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Cellular uptake of magnetic nanoparticle is mediated through energy-
dependent endocytosis in A549 cells
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Biocompatible silica-overcoated magnetic nanoparticles

containing an organic fluorescence dye, rhodamine B

isothiocyanate (RITC), within a silica shell [50 nm size,

MNP@SiO2(RITC)s] were synthesized. For future application

of the MNP@SiO2(RITC)s into diverse areas of research

such as drug or gene delivery, bioimaging, and biosensors,

detailed information of the cellular uptake process of the

nanoparticles is essential. Thus, this study was performed

to elucidate the precise mechanism by which the lung

cancer cells uptake the magnetic nanoparticles. Lung cells

were chosen for this study because inhalation is the most

likely route of exposure and lung cancer cells were also

found to uptake magnetic nanoparticles rapidly in

preliminary experiments. The lung cells were pretreated

with different metabolic inhibitors. Our results revealed

that low temperature disturbed the uptake of magnetic

nanoparticles into the cells. Metabolic inhibitors also

prevented the delivery of the materials into cells. Use of

TEM clearly demonstrated that uptake of the nanoparticles

was mediated through endosomes. Taken together, our

results demonstrate that magnetic nanoparticles can be

internalized into the cells through an energy-dependent

endosomal-lysosomal mechanism.
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Introduction

Nanoparticles are increasingly used in different applications,
including bioimaging, diagnostic technology, and drug/gene
delivery. Among them, magnetic iron oxide nanoparticles
have been used for many years as magnetic resonance

imaging contrast agents or as drug delivery applications [4].
Tissue- and cell-specific gene/drug delivery by these magnetic
nanoparticles (MNPs) can be achieved by employing
nanoparticle coatings or carrier-drug or -gene conjugates
that contain a ligand recognized by a receptor on the target
cell. However, significant concern exists regarding the
potential toxicity of nanoparticles. More specifically, inhalation
and dermal uptake appear to be the most likely routes of
exposure to humans. Therefore, proper surface coating with
biocompatible materials such as silica (SiO2) is necessary
for the prevention of potential toxicities [1].

The synthesis of biocompatible silica-coated magnetic
nanoparticles (MNP@SiO2) has been studied extensively by
various research groups, and size-controllable and
multifunctional core-shell nanoparticles have gained much
attention. Among the shell-coating materials, silica is a very
promising candidate because it contains inorganic materials
with good biocompatibility and chemical stability [14].
Silica-coated core-shell nanoparticles have recently been
synthesized using various methods, and organic fluorescence
dyes also have been incorporated into the silica shell for
more extensive application [6,7]. We recently synthesized a
biocompatible silica-overcoated magnetic nanoparticle
containing organic fluorescence dye (rhodamine B
isothiocyanate), MNP@SiO2(RITC)s, within a silica shell of
controllable thickness, and reported that the MNPs were
incorporated into cells and the nanoparticle-uptaken cells
could be driven by external magnetic force [17]. For future
application of the MNPs into biomedicine for use in drug or
gene delivery, detailed information of the cellular uptake
process of the nanoparticles is essential. Since our preliminary
experiments have shown that human lung cancer cells
(A549) could uptake nanoparticles rapidly, this study was
performed to elucidate the precise mechanism by which the
lung cancer cells uptake the nanoparticles. Here, we report
that biocompatible magnetic nanoparticles can penetrate the
cells through energy-dependent endocytosis.
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Materials and Methods

Preparation of biocompatible MNP@SiO2(RITC)s

Biocompatible magnetic nanoparticles containing organic
fluorescence dye, rhodamine B isothiocyanate (RITC;
Sigma-Aldrich, USA), within a silica shell [50 nm size,
MNP@SiO2(RITC)s] were synthesized according to a
previously described method [17]. In brief, pre-synthesized
cobalt ferrite magnetic nanoparticles (average size is about 9
nm) were added to the aqueous polyvinylpyrolidone (PVP,
Sigma-Aldrich, USA) solution. The PVP-stabilized cobalt
ferrite nanoparticles were separated by the addition of
acetone and subsequent centrifugation. The precipitated
particles were redispersed in ethanol. Trimethoxysilane
(Gelest, USA) modified by RITC was prepared from 3-
aminopropyltriethoxysilane (Gelest, USA) and RITC under
nitrogen. The synthesized silane modified dye solution was
then mixed with tetraethoxysilane (TEOS; Gelest, USA)
and injected into the PVP-stabilized cobalt ferrite ethanol
solution. The solution was subsequently polymerized on the
surface of PVP-stabilized cobalt ferrites by the addition of
ammonia as a catalyst to form RITC-incorporated silica-
coated magnetic nanoparticle, MNP@SiO2(RITC)s. The
synthesized magnetic naoparticles were confirmed by
transmission electron microscopy (TEM).

