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Abstract: Bacteria are increasingly used for biotechnological applications such as bioremediation,
biorecovery, bioproduction, and biosensing. The development of strains suited for such applications
requires a thorough understanding of their behavior, with a key role for their transcriptomic
landscape. We present a thorough analysis of the transcriptome of Cupriavidus metallidurans CH34
cells acutely exposed to copper by tagRNA-sequencing. C. metallidurans CH34 is a model organism
for metal resistance, and its potential as a biosensor and candidate for metal bioremediation has
been demonstrated in multiple studies. Several metabolic pathways were impacted by Cu exposure,
and a broad spectrum of metal resistance mechanisms, not limited to copper-specific clusters,
was overexpressed. In addition, several gene clusters involved in the oxidative stress response and the
cysteine-sulfur metabolism were induced. In total, 7500 transcription start sites (TSSs) were annotated
and classified with respect to their location relative to coding sequences (CDSs). Predicted TSSs were
used to re-annotate 182 CDSs. The TSSs of 2422 CDSs were detected, and consensus promotor logos
were derived. Interestingly, many leaderless messenger RNAs (mRNAs) were found. In addition,
many mRNAs were transcribed from multiple alternative TSSs. We observed pervasive intragenic
TSSs both in sense and antisense to CDSs. Antisense transcripts were enriched near the 5′ end
of mRNAs, indicating a functional role in post-transcriptional regulation. In total, 578 TSSs were
detected in intergenic regions, of which 35 were identified as putative small regulatory RNAs. Finally,
we provide a detailed analysis of the main copper resistance clusters in CH34, which include many
intragenic and antisense transcripts. These results clearly highlight the ubiquity of noncoding
transcripts in the CH34 transcriptome, many of which are putatively involved in the regulation of
metal resistance.

Keywords: copper; differential RNA-sequencing; Cupriavidus metallidurans; differential gene
expression; transcription start site; gene regulation; sRNA

1. Introduction

Environmental pollution with toxic metals due to anthropogenic activities is an internationally
growing concern [1–3]. The exposure and the risk of elevated concentrations of these pollutants
in the environment can lead to bioaccumulation and harmful effects [4–7], which are facilitated by
the high toxicity and recalcitrance of some metals [8,9]. Consequently, monitoring tools for metal
accumulation in natural environments such as soils and water bodies are needed. Physicochemical
analysis techniques, while accurate and sensitive, often fail to chart the bioavailability and the toxicity
of the polluting components [10–12]. At the same time, microorganisms show great promise as
biosensors to quantify the bioavailable fraction of heavy metals such as copper [13], an essential trace
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element that is highly toxic when overly abundant [14]. In addition, microorganisms can be used to
combat environmental contamination with heavy metals in a process called bioremediation [3,8,15,16].
Bioremediation has been the focus of extensive research in recent years as a clean and efficient alternative
to conventional strategies (reviewed in Tabak et al., 2005 [17] and Akcil et al., 2015 [18]).

Cupriavidus metallidurans strains are exemplary β-proteobacteria in metal-contaminated industrial
environments [19]. Type strain CH34 was first isolated from a decantation basin in a zinc factory near
Engis, Belgium, in 1976 [14,20]. It was quickly shown to encode resistance mechanisms to a wide
range of metals [21] and has become a model organism to study heavy metal resistance (HMR) in
bacteria [19]. Copper resistance in strain CH34 is mediated by multiple cooperating Cu detoxification
systems; copF and copA1B1C1D1 encode a Cu efflux P-type ATPase and a periplasmic detoxification
system, respectively, and are part of the extensive 21-gene cop cluster. The neighboring silDCBA cluster
encodes a heavy metal efflux- resistance nodulation division (HME-RND) driven system. These gene
clusters are encoded on the pMOL30 megaplasmid, and homologous systems can be found on its
chromosome and chromid (Table 1). In addition, many more accessory genes may play a role in Cu
resistance. The integration of these systems brings about a minimum inhibitory concentration of 3 mM
Cu2+, three times higher than that of Escherichia coli K38 [22,23]. A detailed description of Cu resistance
in strain CH34 can be found in Mergeay and Van Houdt [19].

Table 1. Overview of the main Cu resistance gene clusters in Cupriavidus metallidurans CH34.

