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Identifying potential drug targets 
in hepatocellular carcinoma based 
on network analysis and one-class 
support vector machine
Zhan Tong, Yuan Zhou & Juan Wang

Hepatocellular carcinoma (HCC) is one major cause of cancer-related death worldwide. But now, the 
systematic therapy for the advanced stages of HCC is rather limited. Thus, the discovery of novel drug 
targets and thereafter targeted drugs against HCC is continuously needed. In this study, we combined 
clinical association data, gene expression profiles and manually collected drug target genes with the 
human protein-protein interaction (PPI) network to establish an in-silico HCC drug target predictor. First, 
we found drug target genes (DTGs), disease-associated genes (DAGs), prognostic unfavorable genes 
(PUGs) and cancer up-regulated genes (URGs) have higher degree, betweenness, closeness centrality, 
while cancer down-regulated genes (DRGs), prognostic favorable genes (PFGs) have lower degrees, in 
comparison with background genes. Moreover, DTG nodes were shown to be closer to DAG, PUG and 
URG nodes, but farther away from PFG and DRG nodes. Compared to the background, PFGs and DRGs 
were shown to have relatively bigger genetic dependency scores, while PUGs and URGs have smaller 
genetic dependency scores. Finally, based on the observed features of DTGs, we constructed a drug 
target predictor using one-class support vector machine (one-class SVM). Performance evaluation results 
suggested our predictor could effectively identify putative drug target genes for further research.

With approximately 800, 000 deaths each year, primary liver cancer is one of the leading causes of cancer-related 
death worldwide, and its incidence is still increasing1,2. Hepatocellular carcinoma (HCC), which accounts for 
approximately 90% of all cases of primary liver cancers, can be caused by a variety of risk factors including hepati-
tis B virus or hepatitis C virus infection, alcohol abuse, metabolic syndrome and non-alcoholic steatohepatitis3,4. 
Despite the practice for surveillance programmes, HCC is still most frequently diagnosed at advanced stages 
when potentially curative treatments (i.e. surgical resection, liver transplantation and local ablation) become lim-
ited5. Sorafenib, which extended the median overall survival of patients with advanced HCC from 8 to 11 months, 
was the sole systemic therapy approved for the treatment of the advance stages of HCC until 20164. Although 
new drugs (i.e. lenvatinib, regorafenib, cabozantinib and ramucirumab) have been illustrated to improve clinical 
outcomes of patients with advanced HCC, the survival improvements are still modest4,6. Thus, the development 
of more effective drugs is still in urgent demands.

In drug discovery, therapeutic failures at late stages of development such as phase II and phase III clinical trials 
are extremely costly7. It has been reported that most failures are caused by drug efficacy lacking or safety issues8, 
which, in turn, are partly due to the lack of a systematic understanding of diseases. Network pharmacology, 
firstly proposed by Andrew L Hopkins9, has been widely accepted as useful tools to evaluate and demonstrate 
the rationality of drug in a systematic manner. It has been reported that HCC has highly therapy resistance 
because of its highly genetic heterogeneity2,10. And the mechanism underlying HCC pathogenesis is implicated 
in the alteration of various biological pathways, therefore, drug target identification for HCC based on network 
pharmacology has its unique advantage. With the development of high-throughput techniques, the quantity 
and quality of biological interaction data are improved dramatically. Thus, biological network models, including 
protein-protein interaction (PPI), signaling, transcriptional regulatory and co-expression networks, can be taken 
as scaffold for investigating alteration and associations of genes in specific disease conditions in a systematic 
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manner11. Indeed, previous studies have shown that biological network-based approach is a promising way to 
detect potential biomarkers and drug targets from multidimensional omics data in diverse diseases12–15. However, 
most previous methods are based only on network topological characteristics and ignore other gene functional 
features, which may inform its importance in the progression of cancer and patient’s survival. For example, the 
genetic dependency score, which estimates the importance of one gene for the survival and proliferation of cancer 
cells by analyzing the genome-scale loss-of-function screen data performed in various human cancer cell-lines, 
could facilitate the prioritization of cancer-related therapeutic targets16,17.