Cells and selection of nanoparticle concentration

A549 human lung cancer cells (A549 cells; ATCC, USA)
were maintained in RPMI 1640 medium supplemented with
10% FBS (GibcoBRL, USA) and gentamycin (500 µg/ml;
GibcoBRL, USA). The concentration of MNP@SiO2(RITC)s
was determined using the IC50 value derived from a cell
viability [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide, MTT] assay. The IC50 value was 4 mg/ml. Thus,
0.4 mg/ml, 1/10th of IC50, was chosen for future cell studies.

Cell treatment protocol

To determine whether the uptake of MNPs into lung cells
was energy-dependent or, more generally, cell function-
dependent, the cells were incubated with MNP@SiO2(RITC)s
under varying metabolic conditions. The uptake studies
were performed at 37oC or 4oC, and in the presence of
sodium azide (0.1%), sucrose (0.45 M), and bafilomycin A
(0.05 µM), respectively. After initial passage in tissue culture
flasks, cells were grown on 8-chamber mounted Permanox
slides with covers (2 × 104 cells seeded per chamber, Lab-
Tek Chamber Slide; Nalge, USA). After the cells had
reached 80-90% confluence, the cells were preincubated at
4oC with 0.1% sodium azide [15], hyperosmotic 0.45 M
sucrose [8], and 0.05 µM bafilomycin A [2] for 10 min,
respectively, and were then treated with MNP@SiO2(RITC)s
for an additional 30 min (cells preincubated at 4oC were
incubated for an additional 30 min at 4oC. Remaining
treated and control cells were incubated for 30 min at

37oC). Uptake was terminated by washing the cells three
times with PBS. After washing, cells were fixed with 4%
paraformaldehyde in PBS for 1 h and washed with PBS.
Individual coverslips were mounted cell-side down onto
fresh glass slides with fluorescence-free glycerol-based
mounting medium (Fluoromount-G; Southern Biotechnology
Associates, USA). Cells were viewed in order to determine
the differential interference contrast and to obtain fluorescence
images with confocal microscopy (Zeiss, Germany) that
would be used to evaluate the intercellular localization of
MNP@SiO2(RITC)s.

Protocol of TEM study

To study the intracellular translocation of magnetic
nanoparticles, treated cells were fixed with 1% glutaraldehyde
and 1.5% paraformaldehyde in 0.1 M phosphate buffer, pH
7.2, at 4oC. The samples were then washed with PBS
followed by washing in 0.1 M cacodylate buffer, pH 7.2,
and post-fixed in 1% osmium tetraoxide in 0.1 M cacodylate
buffer for 1.5 h at room temperature. The samples were then
washed briefly in dH2O, dehydrated by a graded ethanol
series, infiltrated using propylene oxide and EPON epoxy
resin (Structure Probe, USA), and finally embedded with
only epoxy resin. The samples that had been mixed with
epoxy resin were loaded into capsules and polymerized at
60oC for 24 h. Thin sections were cut using an RMC MT-X
ultramicrotome and collected on copper grids; these sections
were not stained with any reagent for detecting the uptake of
nanoparticles into the cells. Images were collected using a
JEOL transmission electron microscope (JEM-1011; Japan)
at 80 kV with a GATAN digital camera (Gatan, USA).

Results

Synthesis of ~50 nm-sized MNP@SiO2(RITC)s

The silica-coated magnetic core-shell nanoparticles
[MNP@SiO2(RITC)s] were successfully prepared, and the
size (about 50 nm) and shape were characterized by TEM
(Fig. 1). As shown in Fig. 1, the narrow size distribution of
the nanoparticles was determined using a low magnititude
image. In the high magnitude image (insert image), core-
shell structure was clearly shown by different image
contrast, with the cores of the MNPs appearing darker than
the silica shell due to the differing electron densities. The
thickness of the silica shell could also be controlled
effectively by ratios of TEOS and MNPs at the synthesis
step (data not shown).

Low temperature disturbed the uptake of the magnetic

nanoparticles into the cells

To confirm whether the uptake of the magnetic nanoparticles
was mediated by energy-dependent endocytosis, the cells
were incubated with MNP@SiO2(RITC)s at 37oC and 4oC,
respectively. As shown in Fig. 2, incubation of A549 cells
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with MNP@SiO2(RITC)s at 4oC significantly impeded uptake
(Fig. 2B), while the uptake occurred successfully at 37oC
(Fig. 2A). Together, our results demonstrate that uptake of
MNPs into the cells requires an appropriate temperature.

