first step
of inner ear development (> Fig. 1; 3™ week, on the left). It is a thi-
ckening of the ectoderm, lateral to the rhombencephalon, that by
invagination into the underlying mesenchyme forms a vesicular
structure (> Fig. 1; 3 week), the otocyst (also known as the otic
vesicle) [1] (> Fig. 1; 374 week, on the right). The otocyst is divided
into a vestibular and a cochlear part (> Fig. 1; 4th week). The vesti-
bular compartment of the membranous labyrinth develops from
the dorso-lateral part of the otic vesicle and the cochlear structu-
res including the saccule develops from the ventromedial part [2].

The developing cochlear part extends to a tubular structure,
called cochlear duct (> Fig. 1; 5th week). During growth, the coch-
lear duct forms a spiral and in the 8t week of embryonic develop-
ment, the 2.5 turns are complete (> Fig. 1; 6t and 9th week). In the
9th embryonic week, the organ of Corti develops. At the beginning,
it appears as an arrangement of polygonal cells equipped with a ki-
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> Fig. 1 lllustration of the morphogenesis of the inner ear; modified
according to Gray’s Anatomy, 41t edition, 2016 [8], and according
to Cummings, 7th Edition, 2020 [9]; copyright Elsevier.

nocilium and numerous microvilli on their surface [3]. The micro-
villi disappear within the next weeks and are replaced by stereoci-
lia [4] that develop first on the inner and later on the outer sensory
hair cells. The formation of stereocilia runs from the cochlear base
to the apical area. It is the first morphological sign of sensory hair
cell differentiation. Next, the arrangement of the inner and outer
sensory hair cells becomes obvious. While one single row of inner
sensory hair cells develops, the number of rows of outer sensory
hair cells may vary between 3 and 4. In parallel, i. e., between the
9th and 13th embryonic week, the tectorial membrane develops
that covers the organ of Corti. The binding of the tectorial memb-
rane to the stereocilia seems to develop from an initially immature
stage, characterized by loose binding, to a more mature stage
where a firm connection between the outer sensory hair cells and
the stereocilia is formed. Up to the 15t week, the organ of Corti
appears as a solid cell mass that is covered by a thin tectorial mem-
brane.

All sensory hair cells develop a row of stereocilia, however, the
inner sensory hair cells seem to be more mature than the outer
ones with a characteristic U-shape in the configuration of the ste-
reocilia. At the 227 week, this process is completed, the stereoci-
lia have matured and show the same distribution pattern as in
adults.

At the end of the 11thembryonic week, the cochlear ductis sur-
rounded by cartilage and fluid-filled spaces develop that form the
scalae tympani and vestibuli by the 15th week. In the 18th week, the
tunnel of Corti (also known as internal tunnel, cuniculus internus)
has already developed from the solid cell mass of the organ of Corti
(named after the Italian anatomist Alfonso Giacomo Gaspare Corti,
1822-1876). Also, Nuel’s space (also known as middle tunnel, cu-
niculus medius; named after the Belgian physician Jean Pierre Nuel,
1847-1920) is fully developed and due to regression of Kélliker’s
organ (named after the German anatomist and physiologist Rudolf
Albert von Kolliker, 1817-1905), the tectorial membrane is freed.
Kolliker’s organ is a structure (greater epithelial ridge) that transi-
torily develops in the cochlea [5]. It consists of pillar like supporting
cells releasing ATP. This binds to the ionotropic purinergic recep-
tors (P2X receptors) of the inner sensory hair cells and leads to de-
polarization and calcium inflow. This process imitates the effect of
depolarization by sound and leads to periodic excitation of the spi-
ral ganglion cells during development. In addition, other trials could
show that Ca2*spikes in neonatal inner sensory hair cells induce
excitatory postsynaptic currents in the afferent dendrites of the
spiral ganglia cells [6]. After maturation of the cochlea and onset
of the hearing capacity, this ATP induced intrinsic activity of the
inner sensory hair cells disappears. It is assumed that this sponta-
neous activity of the inner sensory hair cells and fibers of the audi-
tory nerve is crucial for the neuronal survival of the cochlear nuc-
leus in humans before hearing onset, for the correct interconnec-
tion of the auditory pathway, and for the formation/refining of the
tonotopy in the auditory nuclei. In other words, this means that pe-
ripheral, non-sensory cells that are in Kolliker’s organ are respon-
sible for the maturation of the auditory pathway [7].

Between the 20th and 22" fetal week, the cochlear duct is al-
ready manifestly longer with a larger diameter; the stria vascularis
has developed its characteristic 3 cell layers, and the tectorial mem-
brane is well developed. Afterwards, the outer pillar cells and the
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outer sensory hair cells extend step by step, and Deiters’ and
Hensen’s supporting cells develop. At the end of the 24 trimester,
the cochlea already has a mature appearance while the synapses
of the efferent brainstem fibers are not yet fully developed.

The cochlear nerve develops from a group of cells (neuroblasts)
that derive from the medial part of the ear epithelium and pass into
the underlying mesenchyme. They form the VIIIth (vestibulococh-
lear) ganglion leading to the development of the 8th cranial nerve
[10]. The ganglion cells, out of which the auditory part of the VIlith
nerve will develop, organize around the modiolus to form the spi-
ral ganglion. Axons that develop from these ganglion cells migrate
centrally to the brain and peripherally to the organ of Corti. During
the 5th/6th week of gestation, the axons first form synapses with
the brainstem neurons. The dendrites only reach the basal turn of
the cochlea at the end of the 9th embryonic week and form con-
tacts with the developing sensory hair cells between the 10t and
12th embryonic week [11]. By the end of the 12th week of gestati-
on, the development of the classic afferent synapses between neu-
rons and sensory hair cells is initiated. Presynaptic bodies surroun-
ded with vesicles can first be observed at the base of the inner sen-
sory hair cell, with similar findings in the outer hair cells by the 13th
week. By the 14th fetal week, basal to apical synapse formation is
fully completed while the myelin-forming Schwann cells cannot be
detected until the 15t fetal week. At this early stage, the outer sen-
sory hair cells are exclusively innervated by afferent neurons. In hu-
mans, the formation of axo-somatic synapses with the efferent sys-
tem only takes place with the onset of the cochlear function, i.e.,
around the 20t week. This observation seems to reflect an evolu-
tionary process. At the beginning of synapse formation, the outer
hair cells only function to transmit auditory signals to the brain.
With the efferent interconnection at the end of maturation of the
organ of Corti, the outer hair cells begin to function in their role as
cochlear amplifiers. This process is more pronounced in the basal
and middle regions of the cochlea compared to the apical areas lea-
ving the apical outer hair cells innervated by mainly afferent rather
than efferent neurons. Looking at ciliogenesis during this time pe-
riod, it becomes obvious that the apical area of the cochlea remains
in an immature stage so that the cochlea should be correctly sub-
divided into a basal and an apical part based on the embryonic de-
velopment. As of the 22nd fetal week, myelination within the coch-
lea and thin myelin sheaths are already visible [12]. In the 24th fetal
week, the extension of the myelin sheaths to the exit of the nerve
from the temporal bone is revealed. After this time, myelination is
performed by oligodendrocytes that have already settled at the
nerve. Central myelination, however, has not occurred at this point
[13].

Between the 7th and 8th embryonic week, the auditory nuclei
and pathways are already fully developed. The neurons of the
brainstem containing information of the immature axons of the
hearing nerve can be identified at the border of the brainstem as
cochlear nuclei. A subset of these crosses in the brainstem and pro-
jects its extensions more centrally into the contralateral superior
olivary nucleus [14]. The remaining neurons extend to the lateral
lemniscus and from there into the inferior colliculus. The medial
geniculate body can be identified in the 8th embryonic week and is
innervated by the axons from the inferior colliculus. Between the

gth and 13th week, only growth rather than structural change is ob-
served in the brainstem. However, the neurons of the brainstem
are still very small and immature even if the nuclei are relatively
well developed. In the course of the second trimester, not only the
neurons increase in size but also develop cytoplasm and cell orga-
nelles. By the end of the 24th fetal week, more and more cytofila-
ments are present in the auditory neurons. Also, in the axons of the
brainstem neurons, accelerated maturation is observed in the se-
cond trimester. Neurofilament that can only be detected in few
neurons of the cochlear nerve at the end of the 16th week is clearly
visible at the end of the second trimester as bundled fascicles in the
within the cochlear nerve and the brainstem.