It has been found that drug targets have distinctive topological and biological characteristics in different types 
of cellular networks15,18,19. And machine learning, as a specialized branch of statistics and computer science, is 
now extensively used in the field of drug discovery20–22. In this study, we first mapped different types of genes that 
potentially related to HCC, to the human PPI network and the human cellular signaling network. Then, statistical 
analyses of genetic dependency scores and network characteristics were performed in both networks. Next, we 
developed a novel drug target gene prediction method based on the manually curated drug target genes in HCC. 
Through integrating genetic dependency scores with network characteristics, we constructed the drug target pre-
dictor in HCC based on one-class support vector machine (one-class SVM). Finally, the performance evaluations 
were conducted through statistical metrics and comparing with the independent dataset.

Results And Discussion
Network and genetic dependency score characteristics for different types of genes potentially 
related to hepatocellular carcinoma.  Since no genes are isolated but interact with each other23, it is 
a reasonable way to understand the functions of genes in the specific biological networks. To characterize the 
network topological features of different types of gene nodes, we first investigated the network centrality char-
acteristics of drug target genes (DTGs) and five types of potential disease related genes (PDRGs) in human PPI 
network, in which 217 DTGs, together with five types of PDRGs including 322 disease-associated genes (DAGs), 
230 prognostic favorable genes (PFGs), 2,574 prognostic unfavorable genes (PUGs), 434 cancer down-regulated 
genes (DRGs) and 4,004 cancer up-regulated genes (URGs) were mapped. Three types of network centralities 
were considered, including degree centrality, betweenness centrality and closeness centrality. These centrality 
indices could reflect the connectivity of nodes in biological networks. When compared to all gene nodes in the 
human PPI network, DTG, DAG, PUG and URG nodes have higher degree centrality, betweenness centrality and 
closeness centrality, while PFG and DRG nodes have lower centralities (Fig. 1). And among DTG and the five 
types of PDRG nodes, DTG have the highest degree centrality, betweenness centrality and closeness centrality. 
To explore how closely the DTG nodes are linked to the PDRG nodes, we estimated the average and minimum 
lengths of the shortest paths between DTG and PDRG nodes (DTG-PDRG), and with the respective other gene 

Figure 1.  Network centrality characteristics of different types of genes in human PPI network. (A) Degree 
centrality. (B) Betweenness centrality. (C) Closeness centrality. *P < 0.05 from Wilcoxon test. (D) P-values of 
comparing centralities of DTGs and different types of PDRGs with those of background. Red and blue bars 
represent the greater and less centralities compared to the background, respectively.
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nodes (DTG-OG). Interestingly, DTG nodes are closer to DAG and PUG nodes, but farther away from PFG and 
DRG nodes, in comparison with the respective OG nodes (Fig. 2), indicating the non-random distribution of 
DTGs and PDRGs in human PPI network.

The observed network characteristics were further validated in the human cellular signaling network, in which 
184 DTGs, 236 DAGs, 106 PFGs, 1,053 PUGs, 225 DRGs and 1,418 URGs were mapped. And since the links of 
human cellular signaling network are directional, additional analyses of in-degree and out-degree centralities 
were also performed. The results are largely similar to those in the PPI network: when compared to all gene nodes 
in the signaling network, DTG, DAG and PUG nodes have higher degree, betweenness, closeness, in-degree and 
out-degree centralities (Supplementary Fig. S1). The only differences are that DRGs have higher betweenness 
and closeness centralities, and no significant centrality differences were detected for URGs. In distance analysis, 
when compared to the respective OG nodes, DTG nodes are closer to all types of PDRG nodes except URG nodes 
(Supplementary Fig. S2), indicating the DTGs and PDRGs are clustered together in the signaling network.

Although the network centrality could partly reflect the importance of a gene, the genetic screen is still the 
golden standard to evaluate gene importance. The genetic dependency scores which integrated the genetic screen 
results among 14 liver cancer cell-lines were employed to analyze the gene importance characteristics of the 
DTGs and PDRGs. Interestingly, PFGs and DRGs were shown to have relatively bigger genetic dependency scores 
(indicating lower gene importance), while PUGs and URGs have smaller genetic dependency scores (indicating 
higher gene importance), in comparison with all genes whose genetic dependency scores are available (Fig. 3A,B). 
However, no statistical significance is found for DTGs and DAGs. To have a better view of genetic dependency 
scores for the neighboring region of each gene, we computed the average values of genetic dependency scores 
among the neighbor nodes of each gene in the human PPI network and the signaling network, respectively. When 
compared to other genes’ neighbors, DRG neighbors were shown to have bigger genetic dependency scores, while 
PUG and URG neighbors have smaller genetic dependency scores (Supplementary Fig. S3). We also found DAG 
neighbors have significant smaller genetic dependency scores in both networks. These results indicate the gene 
importance of DTGs, PDRGs and their network neighbors are also diverged from other background genes in the 
networks.