Metabolic inhibitors prevented the delivery of the

magnetic nanoparticles into the cell

Localization of MNP@SiO2(RITC)s in A549 cells showed
that uptake of the nanoparticles was energy-dependent.
Compared to the cellular localization of MNP@SiO2(RITC)s
upon incubation at 37oC (Fig. 3A), incubations with several
metabolic inhibitors, including sodium azide (Fig. 3B),
sucrose (Fig. 3C), and bafilomycin A (Fig. 3D), did not
deliver the magnetic nanoparticles into A549 cells.

Uptake of magnetic nanoparticles was mediated through

endosomes

To confirm that the uptake of nanoparticles is mediated
through endosomes, TEM analysis was performed. Nanoparticles
were initially uptaken through the endosomes (Fig. 4A &
B). The beginning of uptake occurred by the initiation of
plasma membrane invagination. After being brought into
the cells, the nanoparticles were found to be clumped in the
lysosomes (Fig. 4C). The TEM study clearly revealed that
nanoparticles were uptaken through the endosomes.

Fig. 1. Representative transmission electron micrograph (TEM)
of cobalt ferrite magnetic-silica (core-shell) nanoparticles,
MNP@SiO2(RITC)s. The average size of the particle is
approximately 50 nm. In the low magnitude image, the size
distribution is revealed to be narrow (scale bar = 200 nm). In the
high magnitude image (left insert image), core-shell structure is
clearly shown by different image contrast, which shows the core
of MNPs being darker than the silica shell due to electron
density. The right insert image represents the detailed structure of
MNP.

Fig. 2. Confocal laser scanning microscope (CLSM) images of MNP@SiO2(RITC) uptake under low temperature conditions. In order
to confirm whether nanoparticle uptake was possible at low temperature, A549 cells were incubated at 37oC and 4oC (after pre-
incubation at 4oC for 10 min) for 30 min. Concentration of magnetic nanoparticles is 0.4 mg/ml, and the uptake pattern was observed by
CLSM. A549 cells were incubated at 37oC (A) and 4oC (B) for 30 min. The left panel shows the fluorescence image (emission spectrum
is 488 nm.), the middle panel shows the optical microscopic image, and the right panel shows the images merged together. bars = 20 µm.
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Discussion

Nanoparticles have been considered as effective delivery

vehicles, and have been studied extensively for the purpose

of delivering drugs/genes into cells of interest [12]. In fact,

targeted entry into cells is an important area of research in

drug and gene delivery. Thus, site-specific delivery of drugs

and therapeutics can significantly reduce the potential

toxicity of a drug and increase its therapeutic effects. To

maximize the efficiency of nanoparticle-mediated gene delivery,

one should have detailed information regarding how the

nanoparticles can translocate into the cells. With such

information available, efficient and specific nanoparticle-

mediated drug or gene delivery systems may be possible. In

this study, we hypothesized that internalization and transport

processes were responsible for cellular uptake of MNPs. To

test this hypothesis, MNPs were synthesized and labeled by

fluorescence. The fluorescence label, RITC, was stable

enough not to be photobleached due to the aid of a SiO2

overlayer. Recent line of evidence indicating that core-shell

silica methodology provides the strongest photostability [10]

also supports our finding. Photostability is a particularly

important criterion when using nanoparticles as fluorescent

markers in complex biological environments, where it is

desirable to observe markers for extended periods of time

against the background of intrinsic cellular emissions. With

the discovery of such biocompatible and photostable

nanoparticles, diverse studies for assessing cellular and

biological fates may be possible.

Since nanoparticle uptake into cells could go through

different processes, including phagocytosis and endocytosis,

we performed several studies using metabolic inhibitors.

Internalization of MNPs was halted completely at 4oC. The

results clearly demonstrated that MNPs entered the cells in

an energy-dependent manner, and this uptake was influenced

by temperature. Sodium azide is widely used both in vivo

and in vitro as an inhibitor of cellular respiration. It acts by

inhibiting cytochrome C oxidase, the last enzyme in the

mitochondrial electron transport chain, and thereby produces

a drop in intracellular ATP concentration [15]. The uptake of

MNPs into lung cells pretreated with sodium azide was

completely blocked, thus suggesting that the uptake mechanism

occurs through an energy-dependent process.