Gene Cluster Locus Tag 1 Replicon 2 Homologous Gene Cluster Locus Tag 1 Replicon 2 Function

copA1B1C1D1 6112–6115 pMOL30 copA2B2C2D2 5671–5668 CHR2 Periplasmic
detoxification

copF 6119 pMOL30 cupA 3524 CHR1 PIB1-type
ATPase

silCBA 6133–6136 pMOL30 cusCBA 5031–5033 CHR2 HME-RND
efflux pump

1 Locus tag: Rmet_XXXX; 2 CHR1: chromosome, CHR2: chromid.

In a previous study, biosensors for metals such as Pb2+, Zn2+, and Cu2+ have been developed based
on Cupriavidus strains [24,25]. These biosensors function via a transcriptional fusion of metal-specific
promotor regions to a luxCDABE luciferase gene cluster, which allows for the emission of a measurable
bioluminescent signal upon translation (BIOMET® system). The strength of this signal is proportional
to the biologically available fraction of a specific metal. Cupriavidus-based biosensors have been used
for the characterization of bioavailable metal fractions in soil, sediments, mineral wastes, etc. [26–28].
In addition, the bioremediation potential of CH34, owing to its capacity for metal solubilization
and biocrystallization, has been demonstrated in several experimental setups [24,29]. For instance,
the deposition of ZnCO3 and CdCO3 crystals around the cell surface, both biologically catalyzed and
via abiotic processes, can lead to efficient depletion of these toxic metal ions from the environment.
Cupriavidus strains are especially interesting in the case of mixed pollution with metals and recalcitrant
organic compounds, since they are often able to degrade a broad array of aromatic compounds [30,31].
However, the construction of bacterial strains able to efficiently cope with mixed pollutions remains
challenging [32].

In order to understand, optimize, and control the molecular processes underlying the above
mentioned applications, it is vital to understand their regulation. Indeed, an elaborate network
of sigma factors [33,34] and transcriptional regulators [35,36] has been found to play an important
role in CH34. However, new paradigms in bacterial gene regulation highlight the role of small
regulatory RNAs (sRNAs), acting at a (post-)transcriptional level in disparate stress responses [37–39].
For instance, sRNAs are involved in a plethora of biological processes, including virulence [40–47],
antibiotic resistance [48–52] and mobile genetic elements [53] as well as oxidative and metal stress [54–60]
and the degradation of organic compounds [61].
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Thus, in order to fully understand the intricate response of C. metallidurans CH34, a highly
detailed map of its transcriptome is a basic necessity. Although its genome is fully sequenced and
annotated [31], and transcriptome data in response to metal stress are available [22,34], these data do
not allow analyzing pertinent features such as transcription start sites (TSSs), 5′ untranslated regions
(5′ UTRs), RNA processing sites (PSSs) and regulatory RNAs. Therefore, we used a tagRNA-sequencing
(tagRNA-seq) approach, a modified RNA-seq method that is based on the differential labeling of
5’ RNA ends and that enables whole transcriptome sequencing with the discrimination of primary from
processed 5’ RNA ends [62,63]. The ability of tagRNA-seq to annotate TSSs has been well established
in recent years, and it is commonly exploited in research on regulatory features of the bacterial
transcriptome. Copper was used as imposed stress, since CH34′s copper resistance mechanism is
unique in respect to its complexity compared to others [19], and the putative functions of sRNAs in
the bacterial copper response remain insufficiently studied. We provide an overview of differentially
expressed genes, a reannotation of the CH34 genome, and an analysis of the regulatory landscape.

2. Materials and Methods

2.1. Bacterial Strains, Media, and Culture Conditions

C. metallidurans CH34 [20] was routinely grown in Tris-buffered mineral medium (MM284) [21]
supplemented with 2 g/L gluconate on an orbital shaker at 180 rpm in the dark at 30 ◦C. MM284 agar
plates were prepared by adding 2% agar (Thermo Scientific, Oxoid, Hampshire, UK) to the
liquid medium.

2.2. RNA Extraction

Bacterial cultures were prepared in triplicate by inoculating pre-warmed MM284 medium with
several C. metallidurans CH34 colonies and growing the cells at 30 ◦C on an orbital shaker at 120 rpm.
After 48 h, cultures were diluted with pre-warmed 284 MM medium to an OD600 of 0.1 and grown
to an OD600 of 0.4. At this point, either CuSO4 was added to a final concentration of 400 µM
(copper condition) or a corresponding volume of H2O (control) was added. After 10 min of exposure,
cultures were put on ice and washed twice with a chilled 10 mM MgSO4 solution at 4 ◦C. After washing,
bacterial pellets were flash frozen and stored at −80 ◦C until RNA extraction. RNA extraction was
performed with the mirVana™ miRNA Isolation kit (Invitrogen™, Carlsbad, CA, USA). Lysis was
performed by resuspending the bacterial pellet in 50 µL of a 3 mg/mL lysozyme solution (Sigma
Aldrich, Saint Louis, MO, USA) and incubating it at room temperature for 15 min. After lysis, a volume
of 500 µL Lysis/Binding buffer was added. The protocol for total RNA extraction was followed without
enrichment for small RNAs. Total RNA quality was measured by Agilent 2100 Bioanalyzer using Nano
chips. Only samples with a RIN value above 9 were accepted for sequencing.