Drug target prediction and performance evaluation.  From the above statistical analysis, we found 
DTGs have more significant network characteristics in the human PPI network in comparison with the human 
signaling network. Thus, we constructed our drug target predictor by integrating genetic dependency scores 
with network features obtained from the human PPI network. A total of 217 anti-HCC drug target genes (DTGs) 
mapped to the human PPI network were considered as the positive samples, while 17,040 genes apart from these 
DTGs in the human PPI network were considered as the negative samples. We noted that the actual distinction 
between the positive and negative samples is elusive, since many collected anti-HCC drugs are still under clinical 
trials and there should be many not yet discovered drug targets in the negative samples on the other hand. We 
therefore used one-class SVM to build our predictor. One-class SVM aims at depicting the region defining each 

Figure 2.  Network distance characteristics between DTGs and the specific PDRGs in the PPI network. Density 
plots display the probability distribution of the average lengths of shortest paths between groups (DTG-PDRG/
DTG-other genes).
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class of samples rather than identifying a boundary discriminating two classes20, and is generally more suitable for 
the drug target prediction task since it is more robust to the potentially false negative samples. We first evaluated 
the performance of our one-class SVM predictor by five-fold cross-validation. To reduce the influence of random 
partition of training and testing subsets in cross-validation tests, the five-fold cross-validation was repeated ten 
times with different partitions of training and testing subsets. The prediction performance is summarized in 
Table 1, where the average of the AUC scores of ten rounds of evaluation tests achieved 0.8834, with the worse 
result as 0.8820. This result suggests that our drug target predictor has relatively robust prediction performance 
(Fig. 4).

One critical issue is whether the selection of network centrality measures as the input features could result in 
bias and over-estimation of prediction performance, because disease-related genes often show higher network 
centralities than other genes in the genome background. To this end, we re-trained the one-class SVM model 
after excluding all network centrality features. The cross-validation results indicate there is no significant change 
in AUC scores, with the average AUC score of 0.8838 (Supplementary Table S1). This result indicates that the 
network centrality features are not the most informative features in our model and do not introduce prominent 
bias to our prediction model. We further checked whether selection of particular network centrality features 
would have a considerable impact on the performance. Three additional centrality measures, i.e. PageRank cen-
trality, eigenvector centrality and Katz centrality, were included into the feature set to re-train the one-class SVM 
model. We found integrating additional network centrality features have no significant impact on the perfor-
mance, with the average AUC scores of 0.8838 (see Supplementary Table S2). In fact, we found all of the addi-
tional network centrality measures significantly correlated with one of previous centrality measures (i.e. closeness 
centrality with eigenvector centrality and Katz centrality, degree centrality with PageRank centrality), with spear-
man correlation coefficient above 0.97 (Supplementary Fig. S4). Furthermore, one network-based disease gene 
prediction algorithm, DADA proposed several statistical adjustment strategies to combine existing approaches 
to reduce the degree bias of disease genes24. So we also tried to use the prediction scores of DADA algorithm as 
the alternative network features, and assessed the prediction performance using the same ten repeats of five-fold 
cross-validation. Better performance of our primary feature set than DADA scores was observed (average AUC, 
0.8569 vs 0.8162, Supplementary Table S3), while replacing network centrality features with DADA scores, or 
appending the DADA score to the primary feature set do not significantly alter the prediction performance (aver-
age AUC, 0.8558 and 0.8562, respectively, Supplementary Table S3). These results suggest that the network cen-
trality bias does not result in significant overestimation of the prediction performance for our one-class SVM 

Figure 3.  Genetic dependency score characteristics of different types of genes. (A) Box plot displays the genetic 
dependency score differences among different gene groups and all genes having genetic dependency scores. 
*P < 0.05 from Wilcoxon test. (B) Heat-map displays the p-values of comparing genetic dependency scores of 
each gene group with all genetic dependency scores with Wilcoxon test in 14 HCC cell-lines.