1.2 Molecular biology of the embryonic
development

The otic placode is one of the craniofacial placodes from which se-
veral structures develop (e.g., inner ear, the olfactory epithelium,
neurons of different cranial sensory ganglia, eye lens). All these pla-
codes develop in the pre-placodal region that is characterized by
the expression of a common set of transcription factors (Six1, Eya2,
and Foxi3) [15]. The otic vesicle (otocyst) develops from the pre-
placodal region at the level of rhombomeres 5 and 6, influenced by
the FGF signaling pathway [15]. The transcription factors Pax2 and
Pax8 are markers of the otic vesicle. Gene expression profiles within
the otic vesicle, in the adjacent tissue of the developing otic vesic-
le, within the borders between otic and adjacent tissue as well as
within the borders of the compartments into which the developing
otic vesicle may be divided schematically seem to be responsible
for the orientation of the inner ear (> Figs. 2 and » 3). The rhom-
bencephalon is arranged in segments that are called rhombome-
res. Each rhombomere is able to express specific genes. The otic
placode is adjacent to rhombomeres 5 and 6 so that this area seems
to play a crucial role in the axial organization as well as specification
of the fate of inner ear cells. Mouse mutants with defects of the
rhombencephalon in the area of the rhombomeres 5 and 6, where
the border between these rhombomeres is maintained, show nor-
mal formation of the inner ear. The border between both rhombo-
meres corresponds nearly exactly to the midline of the otic vesicle
and is possibly responsible for the specification of the otocyst cells
into the anterior and posterior compartments. Since both rhom-
bomeres develop very early, they may influence the development
of the anterior and posterior otocyst by means of different signals
[16]. Signal transmission between the cells of the otocyst and the
cells of the rhombencephalon, is enabled by the Eph/ephrin system
[17]. While the cells of the rhombomere 6 express high concentra-
tions of the ligands of ephrin B2 and B3, a high density of the re-
ceptors EphA4, A7, B2, and B3 are found in rhombomere 5[18, 19].
This means that the postero-medial cells of the otocyst that are in
direct contact with rhombomere 6 receive ephrin-mediated sig-
nals, whereas cells adjacent to rhombomere 5 do not. Probably
these signals are directly transmitted to the dorsal pole of the otic
vesicle where the cells of the otic placode are in direct contact with
the cells from the neural tube because no delimitation by a basal
lamina is present. This would mean right from the beginning that
distinct compartments form in the developing otocyst, i.e., the
antero-medial and the postero-medial compartment [16]. These
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> Fig. 2 The location of formation of the otic placode along the body axis is defined via the expression of fibroblast growth factors (FGF) from the
neural tube [20]. The release of FGF in the periotic mesoderm shortly before the development of the otic placode [21] leads to the expression of
several transcription factors that are necessary for the development of the inner ear [22, 23]. The orientation of the antero-posterior axis starts with
the expression of FGF10, lunatic fringe (Lfng), delta 1, neurogenin1 (Ngn1), and neuronal differentiation factor (NeuroD1) in the anterior region of
the invaginating otic placode. This gene expression pattern is limited to the anterior region of the otocyst. This limitation is mediated by Tbx1 that is
exclusively expressed in the posterior part of the otocyst. The dorso-ventral axis depends on the WNT and SHH expression in the rhomb encephalon.
WNT is expressed in the dorsal area and leads to upregulation of DIx5, DIx6, Hmx2, and Gbx2. These genes are responsible for the development of
vestibular structures in the dorsal region of the otocyst. On the other hand, there is the expression of SHH from the notochord that determines the
fate (auditory) of the cells in the ventral part of the otocyst by regulating the expression of the transcription factors Pax2, Ngn1, Lfng, NeuroD1,
Sox2, and Six1. BMP (bone morphogenetic protein) and SHH inhibit each other so that BMP assumes a significant role in the morphogenesis of the

inner ear. lllustration modified according to [24, 25].

compartments are responsible for the organization of the cells and
the inner ear specific development and orientation of the organ.
They are characterized by a specific gene expression profile, and
define and delineate the cell fate. This means that on one hand the
cellsin the respective compartments define the location and struc-
ture of the cochlea and the semicircular canals, the utricle, saccule
as well as endolymphatic duct, on the other hand the mixing of the
cells of different lines is not possible (> Fig. 3). Furthermore, pro-
bably the gene expression within the compartment decides which
sensory organ (organ of Corti, crista or macula) develops. Soluble
factors and cell surface molecules could then influence the cells
along the border between the compartments, but only those that
are directly adjacent to the border. Their diffusion seems to be pos-
sible but only in a radius of very few hundred micrometers. These
factors may be for example morphogens, which would mean that
elongating structures are induced along the border zone between
two compartments while morphologically localized organs such as
the crista may only develop at the border between three compart-
ments. Thus, an exact location may be specified.

1.3 Development of sensory hair cells

Different soluble factors are necessary for the induction of the otic
placode: FGF from the mesoderm and the neuroectoderm, SHH
from the notochord and the base plate of the neural tube, WNT
from the rhombencephalon as well as BMP from the ectoderm. The
anterior area of the otocyst where the neurosensory cells of the
inner ear develop is characterized by the expression of Lfng, Sox2,
and Eyal [31] while Tbx1 and Lmx1a are expressed in the dorsal
partin the non-sensory region. Within the prosensory region, the
proneuronal transcription factor Neurog1 is upregulated at an early
stage. It is not only necessary for the formation of neurons but it
also contributes essentially to the development of the sensory epi-
theliumincluding the sensory hair cells [32]. It belongs to the basic
helix-loop-helix (bHLH) transcription factors and is expressed to-
gether with Neurod1 by proliferating progenitor cells. The bHLH
gene Atoh1 (atonal-homolog-1)/Math1 (murine atonal homolog
1)/Hath1 (human atonal homolog1) is necessary for the develop-
ment of sensory hair cells [33, 34]. Furthermore, the POU domain
transcription factor POU4f3, the zinc finger transcription factor
Gfi1, and the homeodomain factor Barhl1 are needed for the main-
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> Fig. 3 lllustration of the compartments of the developing inner
ear and location of the different organs (organ of Corti: OC; saccule:
S; utricle: U; endolymphatic duct: ED; cristae of the semicircular
canals: AC, PC and LC) as well as the axes (AP: antero-posterior; DV:
dorso-ventral; ML: medio-lateral). The orientation in the antero-
posterior axis takes place before the orientation in dorso-ventral
direction [26]. The dorso-ventral axis is not defined until the formati-
on of the otocyst [27]. The axial specification already starts with
formation of the otic placode and depends on factors (> Fig. 2) that
are expressed by rhombomeres 5 and 6 of the rhombencephalon. As
soon as a rhombomere is rotated in ovo along the dorso-ventral axis,
the expression of the ventral genes Lfng, NeuroD1, and Six1 (see
Table, BOR syndrome) is shifted into the dorsal regional of the oto-
cyst, whereas the expression of dorsal genes like Gbx2 is inhibited.
This means that by rotation of the rhombomeres ventral areas of the
rhombencephalon may transform ventral areas of the otocyst into
dorsal otic tissue [26]. The formation of organs of the inner ear after
the stage of otocyst depends on the expression of Gata3 (see table,
Bakarat-HDR syndrome), Eya1 (see table, BOR syndrome), and
FGF3/8 (see table, Kallmann syndrome, which was shown in investi-
gations of Gata3, Eya1, and FGF3/8 deficient mice [28-30]. SHH (see
Table, incomplete partition and Carpenter syndrome) as well as Pax2
are cochlear genes because mutations in these genes allow only the
formation of a short, straight cochlear duct. Gbx2, Hmx2, Hmx3, and
WNT are considered as vestibular genes because a defect of one of
these genes leads to morphological defects of the saccule, utricle, or
the semicircular canals (illustration modified according to Brigande
et al., 2000 [16]).