2.3. TagRNA-Sequencing Protocol

A tagRNA-seq protocol [64–66] was performed by Vertis Biotechnologie AG (Freising, Germany)
(Supplementary Figure S1). The complementary DNA (cDNA) libraries were constructed in the
following manner: the 5′ Illumina TruSeq sequencing adapter with a CTGAAGCT tag was ligated
to the 5′ monophosphate groups of rRNA-depleted RNA samples. Subsequently, samples were
treated with Terminator Exonuclease (TEX, Lucigen, Middleton, WI, USA) to remove RNAs with
non-ligated 5′ monophosphate ends. Then, RNA 5′-polyphosphatase (5′PP, Lucigen) was used to
convert 5′ triphosphate groups into 5′ monophosphate groups, and the 5′ Illumina TruSeq sequencing
adapter with TAATGCGC was ligated to the newly formed 5′ monophosphate groups. RNA samples
were then fragmented, and a 3′ sequencing adapter was ligated to the RNA fragments’ 3′ ends.
First-strand cDNA synthesis was performed using M-MLV reverse transcriptase and the 3′ adapter as
primer. The resulting cDNA was purified, ligated with a 5′ sequencing adapter, and PCR amplified
using a proofreading enzyme. The cDNA was then purified using the Agencourt AMPure XP kit
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(Beckman Coulter Genomics, Chaska, MN, USA) and analyzed by capillary electrophoresis. The size
fraction of 160–500 bp was eluted and sequenced on an Illumina NextSeq 500 system using 75 bp
read length. The different sequencing adapters in combination with RNA fragmentation resulted in
three read libraries for each sample: reads originating from the 5′ end of 5′-monophosphate (5′-P)
RNA molecules (processed start sites, PSS reads), reads originating from the 5′ end of 5′-triphosphate
(5′-PPP) RNA molecules (transcription start sites, TSS reads), and reads originating from non-tagged
RNA fragments enabling coverage over the entire transcript. For each sample, ca. 20 million reads
were generated. Adapter sequences were trimmed from all read libraries using Trimmomatic version
0.36 [67], and raw read quality was assessed using FastQC version 0.10.0 (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Reads were aligned to the C. metallidurans CH34 reference genome
(National Center for Biotechnology Information (NCBI) accession numbers NC_007971.1, NC_007972.1,
NC_007973.1, and NC_007974.1) with bowtie2 [68] using default parameters. Within each biological
replicate and condition, coverage values were similar over all four replicons. The RNA-seq datasets
generated and analyzed for this study are available from the NCBI Sequence Read Archive (SRA)
under accession number PRJNA639913.

2.4. Differential Gene Expression Calculation and Functional Enrichment Analysis

Differential gene expression was calculated by merging PSS, TSS, and unassigned libraries of
each sample using samtools merge [69]. Coverage of annotated genes of the resulting bam files
was performed with the featureCounts function of the Rsubread package [70] for R version 3.6.1.
Options —isStrandSpecific and –fraction were set to TRUE, and option –countMultiMappingReads
was set to FALSE. Differential gene expression of the resulting count matrix was accomplished using
edgeR [71,72] and limma [73], using a Benjamini–Hochberg [74] approach to control for Type 1
statistical errors. Functional enrichment analysis was performed using the eggNOG [75] classification
of annotated genes, as found on the MaGe platform [76], and the MLP package for R, version 1.34.0,
was used for p-value calculation.

2.5. Transcriptional Start Site Profiling

TSSs were detected using an in-house Python script (Python version 2.7, TSS_res_finder.py in
Supplementary Data). The 5′ most base of all reads in the TSS read library was selected using bedtools
(version 2.19.1) [77], and subsequent analyses were performed on the single base position to which
the read was reduced. Reads of triplicate TSS libraries from the same condition were combined into
a single library for further analysis. The PSS and the unassigned libraries were not used for TSS
profiling. Coverage values of a sliding window with an arbitrary width of 5 nt were calculated for
all nucleotide positions. If the coverage value of a sliding window exceeded 50 reads relative to a
read library size of two million reads, the coverage-weighted average TSS position within this sliding
window was calculated.

2.6. 5′ and 3′ RACE Protocol

The 5′ and the 3′ rapid amplification of cDNA ends (5′/3′ RACE) was performed using the
SMARTer® 5′/3′ RACE kit (Takara Bio, Saint-Germain-en-Laye, France) using the standard protocol.
Total RNA was obtained as described in the section “RNA extraction”. A list of primers can be
found in Supplementary Table S1 (first 14 primers). Random primers were used for 5′-first-strand
cDNA synthesis. In a second round of RACE experiments, RNA was poly(A)-tailed for 20 min using
poly(A)-polymerase (Invitrogen™) before proceeding with 5′ and 3′ RACE protocol. Primer sequences
can be found in Supplementary Table S1 (last 20 primers).