Clathrin-coated pits are the primary plasma membrane

specialization involved in the uptake of a wide variety of

molecules by endocytosis [11]. Two broad functions have

been attributed to these regions of membrane: (a) molecular

determinants associated with the clathrin lattice may cause

receptors to become clustered; and (b) the clathrin lattice

may somehow control the invagination of the membrane to

form endocytic vesicles [5]. To understand the molecular

mechanisms underlying these two aspects of coated pit

function, one approach is to search for treatments that inhibit

endocytosis, and to then characterize the effects of these

treatments on coated pit function. One such treatment for the

inhibition of endocytosis is to expose cells to hypertonic

media [8]. In this study, hyperosmotic 0.45 M sucrose was

utilized to suppress the coated pit function. The results

Fig. 3. Confocal laser scanning microscope (CLSM) images of MNP@SiO2(RITC) uptake in the presence of several metabolic
inhibitors. To confirm whether MNP uptake was possible under metabolic inhibition, A549 cells were co-incubated with
MNP@SiO2(RITC)s and metabolic inhibitors. (A) A549 cells were incubated with the magnetic nanoparticles only, (B) A549 cells
pretreated with 0.1% sodium azide, (C) 0.45 M sucrose, or (D) 0.05 mM bafilomycin A were incubated with the nanoparticles at 37oC
for 30 min. The left panel shows the fluorescence image (emission spectrum is 488 nm), and the right panel shows the optical
microscopic image. bars = 20 µm.
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suggest that uptake of MNPs occurred through clathrin-
mediated endocytosis in A549 cells.

Vacuolar-type A ATPase (V-ATPase) is a complex,
heteromultimeric protein consisting of a peripheral, catalytic
V1 complex and a membrane-bound, ion-translocating Vo
complex. V-ATPases in eukaryotes appear to be exclusive
proton pumps that energize intracellular membranes of all
cells as well as plasma membranes in a variety of
mammalian cells [16]. V-ATPase plays crucial roles in many
cellular processes, and may also be involved in diseases
such as cancer [9]. Bafilomycin A, a plecomacrolide
antibiotic containing a 16-membered lactone ring, was
reported to be a specific inhibitor of V-ATPase [13].
Pretreatment with bafilomycin A completely suppressed the
uptake of MNPs, thus indicating that uptake occurred
through V-ATPase-dependent transport. Energy-dependent
endocytic uptake of the MNPs was shown by TEM study.
At the beginning of uptake, coated pits of the plasma
membrane wrapped the nanoparticles and brought them into
the cell. Together, our results clearly demonstrated that
MNPs translocated the cells through energy-dependent
endocytosis.

Chemical transfection is typically based upon a two-
compartment system where the carrier, or transfection
reagent, is complexed with DNA. Regardless of the transfection
reagent, DNA is condensed by a cationic moiety, which
protects the DNA in the extracellular environment and
masks the charge of DNA to allow cellular uptake. Efficient
DNA transfection, therefore, is critical for biological
research. Our studies strongly suggest that the MNPs can be
used as transfection agents because they allow for effective,

energy-dependent endocytic uptake to occur. Our findings
can be further supported by other researchers who have
investigated silica nanoparticles as a stand-alone transfection
reagent [3]. Since the chemistry of magnetic nanoparticles
may affect cellular internalization as well as complex
formation with drugs- or genes-of-interest, additional research
regarding the optimal modification of surface of the MNPs
is needed.

In conclusion, our results clearly demonstrate that
MNP@SiO2(RITC)s can be translocated into the cells
through an energy-dependent endosomal-lysosomal mechanism.
Moreover, our data strongly suggest that the MNPs can be
used as transfection reagent. New methods designed to
utilize our MNPs in broad applications such as transfection,
bioimaging, and biosensor technologies without added
toxicity is currently in development by our group. 
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Fig. 4. Representative transmission electron micrographs (TEM) of A549 cells treated with MNP@SiO2(RITC). To elucidate the
detailed information of MNP uptake through the endosome-lysosomal mechanism, TEM was performed. The treated cells were fixed
with glutaraldehyde, paraformaldehyde, and osmium tetroxide, and were subsequently embedded with epoxy resin. Thin sections were
cut using an ultramicrotome; sections were not stained with any reagent for detecting of uptake of nanoparticles into the cells. Images
were collected using a transmission electron microscope and a digital camera. (A) Uptake of MNPs was initiated upon the invagination
of the plasma membrane. (B) Some nanoparticles had already been internalized into the cells (solid line box 2), while some cells still in
the process of uptake at the plasma membrane (solid line box 1). (C) Uptaken MNP@SiO2(RITC)s were trapped inside the lysosome.
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