tenance and formation of sensory hair cells [32]. The singular and
highly specific pattern of cell alignment in the sensory epithelium
of the inner ear where sensory hair cells and supporting cells are
arranged alternatingly allows the assumption that local cell com-
munication mechanisms override predetermined cell specification.
The notch-signaling pathway regulates the determination of the
cellular fate in numerous organ systems [35]. During the develop-
ment of the inner ear, notch (see Table; Hajdu-Cheney syndrome)
is initially distributed in the entire epithelium. With the differenti-
ation of the sensory hair cells, however, its expression is limited to
the supporting cells. Delta 1 and Jagged2, however, are synthesized
by the sensory hair cells of the murine cochlea about one day after
the onset of Math1 expression [36]. Hereby, the cells that are sup-

posed to develop into sensory hair cells express Jagged1, which in-
creases the notch activity in the neighboring cells and thus forces
them to adopt another cell type (the one of supporting cell). This
process is called lateral inhibition.

The formation of the apical mechanosensory region (the site
where the stereocilia are located) plays a vital role for the function
of the sensory hair cells. The stereocilia of the sensory hair cells are
packed with actin and other cytoskeletal proteins. They are orga-
nized in V-shaped ascending rows. The organization is uniform
throughout the entire organ of Corti while the tip of the V always
points into the periphery of the cochlear duct and is essential for
correct function [37]. In the context of orientation of the sensory
hair cell bundles, the WNT/planar cell polarity-signaling pathway
plays a crucial role. The asymmetric distribution of the planar cell
polarity proteins of frizzled (Fzd), disheveled (Dvl), Van Gogh
(Vangl), and prickle (Pk) leads to polarization of the sensory hair
cells. It could be shown that Fzd and Dvl proteins form a complex
on one side of the cell whereas Vangl and Pk arrange at the contra-
lateral side [38]. It is assumed that the subunit of the kinesin Il
motor complex, Kif3a, regulates the organization of the sensory
hair cells. In Kif3a mouse mutants, the kinocilium is missing, the
cochlear duct is shortened, and the shape of the sensory hair cell
bundles seems to be flattened [39]. Disorders of the cilia, so-called
ciliopathies, are characteristic for Bardet-Bied| and Senior-Loken
syndrome (> Table 1).

1.4 Development of spiral ganglion cells

During the development of the central nervous system, basic he-
lix-loop-helix (bHLH) transcription factors are responsible for the
specification of cells, whereas lateral inhibition by the delta/notch
system inhibits neuronal differentiation in neighboring cells by ac-
tivating the inhibitory effector genes Hes and Hey [40]. Several so-
luble factors such as WNT (wingless), FGF, BMP, and SHH (sonic
hedgehog) induce neuronal progenitor cells [41] expressing pro-
neuronal genes and allow the change of fate to glia formation via
activation of the COUP-TF/II transcription factor [42]. These basal
patterns of embryonic development of the nervous system can also
be observed in the context of ontogenesis of the inner ear. It can
be assumed that the entire otocyst is able to form neuroblasts. Al-
ready shortly after invagination of the otic placode, a delaminati-
on of neuroblasts occurs from the anterior and ventral region, that
is called neurosensory domain, and out of which the VIII. cranial
ganglion (also known as cochleovestibular ganglion) develops [15].
For differentiation of spiral ganglia cells, the proneuronal bHLH
transcription factor neurogenin1 (Ngn1) is needed. After an initial
overexpression of Ngn1, an upregulation of Neurod1 as well as
delta and notch genes occurs within the developing spiral gangli-
on cells while Ngn1 itself is downregulated [43]. The expression of
Gata3 also seems to play a crucial role for the formation of neurons,
in particular in the context of central connection. However, this
process could not be fully clarified up to now because Gata3 con-
tributes to the development of the inner ear already at an early
stage in embryonic development and a systemic deletion of Gata3
leads to impaired formation of the inner ear [44]. The development
of neurons further depends on the expression of POU4f1 (formerly
called Brn3a) [45]. During their development, the spiral ganglion
cells migrate from the cochlear duct to the spiral canal of the mo-
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comprises genetic

diseases, mitochondrial
diseases, and metabolic

syndromes [329]

diolus (Rosenthal’s canal). They reach their postmitotic phase al-
ready in the cochlear duct in a baso-apical gradient, i. e., first the
neurons of the basal and middle cochlear parts exit from the cell
cycle, later the ones of the apical parts. The outgrowing dendrites
arrange and retract in a way that the inner and outer sensory hair
cells are innervated according to a certain pattern. This process
seems to be regulated via the G protein RhoA-GTP and the rho-as-
sociated GTP binding proteins Rnd2 and Rnd3. It could be shown
that ectopic sensory hair cells are able to form connections with
spiral ganglion neurons [46] so that it may be expected that the
sensory hair cells attract the dendrites of the neurons. This might
be an explanation for the fact, why patients with severe malforma-
tions of the inner ear (e. g., incomplete partition) might nonethel-
ess benefit from cochlea implantation.

Interestingly, the region developing into the organ of Corti ex-
presses neurotropic factors before the differentiation of sensory
hair cells so that developing neurites grow into the organ of Corti
even if the formation of sensory hair cells does not occur [47]. How-
ever, if they reach the habenula perforata, they need a stimulus ori-
ginating from the sensory hair cells so that they can continue to
grow in direction of the greater epithelial ridge or the sensory hair
cells [48]. These factors may be semaphorin/neurophilini, Eph/
ephrin as well as Slit/Robo. Their expression defines a path along
which the dendrites may grow out [49]. Morphogens such as WNT
and SHHs are expressed so that a dorso-ventral gradient is formed
thatis necessary for the development of the cochlea [24]. Further-
more, a significant role for direction-oriented outgrowth of the
axons is attributed to WNT and SHH. In order to allow outgrowth
of the neurites, WNT and SHH are required together with the
growth factors FGF and BMP [48]. Type | and type Il spiral ganglion
neurons forward stimuli from the inner and outer sensory hair cells
in a central direction. It is still unknown when this innervation pat-
tern develops that is clearly seen in adults. However, this process
seems to be closely related to the peripherin expression in type Il
spiral ganglia neurons [50]. Another protein, Prox 1 required for the
coordination of the outgrowth of neurites of type Il neurons is ex-
pressed in the spiral ganglion cells but possibly also in the supporting
cells, along which the afferent fibers are expected to grow [51].

The expression of the neurotrophins BDNF and NT3 as well as
their receptors NTRK2 and NTRK3 regulate the survival and the out-
growth of the developing spiral ganglion neurons. In the develo-
ping cochlea, a BDNF-NT3 gradient is formed from apical into basal
direction [52]. If BDNF is deleted, a normal cochlea develops with
areduced neuronal population of about 7-15 %. However, if NT3
is missing, the complete innervation of the basal cochlea is missing
and is reduced in the middle turn [48]. Deletion of neurotrophin ex-
pression during development not only alters neuronal development
but also results in a clearly shorter cochlear duct and disorganized
rows of sensory hair cells similar to Neurod1 deficient mice [43].

1.5 Regenerative factors

Although the development of the inner ear is a highly complex pro-
cess that may be influenced by multiple factors, a targeted modu-
lation of single signaling pathways can be an approach for regene-
rative therapies. The REGAIN trial (REgeneration of hair cells with
a GAmma secretase INhibitor) aims at treating patients with mild
to moderate hearing loss by inhibiting the notch-signaling pathway.