Sensitivity Specificity MCC AUC

61.29% 91.16% 0.1993 0.8832

64.52% 88.76% 0.1833 0.8820

58.53% 91.57% 0.1944 0.8837

58.99% 90.80% 0.1863 0.8827

53.00% 92.79% 0.1905 0.8845

49.31% 93.63% 0.1887 0.8825

60.37% 91.07% 0.1948 0.8849

58.99% 90.72% 0.1854 0.8834

65.44% 89.10% 0.1898 0.8827

62.21% 89.96% 0.1882 0.8843

Table 1.  Performance summary of ten repeats of five-fold cross-validation tests.
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model. Therefore, we kept the primary network centrality feature selection for the subsequent analysis. To make 
our prediction results more stable, the average scores of ten rounds of evaluation tests were taken as the final 
prediction scores, and only the genes which met all the cut-offs of ten tests were taken as the putative drug target 
genes in HCC. Finally, 1,143 genes were predicted as the putative drug target genes, which composite 6.62% of 
the coding genes in human genome.

We further evaluate our predictor using an independent criterion of positive-negative partition, i.e. to check if 
our predicted HCC drug targets are enriched for known targets of anti-cancer drugs. To test this hypothesis, we 
first obtained the anti-cancer drug target genes by parsing associated files downloaded from DrugBank database. 
Then, we calculated the proportions of anti-cancer drug target genes in the putative drug target gene set and the 
background gene set. We found the proportion of anti-cancer drug target genes in the predicted drug target gene 
set is significant higher than that in the background gene set (24.51% versus 9.35%, P-value = 2.20E-46 by Fisher’s 
exact test). This result confirms that our method could effectively identify anti-cancer drug target genes against 
HCC. Take in consideration many studies have illustrated that drug target and other kinds of disease-relevant 
genes have specific network properties, it is also interesting to explore whether our method could distinguish 
anti-HCC drug target genes from various types of disease-relevant genes. So we used the final prediction scores 
and collected three different types of disease-relevant genes as our negative sample sets respectively (including 
curated disease genes from DisGeNET database, known human drug target genes from DrugBank database and 
cancer driver genes from Matthew H. Bailey et al.’s study25) to re-estimate the performance of our model. As 
depicted by the ROC curves in Fig. 5, our method could effectively distinguish anti-HCC drug target genes 
from other known disease genes and drug target genes with considerable performance. Although the distinction 
between cancer driver genes and anti-cancer drug targets is much more challenging since cancer driver genes 
could often serve as the anti-cancer drug targets, our model could still distinguish anti-HCC drug target genes 
from the known cancer driver genes with moderate prediction accuracy (Fig. 5), indicating the robustness of our 
prediction model.

To exemplifying the possible functional mechanisms of potential drug targets, here we obtained the 
sub-network constituted by TFF2 (trefoil factor 2) and its neighbors in the signaling network (Fig. 6). With this 
view, we could intuitively find TFF2 is a pathology unfavorable gene and more than half of its neighbors are 
HCC-related. Interestingly, we found there occur known drug targets in both upstream and downstream sign-
aling of TFF2 (NFKB1 and CTNNB1, respectively). Similar to TFF2, 1,143 genes were predicted as the putative 
drug target genes against HCC, and the full list is available as Supplementary Dataset 1. We hope our prediction 
results could play an important role in the research of pathogenesis of HCC, and provide useful clues for the 
design of novel anti-HCC drugs. In the meanwhile, this study could also serve as a sample for the application 
of network pharmacology in other complex diseases. Nevertheless, there are some apparent limitations in this 
study. First, through integrating more biological information, such as gene ontology annotations (i.e. molecular 
function, cellular component and biological process) and druggable information, additional filtering restrictions 
should be added to obtain more sophisticated prediction results. And taking in consideration of the multi-target 
therapy for complex diseases, the prediction of drug target combinations should be enabled in the following study. 
In all, we hope the proposal of more advanced computational methods could facilitate the researches in the field 
of drug discovery for complex diseases in the future.

Figure 4.  ROC curves of drug target predictions. Curve in red represents the best performance in ten rounds of 
predictions (AUC = 0.8849), while curve in blue represents the worst (AUC = 0.8820).
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Figure 5.  ROC curves of combining the final prediction scores with different types of disease related genes as 
negative sample sets. Curve in red represents the performance using curated disease genes from DisGeNET 
database as negative samples (AUC = 0.8536). Curve in blue represents the performance using known human 
drug target genes from DrugBank database as negative samples (AUC = 0.8122). And curve in green represents 
the performance using cancer driver genes as negative samples (AUC = 0.7132).