Warnecke A et al. Embryology, Malformations, and Rare ... Laryngo-Rhino-Otol 2021; 100: S1-543 | © 2021. The Author(s). S25
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In this context, the notch inhibitor LY3056480 is used to stimulate
the regeneration of sensory hair cells in the inner ear that are lost
with increasing age [53]. Furthermore, the discovery of WNT-reac-
tive progenitor cells in the murine cochlea being positive for LGR5
[54] has revealed that hair cell regeneration is fostered by blocking
the notch signal [55] and is possible also in the adult cochlea of
mammals [56]. In the context of human embryonic development
of the inner ear, the expression of LGR5 increases from the 8th to
12thweek of gestation [57]. During this time, also the development
of the organ of Corti takes place. Interestingly, the LGR5 protein
complex that was found in the apical poles of the sensory epitheli-
um of the cochlea is limited to the sensory hair cells as of the 12th
week of gestation [57]. Current studies show that in particular pro-
teoglycans of the extracellular matrix contribute to the develop-
ment of sensory hair cells and spiral ganglion neurons by up- or
downregulating certain genes [58].

1.6 Embryonic development principles - correlation
with other organ systems

For proper organogenesis, organ-specific genes are upregulated
during embryonic development while genes that contribute to cell
division and general morphogenesis are downregulated [59]. At
later stages, genes that encode organ-specific functions are upre-
gulated [59]. Multi-species and longitudinal gene expression ana-
lyses show a high overlap of the transcriptome over the entire em-
bryonic development period and in particular of the brain, cerebel-
lum, liver, kidney, testis, and ovaries [59].

Next generation sequencing analyses reveal that there are spe-
cific groups of genes responsible for organ development, for cros-
stalk and interaction between the organs (organ pattern genes) as
well as house keeping genes that mainly coordinate metabolism
[60]. The specific biological properties of these organ pattern genes
may possibly give hints to new biomarkers or therapeutic targets
for precise and effective prognosis and treatment of complex and
in particular of rare diseases [60]. They might even explain how a
gene defect leads to the involvement of different organ systems.

The principles of embryonic development of the cochlea and the
auditory nerve show that the single developmental steps are com-
plex and depend on multiple factors. This becomes obvious espe-
cially in the context of malformations, which, in contrast to initial as-
sumptions, do not reflect the result of developmental arrest at cer-
tain stages. Different genes and gene families are responsible for the
development of the inner ear and many of these regulate the orga-
nogenesis of other systems too. For example, forkhead box transcrip-
tion factors play arole in the development of different organ systems
by regulation and post-translational modification of different genes
such as Neurod and Sox2 [61]. Sox2 as well as BMP, WNT, and FGF are
involved in cardiogenesis [62], otogenesis [63], skeletogenesis [64]
as well as retinal development [65]. Another group of evolutionarily
conserved factors that are involved in the development of numerous
organs (eyes, kidneys, heart, muscles, and inner ear) are the Eya (eyes
absent) molecules [66]. In particular, the carboxyl domain is conser-
ved in the Eya molecules that binds Six (sine oculis) proteins [66].
Eya4 mutations are for example the cause for a rare autosomal-do-
minantly inherited hearing disorder that is sometimes associated
with dilatative cardiomyopathy [66].

2 Non-syndromic Hearing Disorders

Non-syndromic hearing loss (NSHL) is inherited in an autosomal-
recessive (about 80 %) but also autosomal-dominant (about 15 %),
X-linked (2-5 %) as well as maternal/mitochondrial (1 %) fashion.
Some but not all known mutations are listed in » Table 1. Despite
our understanding of these mutation and their inheritance pat-
terns, a complete understanding of non-syndromic hearing disor-
ders is a major challenge due to the extreme clinical and genetic
heterogeneity [67].

Nearly 100 genes have already been identified that may lead to
non-syndromic hearing disorders. A comprehensive overview of
the genes that have been identified as of 2015 is found in the pub-
lication of Vona et al. [67]. A significant gain in knowledge about
the function of the mature cochlea results from the study of genes
that are mutated in cases of non-syndromic hearing disorders. The
signaling pathways that are involved in rare as well as in non-syn-
dromic diseases allow the identification of new pathophysiological
processes that lead to hearing loss. Variations of the genotype-phe-
notype correlation are known in the context of mutations of single
genes; and despite autosomal-dominant inheritance patterns, sib-
lings may have hearing loss of various severities [67]. Such varia-
tions also became apparent in syndromic diseases. Sometimes en-
tire organ systems are not affected (incomplete or reduced pene-
trance) even if the same gene mutation is found [68]. Secondary
genetic factors or environmental factors might be responsible for
the variations (epigenetics). Already in 1941, statistical methods
were applied to prove the existence of modifier genes in
Huntington’s chorea so that the concept of dominant modifier and
suppressor genes was made responsible for the high degree of va-
riability [69]. In fact, 2 loci for modifier genes have been identified
that might cause the variability of certain hearing disorders [67].

In spite of the variations (e. g., the onset of hearing loss may
occur very variably even with the same gene mutation), autoso-
mal-dominant hearing disorders often show a characteristic audio
profile [70] that may be helpful for diagnosis. Despite the remar-
kable progress in the identification of a multitude of gene defects
resulting in hearing loss, the mechanistic understanding in parti-
cular of non-syndromic hearing disorders does not suffice to allow
clarification of the pathophysiology or the development of effecti-
ve therapies.

The advent of modern molecular biological methods in combi-
nation with artificial intelligence and machine learning will will
bring about individualized precision healthcare for patients with
hearing loss. In addition, preventive measures, e.g., control of
structural, mutational, and epigenetic changes of the hearing dis-
order, are possible. This means that beside classic, meanwhile wi-
dely distributed and available omics technologies and imaging pro-
cedures for confirmation of the diagnosis, intensive diagnostics
have to be developed to identify e. g., posttranslational changes,
virus load or the inflammasome [71]. Screening technologies that
include evaluation of protein-protein interactions [72] also integ-
rate miRNA assessment in the perilymph [73] as well as analyses of
model cells or patient cells [74] will allow real personalized medi-
cine.
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3 Malformations of the Cochlea

Before the era of CT imaging, reports about inner ear malforma-
tions were based on post-mortem examinations; and first pioneers
such as Carlo Mondini (1729-1803) described changes like a mis-
sing apical turn and an enlarged vestibular aqueduct that is known
as Mondini dysplasia [75]. Eugene Michel (1819-1883), the Ger-
man otolaryngologist Arno Scheide (1864-1837), Gustav Alexan-
der (1873-1932) as well as the Swiss neurologist Paul Robert Bing
(1878-1956) lent their names for characteristic malformations of
the inner ear [76]. In the context of post-mortem investigations,
characteristic inner ear malformations of the bony (20 %) and the
membranous labyrinth (80 %) have been assessed. In 1974, the
American otologist Harold Frederick Schuknecht (1917-1996) pu-
blished his standard reference work about ear pathologies by lis-
ting beside malformations all other diseases concerning the coch-
lea based on histological examinations of a large temporal bone
collection.
Based on polytomography and sometimes CT scans, Jackler and
his colleagues Luxford and House published the first classification
of congenital malformations of the cochlea and the labyrinth [77]
in 1987 that is still clinically used today.
Nearly 100 malformed inner ears were classified as follows:

. Complete aplasia (Michel aplasia)

. Common cavity

. Cochlear aplasia with normally developed labyrinth

. Cochlear hypoplasia

. Incomplete partition (small cochlea with incomplete or missing
interscalar septum; normal or malformed semicircular canals)

u b~ W N =

The hitherto revolutionary aspect of this classification was the con-
cept of the embryonic developmental arrest to explain the diffe-
rent types of malformations [76]. However, the absence of inner
ear development in different stages of embryonic development as
pathomechanism of malformations can only explain some of the
observed changes. Even Jackler already mentioned in his work that
malformations indicate a disturbed rather than an absent develop-
ment [77]. The malformations were listed according to the week
of gestation when the embryonic development seemed to be dis-
turbed. Jackler and his colleagues substantiated this assumption
with the similarity of polytomographic findings and the (illustra-
ted) developmental stages according to Streeter [78]. The series
starts with the labyrinthine aplasia (Michel deformity, 37 week of
gestation), followed by the common cavity in the 4th week of ge-
station, cochlear aplasia in the 5t week of gestation, and severe
and mild cochlear hypoplasia in the early and late 6th week of ge-
station. The incomplete partition, classic Mondini malformation,
is the chronologically last malformation in the 7th week of gestati-
on. The classification performed by Jackler et al. differentiates
further a group A with missing or malformed cochlea (complete la-
byrinthine aplasia, cochlear aplasia, cochlear hypoplasia, incomple-
te partition, and common cavity) and a group B with normal coch-
lea (enlarged vestibular aqueduct, exactly defined dysplasia of the
semicircular canals consisting of an enlarged vestibulum and a
short but dilated lateral semicircular canal). Sennaroglu and colle-
agues enhanced the Jackler classification with regard to the surgi-
cal anatomy for cochlear implantation [79]. The incomplete parti-
tion type | (IPT1) describes a severe type with missing partitioning

of the entire cochlea with conspicuously enlarged vestibule and
undetectable modiolus. The outer borders of the cochlea are coar-
se and often bloated. An accompanying malformation of the ves-
tibule and the semicircular canals may be expected while an enlar-
ged vestibularaqueduct is not found. Clear delimitation of the com-
mon cavity is not possible according to the used definitions. The
wide transition from the cochlea to the vestibule characterizes also
IPT1, which is reflected in the synonymous term of cystic coch-
leovestibular malformation [80-82]. The common cavity has been
described as malformation with a common cavity of the cochlea
and the vestibule that are connected via a wide transition. This de-
finition that was originally coined by the histological report of Ed-
ward Cock from 1838 [83] is not sufficient for a clear delimitation
against incomplete partition type I. The result is an unclear use in
the literature. Similar to the enlarged vestibular aqueduct that may
be found in numerous other malformations as accompanying sym-
ptom, the modiolus is regularly not defined by CT scan in its typi-
cal form in cases of X-linked deafness and IPT1. Today, the malfor-
mation originally described by Mondiniis understood as the incom-
plete partition type 2.

The aspect of the classification away from the developmental
arrest theory to multifactorial genetic defects isillustrated in a re-
view article about cochlear implantation in children with coch-
leovestibular malformations [84]. According to Papsin et al., the
genetic coding of the murine otocyst (> Figs. 2 and » 3) mostly ex-
cludes the hypothesis of developmental arrest of a single develop-
ment pathway [84]. Instead, possible multiple distinct pathways of
the inner ear development are described. The identification of the
genetic signature of single malformations and the correlation with
radiological findings crucially changes the understanding of the
pathogenesis in this field.

3.1 X-linked deafness DFN3, Gusher-associated

The hearing loss defined as X-linked deafness shows a characteris-
tic CT scan (incomplete partition type 3, IPT3) with a widely open
connection between the cochlea and the internal auditory canal.
The fundus of the internal auditory canal is dilated (> Fig. 4). The mo-
diolus and the cribiform plate are missing so that a direct transition of
the perilymph of the inner ear and the liquor in the subarachnoidal
space is found. Further characteristics are the corkscrew-like ap-
pearance of the cochlea, dilated nerve canals of the facial nerve and
the posterior ampullary nerve from the inferior vestibular nerve (in
the singular canal) as well as coarse protrusions at the vestibule.
Also a small, mostly completely bone surrounded endolymphatic
sacis observed.

Clinically, X-linked deafness presents as severe mixed conduc-
tive and sensorineural hearing loss in both ears. In 1971, Nance
et al. described first a congenital fixation of the stapes footplate in
X-chromosomal combined hearing loss and gusher [85]. The open
connection to the cerebrospinal fluid leads to leakage during stapes
mobilization, so-called gusher. Female carriers are described, how-
ever, only a low number of anatomical conspicuities are found in
the CT scans and the hearing loss is clearly milder [86].

In some cases, the provision with hearing aids is sufficient, but
often cochlear implantation is indicated. Surgically, the insertion
of the electrode array is a particular challenge because it may ea-
sily reach into the internal auditory canal due to the open connec-
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> Fig. 4 Volume rendering from the T2 dataset of an MRI of a pati-
ents with X-linked deafness. A typical corkscrew-like picture of the
cochlea (white arrow pointing to the basal turn). The fundus (ar-
rowhead) of the internal auditory canal is dilated.

tion (> Fig. 5). Intraoperative cone beam computed tomography
is a very useful tool in this context. Speech understanding after
cochlearimplantation is good and comparable to patients without
inner ear malformation [87, 88].

In 1995, Kok et al. were the first to describe the location of the
mutation on the gene POU3F4 [89]. Since then, more than 63 cau-
sal mutations on the POU3F4 gene (DFNX2) have been reported,
among them 44 point mutations and various deletions [90].
POU3F4 is expressed in the developing neural tube and later espe-
cially in the areas of the brain, supraoptically and paraventricularly
in the hypothalamus nuclei. Already in 1982, Myhre et al. reported
about a recessive X-linked disorder with congenital deafness and
hypogonadism [91]. The patients of our own department have ha-
martomas of the hypothalamus in more than 90 % of the cases that
are characterized by hypogonadotrophic hypogonadism in cont-
rast to the usual clinics in the context of hamartomas that are as-
sociated with laughing fits and precocious puberty [92]. Siddiqui
et al. described hypothalamic malformations in patients with X-
linked deafness and IPT3 so that these may be classified as syndro-
mic malformations [93].

X-linked deafness with an identified gene defect in POU3F4 is
not the only hearing disorder associated with mutations identified
on the X chromosome. Altogether, they make up about 1-2 % of
syndromic and non-syndromic hearing disorders. Up to now, 6 loci
and 5 genes have been identified for non-syndromic hearing loss
and at least 15 for syndromic hearing loss [94], among them Nor-
rie syndrome, Cornelia-de-Lange syndrome, Fabry syndrome, Al-
port syndrome, STAR syndrome, PIGA syndrome, and X-linked ad-
renoleukodystrophy, just to mention a few syndromes that are all
considered as rare diseases.

3.2 Complete aplasia of the semicircular canals and
CHARGE syndrome

The complete aplasia of the semicircular canals is the main criteri-
on of CHARGE syndrome, which may also occur as isolated symp-