Figure 6.  Example view of putative drug target gene in the signaling network. Nodes in blue, purple, red and 
green represent DTG, DTG as well as PDRG, PDRG and other gene nodes, respectively. Predicted positive gene 
nodes are with black border, and predicted negative nodes are with gray border. Edges in arrow (red), T-shaped 
(green) and full line (gray) represent positive, negative and physical interactions, respectively.
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Methods
Collection of drug targets, disease associated genes and prognostic association genes in HCC.  
We first searched DrugBank database (https://www.drugbank.ca/) with the keywords ‘Hepatic cancer metastatic’, 
‘Relapsed Hepatocellular carcinoma’, ‘Unresectable Hepatocellular Carcinoma’ and ‘Refractory Hepatocellular 
Carcinoma’26. Next, we manually collected target genes of approved drugs in these diseases (13 in total). To 
expand our positive datasets, we also collected target genes of the drugs used in the clinical trials of the disease 
‘Hepatocellular, Carcinoma’. Finally, we got a total of 222 drug target genes (DTGs) in HCC. And all the target 
genes were standardized as gene official symbol.

We also retrieved disease-associated genes (DAGs) of hepatocellular carcinoma with the keywords ‘Liver neo-
plasm’ and ‘Liver Carcinoma’ from DisGeNET database (http://www.disgenet.org/, only curated gene-disease 
associations were considered)27. All HCC prognostic association genes with statistical significance were obtained 
from Human Protein Atlas database (http://www.proteinatlas.org/) with the keyword ‘liver cancer’28. Based on 
whether the gene is prognostic favorable or not, we further classified hepatocellular carcinoma prognostic genes 
into prognostic favorable genes (PFGs) and prognostic unfavorable genes (PUGs).

Identification of differentially expressed genes (DEGs) in hepatocellular carcinoma.  We first down-
loaded the RNA-seq data of the ‘TCGA-LIHC’ project from the TCGA database (https://portal.gdc.cancer.gov/).  
Based on clinical annotations provided, we discarded unpaired RNA-seq data (i.e. without non-tumor controls) and 
those came from patients who had gotten other types of cancers before or were not representative of a hepatocellular 
carcinoma case. Then, we got 43 pairs of HCC tumor and para-cancerous tissues’ expression data. To gain genes 
differentially expressed between the tumors and para-cancerous tissue controls, each gene was evaluated by paired 
t- test and fold change, and the P-values were corrected by false discovery rate (FDR). The following criteria were 
finally used: FDR ≤ 0.05 and absolute fold change ≥ 2.0. Then according to the values of fold changes, the differen-
tially expressed genes were further classified into up-regulated genes (URGs) and down-regulated genes (DRGs).

Network analysis and statistical characteristics of genetic dependency scores.  The human PPI 
network was downloaded from the BioGRID database (https://thebiogrid.org/, build 3.4.161) with the deletion 
of links with proteins from non-human species29. The human cellular signaling network was obtained from the 
previous study (http://www.cancer-systemsbiology.org/)30. The Wilcoxon rank sum test was performed to inves-
tigate the degree centrality, betweenness centrality and closeness centrality characteristics for the DTG nodes, and 
the potentially disease-related genes (PDRGs) in the PPI network and the signaling network, respectively. Five 
types of PDRGs were considered, including disease-associated genes (DAGs), prognostic favorable genes (PFGs), 
prognostic unfavorable genes (PUGs), up-regulated genes (URGs) and down-regulated genes (DRGs). In the 
signaling network, Wilcoxon test was also performed to investigate in-degree centrality and out-degree centrality 
differences for those six types of nodes. As for network distance analysis, we investigated the characteristics of 
shortest path lengths between DTG nodes and other five types of PDRG nodes, respectively. More specifically, the 
average and minimum lengths of the shortest paths between one DTG and the PDRGs, and those between one 
DTG and the other nodes were also compared by Wilcoxon test. All the above centrality and distance calculation 
were carried out by using the python package NetworkX31. The directional information was considered when the 
shortest path lengths were calculated in the signaling network. Network visualization in signaling network were 
conducted by Cytoscape32.