tom. It has also been described in combination with Wildervanck,
Noonan, Goldenhar, or VACTERL syndrome [95, 96]. The first de-
scription was made in 1979 independently by Hall and von Hittner
so that the disease is known under the name of Hall-Hittner syn-
drome. The acronym CHARGE, however, was suggested by Pagon
etal.in 1981 [97]: Coloboma, Heart defects, choanal Atresia, Re-
tardataion, Genitourinary and Ear abnormalities. The criteria ap-
plied today were suggested by Blake et al. in 1998 and revised by
Verloes et al. in 2005 [98]. Verloes emphasized in particular the
three Cs as main criteria: coloboma, choanal atresia, and hypo-/
aplasia of the semicircular canals. Depending on the number of the
fulfilled criteria, the difference is made between typical, partial,
and atypical CHARGE syndrome. However, only the presence of a
few criteria is required for the diagnosis. The phenotypes in CHAR-
GE syndrome are protean. Regarding the main criteria, ear malfor-
mation is observed in 95-100 %, 90 % occurring in the inner ear
[99], followed by colobomain 90 % of the cases and neural malfor-
mations especially of the facial nerve in 50-90 %, depending on the
literature. The diagnosis of complete aplasia of the semicircular ca-
nals (SCC aplasia) is made based on imaging by means of comput-
ed tomography. Among the inner ear malformations, it represents
a particularity because the phylogenetically older part of the laby-
rinth is missing. Accordingly, severe genetic alterations are present
that become obvious due to the described multitude of associated
malformations of the eye, midline structures of the facial skull, me-
diastinal malformations (cardiac and esophageal ones, possible thy-
mus aplasia), and malformations of the efferent urinary pathways
and genitals that all belong to different non-adjacent embryonic
territories. CT scan and MRI of the temporal bone is the imaging
technique of choice for existing hearing disorders in order to exclu-
de possible inner ear malformations. CT scan of the temporal bone
reveals the complete aplasia of the semicircular canals including
the utricle (> Fig. 6). The visible vestibule is small, mostly comma-
shaped, and contains only the saccule belonging to the inferior part
(» Fig. 7). The cochlear mostly has a reduced number of turns (hy-
poplasia). Missing separation of the scalae may be an accompany-
ing finding. In frequent neural hypo- or aplasias, also the internal
auditory canalis narrow. In MR, the depiction of the nerves is per-
formed by means of high-resolution T2 sequence. The facial nerve
and the vestibulocochlear nerve may be completely missing (4 % of
the cases); however, mostly a facial nerve is found and the hypo-
and aplasia concerns more frequently a part of the vestibular nerve
than of the cochlear nerve. Another accompanying malformation
in the area of the temporal bone is a persisting petrosquamous
sinus in up to 80 % of the cases. Itis a surgical challenge in the con-
text of cochlear implantation like a missing oval or round window
and a small middle ear. An aberrant course of the facial nerve in the
middle ear can also be observed. In rare cases, the petrosquamous
sinus may perform the venous drainage of the intracranial space
from the transverse sinus. Furthermore, in a small percentage the
venous exit occurs via the postglenoid foramen dorsal of the tem-
poromandibular joint. In these cases, only a very small jugular fo-
ramen is found.

In some cases, also coloboma of the eye is directly seen in the
imaging. It is another of the three Cs, the main criteria according
to Verloes of 2005. Coloboma is a congenital cleft of the iris, lens,
and ocular fundus. In the last mentioned case, it can be made visi-
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> Fig. 5 Patient with X-linked deafness. Axial CT scan of the temporal bone in two levels a A widely open connection between the internal auditory
canal and the basal turn is revealed as well as a missing modiolus and missing lamina cribrosa (black arrow). b On the left side, the broad canal of the
facial nerve is well displayed (black arrowhead). After cochlea implantation, malposition of the left-sided inserted Cl electrode array in the internal

auditory canal (white arrows) is observed.

ble in tomography as protrusion of the ocular bulb around or besi-
de the optic nerve (> Fig. 8). Accompanying microphthalmia may
be observed. The third C can also be diagnosed through CT scan-
ning: choanal atresia, which may be present unilaterally or bilate-
rally as well as bony or only as fibrous closure. However, especially
in cases of bilateral appearance it becomes obvious already at birth
and has been treated at the time of assessing the appropriateness
for cochlear implantation.

Data on the incidence of accompanying hearing disorder in
CHARGE vary between 50 % for severe hearing disorder and 90 %
for deafness. In our own patient population with exclusively pati-
ents with complete aplasia of the semicircular canals, nearly all
cases have severe hearing loss or deafness. If the cochlear nerve is
present, cochlear implantation is the therapy of choice. Implanta-
tion may represent a particular challenge because the accompany-
ing malformations complicate the access to the cochlea. Therefo-
re, careful assessment of the CT scan should be performed in order
to identify the optimal access. Speech understanding after Cl has
a broad spectrum depending on the abilities of the patients with
possible simultaneous retardation, blindness and other disabilities.
Overall, a benefit is reported, independently from the severity of
CHARGE. About half of the implanted children use speech as com-
munication way one year after implantation [97].

The genetic cause of CHARGE syndrome is a mutation of the
CHD7 that leads to functional loss. Patients who meet the diag-
nostic criteria of CHARGE syndrome have a mutation in up to 95 %.
Most mutations are singular and equally distributed over the co-
ding region of CHD7. More than 500 different pathological chan-
ges have been described up to now. 75 % of them are frameshift or
nonsense mutations. Nearly all mutations develop de novo; but
also familial accumulation has been described. In such CHARGE fa-
milies, a broad spectrum of clinical manifestations is observed with
parents suffering from very mild symptoms that barely meet the
criteria up to the full spectrum in the children.

Regarding the manifestation of CHARGE syndrome, overlapping
with Kallmann syndrome is found as well as 22q11.2 deletion. An-
omalies of the olfactory nerve are found in Kallmann as well as in
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CHARGE syndromes. Immune defects are frequentin 22q11.2 de-
letion, but they may also appear in CHARGE. As in 22q11.2 deleti-
on, thymus aplasia may be observed. In cases of middle ear infec-
tions a thymus aplasia must be taken into consideration in children
with CHARGE because middle ear infections are not always due only
to anatomical circumstances.

3.3 Cochlear implantation in cases of cochlear
malformations

Hearing rehabilitation has a high success rate not only in patients
with normally developed anatomical labyrinth displayed in CT scans
but also in patients having a bone malformation revealed in the
context of cochlea implant examination (about 20 %) [100]. The
care for these patients represents a particular challenge. Compli-
cations e. g., caused by an aberrant course of the facial nerve or the
increased risk of meningitis may occur very frequently when ano-
malies of the cochlea are found [79, 84,101-103]. Hence, an in-
tensive evaluation of every cochlearimplant candidate is crucial, in
particular of children, in experienced centres. A series of different
descriptions of inner ear malformations is found in the literature
and the same term may be interpreted in quite various ways, de-
pending on the author. Already in the 1990ies, Lenarz and colle-
agues and Sennaroglu et al. in 2017 requested a standardized de-
scription of malformations [79, 103] in order not only to allow com-
parisons and knowledge exchange, but especially to establish
guidelines for patient care.

A standardization taking into account the anatomy was pursu-
ed by Jackler in the 20t century and by Sennaroglu in 2002 as well
as numerous other authors. Not only the entire spectrum of mal-
formations was described in this context but also single and partly
rare subgroups. The complete partitions 1 and 2 were completed
by atypical cases, e.g., IPT2 (former Mondini in the classic sense)
without enlarged vestibular aqueduct [104]; or IPT1 that has ex-
actly this enlargement [104]. The course of the facial nerve in the
temporal bone has been investigated in detail [105]. Cochlear hy-
poplasia was classified more specifically [106-108]. All this reflects
the enormous possibilities to combine genetic factors in order to
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> Fig. 6 Complete aplasia of the semicircular canals. Axial CT scan of the temporal bone with complete aplasia of the semicircular canals. a Bilateral
hypoplastic cochlea. b On the right, a normal width of the cochlear aperture is found, on the left, the aperture is severely narrowed (arrow) - hypo-
or aplasia of the cochlear nerve can already be assumed but MRI has to provide the evidence. c Narrow internal auditory canals (black arrows) are
typical such as the bilateral comma-shaped vestibule (white V). d The semicircular canals cannot be displayed, the vestibular aqueduct (arrow) is the

only narrow structure.

> Fig. 7 Aplasia of the semicircular canals. Volume rendering from
the T2 dataset of MRI of a patient with complete aplasia of the semi-
circular canals and CHARGE syndrome. The cochlea (arrowhead) is
hypoplastic and the vestibule (arrow) contains only the saccule. The
semicircular canals are not developed.

provide this highly complex spectrum of different malformations.
However, several malformations occur more frequently than others
and they are worth being accurately classified.

Taking the example of the term common cavity, it becomes clear
how differently the term is used and how incompletely the deve-
lopment of inner ear malformations is understood despite advan-
cesin genetics and imaging. In the literature, the term of“common
cavity is used for different types of malformations, at least three
fundamentally different groups are included: 1) With the term of
common cavity, Jackler described an otocyst that still bears the pre-
disposition of the cochlea, the vestibule, and the semicircular ca-
nals, i. e., a malformation at a very early developmental level. 2)
Other publications use the term in the sense that the cochlea and
the vestibule, both coarsely developed, are non-partitioned and
dilated and form a common cavity, i. e., a broad transition is found
between both. At the fundus of the internal auditory canal, the
cochlear and the vestibular nerve can generally not be differentia-
ted. Inthe American literature, sometimes the term of cystic coch-
leovestibular anomaly (> Fig. 8 deformity) is applied [109]. At the
same time, the malformation has no clear delimitation criteria with
regard to incomplete partition 1, where also the cochlea is dilated
and non-partitioned and the vestibule is severely stumpy. An arbi-
trary definition could possibly be the width of the transition, which
has no functional consequences for cochlea implantation. 3) Sen-
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> Fig. 8 T2 weighted axial MRI of a child with CHARGE syndrome in
the context of preliminary cochlea implant examination. Coloboma
is found at the right (black arrow) and left eye.

naroglu indicates that cochlear aplasia cannot always be delimited
of common cavity in all cases [79]. He describes an oval malforma-
tion that is located mainly dorsal to the internal auditory canal and
definitely has neural connections (in contrast to the otocyst defor-
mities described by Jackler that does not need them). Both, coch-
lear aplasia as well as common cavity may have rudimentary or
partly well-developed semicircular canals. Thus, the common ca-
vity cannot be differentiated from cochlear aplasiain CT scans. Only
the criterion of sclerotic areas ventral/inferior to the internal audi-
tory canal that often exists in cases of cochlear aplasia is not ap-
plied for differentiation (> Fig. 9). However, based on own obser-
vations, this sclerotic area is present in nearly all cochlear aplasias.
This overlapping makes differentiation rather difficult; decisions for
cochlear implantation should be made based on the evidence by
MRI of the internal auditory canal and the nerves. This example
shows how important tomography with multiple levels of the la-
byrinth are to assess the respective malformations. If only one layer
is shown, as it is often found in publications, the criteria that are
necessary for evaluating a malformation cannot always be under-
stood. With regard to the individual assessment and therapy, 3-di-
mensional reconstruction and the individual adaptation of the elec-
trode that is possible in this way represents a logical consequence
[106].

Publications are available that report about speech understan-
ding after cochlear implantation in cases of cochlear aplasia [100].
Those cochlear aplasias are called common cavity by other authors.
The presence of a spiral ganglion that can be stimulated cannot be
assessed in CT scans. A combination of CT morphology and neural
predisposition as it appears in MRI is more suitable to predict the
possible benefit of cochlearimplantation. These techniques are ap-

plied since long time in cochlearimplant candidacy evaluation. Gie-
semann et al. have established the classification based on the se-
verity of associated neural malformations in 2012 [110]. It beco-
mes clear that severe malformations reqularly have an entire
spectrum of different nerve aplasias with certain probabilities. The
resolution limit of MRIis crucial and further procedures such as the
promontory test and BERA should be applied as well. It is still one
of the open questions in the field of healthcare regarding malfor-
mations, up to which level hypoplasia of the cochlear nerve may
lead to successful implantations.

The Table summarizes examples of a classification that includes
the clinically most important malformations that may be well dif-
ferentiated by imaging morphology in relation to the presence of
a cochlear nerve [110].

4 Susac’s Syndrome

Susac’s syndrome defines an autoimmune microangiopathic en-
dotheliopathy that leads to closure of the precapillary arterioles of
the brain, the retina, and the inner ear [111]. The neuroophthal-
mologist John O. Susac (1940-2012) lent his name for this disease.
A systematic review article from 2013 summarizes the data of all
cases of this rare disease that had been described until then [111]
and defines criteria based on which this disease may be diagnosed
that is characterized by multifaceted phenotypes [112]. The majo-
rity (nearly 80 %) of the patients are females. Since autoimmune
diseases are observed more frequently in women, this fact supports
the possible autoimmune origin of Susac’s syndrome [111]. Even
if the characteristics of the disease are clearly defined, the diagno-
sis is often difficult and is associated with a long way for the pati-
ents. Severe neuropsychological deficits, visual field failures, and
hearing loss but also unspecific symptoms like cephalgia may occur.

The majority of these patients initially develop neurological
symptoms so that the disease is often misdiagnosed as multiple
sclerosis. Within 2 years, about 85 % of the patients develop the
characteristic triad [111]. Also, non-classic symptoms have been
described in patients with Susac’s syndrome. A recently published
paper that retrospectively investigated the hearing loss of the well-
known painter Francisco Goya (1746-1828) with the background
of current knowledge assumes an uncharacteristic manifestation
of Susac’s syndrome even if the painter fortunately had no signifi-
cant disorder of his visual field [113]. An otologic manifestation of
syphilis, other vasculitis diseases such as Churg-Strauss or autoim-
mune diseases like Cogan syndrome may cause symptoms that are
similar to Susac’s syndrome. One characteristic of the disease is the
hearing loss of low frequencies, initially unilateral and reversible,
later also bilateral and persistent [111, 114]. In rare cases, the hea-
ring loss manifests as the first symptom, even years before the di-
sease is diagnosed [115]. Fluorescence angiography and tone au-
diometry should be applied as early as possible in order to confirm
the suspected diagnosis [111]. Multiple disseminated lesions, in
particular snowball-like changes in the area of the corpus callosum
and a leptomeningeal enhancement are characteristic cranial chan-
gesin MRI[116]. An early and aggressive treatment in particularin
cases of neurological manifestation leads to a favorable prognosis.

An interdisciplinary approach and close communication bet-
ween neurologists, ophthalmologists, neuroradiologists, and oto-
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> Fig.9 Patient with cochlear aplasia. a The black arrows show the sclerotic area of the otic capsule where normally the cochlea is found. b and
c show further dorsally located areas that comprise the dysplastic vestibule that is marked in d with black arrows on both sides.

laryngologists is vital and accelerates the confirmed diagnosis. The
low frequency hearing loss, as it can appear as initial sign of Susac’s
syndrome, may also suggest Meniére’s disease, low frequency type
of sudden sensorineural hearing loss, or intra-cochlear schwanno-
ma [117]. With a prevalence of about 0.2 %, also Meniére’s disease
is considered as rare disease of the inner ear and is often assumed
in patients presenting with low frequency hearing loss and vertigo.
The symptoms of vertigo alone orin combination with low frequen-
cy hearing loss, however, may also occur in patients with Susac’s
syndrome. Therefore it is possible that Susac’s syndrome remains
unidentified and the patients are treated for Meniére’s disease with
steroids. Patients who are initially diagnosed with low frequency
type of sudden hearing loss may suffer from Susac’s syndrome.
With this background, an ophthalmological and neurological con-
sultation of all patients with assumed sudden hearing loss or
Meniére’s disease seems to be reasonable.

The pathophysiology of Susac’s syndrome is caused by an oc-
clusion of the lumen of minor vessels [114]. It is hypothesized that
the underlying cause is binding by antibodies against vascular en-
dothelial cells or T cell mediated swelling of vascular endothelial
cells. Furthermore, MRI studies have revealed a disturbed microva-
scular blood-brain barrier in Susac’s syndrome that was caused by
inflammatory changes of the vascular wall [118].