The Avana CRISPR screen dataset which reflected genetic dependency of a large amount of genes in vari-
ous cancer cell-lines, was downloaded from Cancer Dependency Map database (https://www.broadinstitute.org/
cancer/cancer-dependency-map, build portal-Avana-2018-06-21)16. After filtering by cell-lines, we got genetic 
dependency score data for 14 distinctive liver cancer cell-lines. Wilcoxon test was performed to investigate 
the genetic dependency score differences for the DTGs, and the five types of PDRGs for different liver cancer 
cell-lines. In order to investigate the genetic dependency score differences for the neighbors of the above men-
tioned six types of nodes in the networks, we computed the average genetic dependency scores for the neighbors 
of the above six types of nodes and compared with the background using Wilcoxon test.

Construction of drug target predictor with one-class SVM.  The one-class support vector machine 
(one-class SVM) was utilized to predict drug targets against HCC. LIBSVM 3.23 was used to construct one-class 
SVM models with the radial basis function (RBF) kernel33. The parameters for one-class SVM model was opti-
mized by five-fold cross-validation which was repeated for ten times to obtain the stable results. All the manually 
curated DTGs, which were mapped to the PPI network, were considered as positive samples here. The remaining 
gene nodes in the PPI network were taken as negative samples. Both network features and genetic dependency 
scores were used as the inputs to the one-class SVM prediction model. To encode network features for one-class 
SVM predictor, we incorporated three types of metrics derived from the previous statistical analyses, including 
network centralities, network distances and network neighbor properties. More specifically, we first calculated 
degree centrality, betweenness centrality and closeness centrality for each gene node. Additional centrality meas-
ures including PageRank centrality, eigenvector centrality and Katz centrality, were also computed for each gene 
node to evaluate the impact of the selection of centrality features on prediction performance of one-class SVM 
model. The distances between each node and seven types of gene nodes (including DTGs, five types of PDRGs 
and other genes) were also calculated. In addition, the ratios of seven types of gene nodes among one gene’s net-
work neighbors were also computed. Finally, the average genetic dependency scores across 14 distinctive liver 
cancer cell-lines were obtained for each gene and its network neighbors. Integration of the above features result 
in a feature vector with 52 feature values for each gene, including 3 network centrality features, 14 network dis-
tance features, 7 network neighborhood features, 14 genetic dependency score features of the gene and 14 genetic 
dependency score features of its network neighbors (See Supplementary Table S4 for details).
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To compare the prediction performance of our method with the DADA algorithm, we first constructed DADA 
dataset by intersecting our PPI network nodes with the network genes covered by the software suite of DADA 
algorithm. Ten repeats of five-fold cross-validation tests were used to evaluate the anti-HCC drug target gene pre-
diction performances on this DADA dataset. Based on a pre-defined seed gene set, the DADA algorithm would 
return a ranked gene list as the result. In total, seven types of seed genes, including known anti-HCC drug targets, 
five types of PDRGs and other genes. After ranking the genes with DADA algorithm, the DADA score of each 
gene could be calculated by the following equation:

=
−candidates rank

candidates
Score

Where candidates  represents the size of candidate set (i.e. the total number of genes in the DADA dataset), and 
rank represents the rank of each genes in the results of DADA algorithm using one particular set of seed genes. 
Finally, seven DADA scores were introduced as the input features of one-class SVM model to assess the predic-
tion performance.

Performance evaluation.  Four common metrics were used to illustrate the overall performance of drug 
target prediction more intuitively. They were sensitivity (Sn), specificity (Sp), Matthew’s correlation coefficient 
(MCC) and Area Under the Curve (AUC). Sn, Sp and MCC are defined as following equations:

=
+
TP

TP FN
Sn

=
+

TN
TN FP

Sp

=
× − ×

+ × + × + × +
TP TN FN FP

TP FN TN FP TP FP TN FN
MCC ( ) ( )

( ) ( ) ( ) ( )

where TP, TN, FP and FN represent true positive, true negative, false positive and false negative, respectively.
To evaluate prediction performance with an independent dataset, we first downloaded protein-drug rela-

tionships from DrugBank database. Since DrugBank database doesn’t provide downloadable files including the 
associated conditions and clinical trial information of drugs, the HTML files were parsed directly to gain these 
data. Drugs whose associated conditions or clinical information referred to carcinomas were considered as the 
anti-cancer drugs. As the result, all the genes which were targeted by these anti-cancer drugs were taken as the 
positive anti-cancer drug target genes in the independent dataset and other genes in the network were used as the 
negative samples.
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