5 Hearing Loss and Microcirculation

Normal inner ear function is predicated on a perfectly functioning
microcirculation of the vessels of the labyrinthine artery that en-
ters the organ via the internal auditory canal. The presence of a dis-
turbed microcirculation in the inner ear is suspected in several di-
seases. Theinnerear supply is based on an end artery, i. e. there are
no anastomoses with other vessels that could take over the organ
supply in cases of occlusion. The labyrinthine artery originates from
the anteriorinferior cerebellar artery and divides into 3 main bran-
ches in the inner ear: the anterior vestibular artery, the vestibulo-
cochlear artery, and the cochlear artery [119]. A disorder of the mi-
crovascular blood-labyrinth barrier is also assumed in Meniére’s di-
sease, based on an increased gadolinium uptake in affected inner
ears in MRl trials [120]. Disturbance of the blood-labyrinth barrier
is assumed to be more severe in sudden sensorineural hearing loss

[120]. Post mortem analyses of patients who had suffered from
Meniére’s disease reveal an increased expression of inducible nit-
rogen monoxide synthase, damage of the vascular endothelial cells,
degeneration of the perivascular basal membrane and extracellu-
lar matrix, and loss of the blood-labyrinth barrier. These changes
are consistent with increased oxidative stress [120]. Even more in-
terestingly, similar molecular processes (release of pro-inflamm-
atory cytokines and endothelial and mitochondrial dysregulation
as well as oxidative stress) have been identified as basic and com-
mon sign of multiple organ failure [121] so that these processes
must rather be considered as the result of a series of insults and da-
mages and not as causes. At the molecular level, patients suffering
from Meniére’s disease reveal an upregulation of cochlin as well as
downregulation of collagen IV and laminin-beta [122]. To date,
post-mortem investigations of patients having suffering from
Susac’s syndrome, have not confirmed these findings. The classic
vertigo attacks that are reported by patients with Meniére’s disease
are not observed in Susac’s syndrome. Nonetheless, from an oto-
laryngological point of view, acute or fluctuating, or (intermittent-
ly) progressive sensorineural hearing loss restricted to the apical
cochlear region based on an endolymphatic cochlear hydrops is
one of the most important differential diagnoses of Susac’s syn-
drome besides Cogan syndrome.

To discover molecular markers in the blood or other body fluids
for certain inner ear diseases, such as cochlin in Meniére’s disease,
might be one of the ways to lead us into modern oto-rhino-laryn-
gology. Initial approaches of perilymph analyses in patients perfor-
med during surgical inner ear interventions have allowed the iden-
tification of numerous proteins that could not be detected in the
liquor or plasma [123]. Furthermore, inflammatory marker prote-
ins were identified in human perilymph [71] so that establishing an
inflammasome profile of the perilymph may give hints about the
pathomechanisms of certain diseases. In particular, it may be a va-
luable method to characterize rare inner ear diseases. Even if the
perilymph collection during cochlea implantation does not influ-
ence the residual hearing of the patients [123], i. e. possible addi-
tional damage of the inner ear seems to be very improbable, peri-
lymph collection as minimally invasive intervention under local an-
esthesia in cases of significant residual hearing has not been
proposed until now. The characterization of the perilymph of a
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“normal” cochlea is rather difficult because up to now only exami-
nations have been performed in patients who suffered from other
diseases of the neural system, e. g., meningiomas [124].

Another development in the era of Big Data, artificial intelli-
gence, and machine learning is the availability of databases ideally
providing the complete data worldwide in specific consortiums of
patients who suffer from a certain (rare) disease. Even as contact
points for patients to retrieve information about competence cen-
ters and support groups, disease-specific consortiums are highly
valuable especially in cases of rare diseases. With regard to Susac’s
syndrome, such activities are coordinated via the European Susac
Consortium (EuSaC; http://www.eusac.net).

6 Rare Diseases of the Cochlea: Outlook and
Conclusion

The inner ear is anatomically and histologically a highly complex
organ consisting of different tissue types. Developmental disorders
and pathophysiological processes occurring during life may affect
all tissue types of the inner ear and lead to hearing loss. Even if hea-
ring loss is the most frequently observed degenerative sensorineu-
ral disease from a statistical point of view with 16 % of affected Eu-
ropeans, hearing loss is also an important component of many rare
diseases. In particular in pediatric patients, these diseases may be
overlooked. Even if the diagnostics of many rare diseases is nowa-
days facilitated by accessing bioinformatics databases and analysis
software, an interdisciplinary examination (e. g., neurology, cardi-
ology, nephrology, rheumatology, ophthalmology as well as oto-
rhinolaryngology) is obligatory because of the highly variable phe-
notypes.

Due to their rare occurrence, rare diseases are often neglected
in teaching and education of young physicians because the proba-
bility to encounter such cases in daily routine is rather low. Howe-
ver, if a combination of disorders (e. g., eye-inner ear, musculoskel-
etal system-inner ear, heart-kidney-inner ear, inner ear-thyroid,
inner ear-gonads) is observed, it becomes clear that they may in
fact occur more frequently. However, it also becomes clear how va-
luable the clinical discussion of the rare disease of an organ system
is beside the embryonic development in order to understand the
organ with its structure, its functions, and its diseases.

The human genome project and the high throughput sequen-
cing methods that are now available as well as analyses of the pro-
teome, transcriptome, epigenome, metabolome as well as micro-
biome offer the chance already today to sharpen disease profiles.
Different disorders having similar symptoms (phenotypes) may be
different on a molecular level and have to be treated in different
ways (e. g., mitochondrial disease versus lysosomal storage disea-
ses). Itis well understood that genes controlling several signals and
chromosomal anomalies that lead to the simultaneous loss of se-
veral genes cause broad-spectrum effects and severe manifesta-
tions. For example, the original classification system of the Char-
cot-Marie-Tooth syndrome reveals how clinical thinking about rare
diseases changed during the last years. Initially based on phenoty-
pes, the classification system was completed on the basis of pro-
gression and physiological measurements until finally the current

classification based on the genotype (currently more than 80
genes) was established. Even if it could be shown that disease-spe-
cific genes generally tend to be expressed in a limited number of
tissues, it is still unclear how tissue-specific expression patterns of
disease genes correlate with their pathological manifestations. Pro-
teome analyses reveal that most gene products assume their func-
tion often in combination as complexes of several different prote-
ins [125]. This might explain why mutations of different proteins
lead to a similar phenotype. Recent approaches show that a tissue-
specific overexpression of genes in the medulla, the dorsal gangli-
on, and the skeletal muscles coding certain protein complexes cor-
relate with the pathological manifestation of Charcot-Marie-Tooth
syndrome [125]. The cellular components that are affected are the
telomere regions of the chromosomes; and the biological proces-
ses that are disturbed belong to the mechanosensory system [125].
Those classification systems also mean that several biological pro-
cesses that were unknown may lead to hearing loss: basal memb-
rane/collagen defects, overexpression of growth factors (e. g., TGF
beta/interleukins) as well as disorders of the melanocytes, auto-
phagy, and methylation. How this additional knowledge may be
used in order to establish new treatment methods especially for
patients who suffer from rare diseases, will have to be investigated
in future trials.

The example of Susac’s syndrome shows that not only other
inner ear diseases have to be considered in the differential diagno-
sis, but also ophthalmological or neurological diseases. It is impor-
tant to think of an (possibly initial) audiological manifestation of a
rare disease if sensorineural hearing loss has an unknown origin.
Interdisciplinary diagnostic assessment may be helpful to detect
occult symptoms and to early find a correct diagnosis. How hearing
loss may already be diagnosed in these cases before it manifests,
will be a prognostically relevant question. Patients with subjectively
undisturbed hearing at rest may have difficulties in understanding
speech in noise (also known as synaptopathy or hidden hearing loss,
which may be present as early symptom of progressive neurode-
generation). Often this disorder remains undetected because the
patients are not aware of it; and with routinely applied procedures,
it cannot be identified. Targeted testing of speech understanding
in noise can lead to a correct indication. This would allow an early
introduction of therapy in diseases such as Susac’s syndrome. The
identification of patients suffering from hidden hearing loss [126]
is finally also relevant because currently 3 clinical trials investigate
new therapies for treatment with promising results.

Numerous molecular and cell physiological processes are the
basis for hearing loss especially in the context of rare diseases. The
future of (also merely symptomatic) treatment of inner ear disea-
ses, that are often rare diseases, may benefit from the early iden-
tification of molecular disorders.
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