2.7. Statistics

The functional enrichment of eggNOG classes with disparate TSS classes was calculated
using Fischer’s exact test with subsequent Benjamini–Hochberg correction for multiple testing [74].

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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R version 3.6.1 was used for all statistical analyses. Adjusted p-values below 0.05 were considered
statistically significant.

3. Results and Discussion

3.1. Differential Gene Expression Analysis

First, the transcriptomic response to acute non-lethal Cu2+ exposure was analyzed. This yielded
352 coding sequences (CDSs) that were significantly up- (155) or downregulated (197) in the presence
of Cu2+, amounting to 5.15% of the total number of CDSs. Thirty-two and nine of these were located on
pMOL30 and pMOL28, respectively (Supplementary Figure S2). CDSs with false discovery rate (FDR)
values lower than 0.05 and logFC values higher than 1 or lower than −1 were considered differentially
expressed. In comparison with the previous microarray analysis (403 up and 373 down), the overlap
was limited with 40 up- and 25 downregulated CDSs shared between both analyses. However, it is
important to acknowledge the difference in dose (100 vs. 400 µM) and exposure time (30 min vs.
10 min), as both factors may have strongly influenced the transcriptomic response measured [22].

The functional relevance of differentially expressed CDSs was explored using functional categories
from the eggNOG classification system and the MLP package. Classes P (inorganic transport
and metabolism), E (amino acid transport and metabolism), and O (posttranslational modification,
protein turnover, and chaperones) were significantly enriched (Supplementary Table S2). In the previous
microarray analysis [22], eggNOG classes P and M (cell wall/membrane/envelope biogenesis) were
significantly overrepresented. This observation again underlines the adjustability of the copper-exposed
transcriptome as a response to differences in dose and response time. The strong enrichment of class P
was mostly because of the upregulation of many HMR systems (Figure 1). As mentioned previously,
the three main Cu detoxification systems are encoded by the cop1 and the sil clusters on the pMOL30
plasmid. With respect to the Cu resistance gene clusters (Table 1), the whole cop1 cluster was upregulated,
except copE (unknown function) and copL (cys-rich cytosolic protein) (Figure 1). The neighboring
ubiE (Rmet_6137) and ubiE2 (Rmet_6131) genes, encoding methyltransferases, were also upregulated.
Interestingly, no differential expression was observed for the silDCBA cluster (Rmet_6133–6136).
The latter is mainly induced by Ag+, but silA, silC and silD have been reported to be induced by
Cu2+ after 30 min of exposure [19]. As indicated above, each of the main Cu detoxification systems
has a homologous system on the chromosome or the chromid (Table 1). All of them, P-type ATPase
(cupRAC; Rmet_3523–3525), periplasmic detoxification system (copD2C2B2A2R2S2; Rmet_5668–5672),
and HME-RND-driven system (cusDCBAF; Rmet_5030–5034), were completely upregulated, with the
exception of cusD. This observation was surprising, since it has been hypothesized that the cop2 cluster
on the chromid is involved in a late response to relatively low Cu2+ concentrations [78]. Our results
clearly show a prompt response of these clusters to acute Cu stress.

Cross-regulatory interactions, i.e., the induction of other HMR mechanisms by Cu, were observed
for at least six clusters. The 8-gene ars cluster on the chromosome (Rmet_0327–0334), encoding resistance
mechanisms against As, was completely upregulated (except arsE). It has previously been shown that
the ars cluster is upregulated after exposure to As3+, Pb2+, Zn2+, Co2+, Cd2+, and Se6+ [22], but a
link with Cu exposure has thus far not been found. However, it has been shown that the regulator
ArsR can bind Cu2+ [79]. Cross-regulation with resistance mechanisms against Cd2+, Zn2+, and Co2+

toxicity was also observed via the upregulation of czcB1, czcJ1, and czcN1, with czcJ1 also shown to
be upregulated after 30 min Cu exposure [22]. The chromid-borne czc2 cluster (Rmet_4464–4469,
Rmet_4595–4597) was partly upregulated (Figure 1 and Supplementary Figure S2). The response
regulators CopR1 and CopR2 are highly similar to CzcR1 and CzcR2 (roughly 60% amino acid identity),
which could elicit cross-regulation. Furthermore, the regulon of response regulators could have been
broader than their co-localized targets [80–82]. Enhanced transcription of the CzcRS two-component
system after Cu exposure was also noted in Pseudomonas aeruginosa [83]. Induction of several genes
involved in Pb2+ resistance was also detected, with three copies of the pbrR gene encoding a MerR-type
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regulator being upregulated. Two copies are located on the chromosome (Rmet_2302, Rmet_3456),
but lead resistance is mainly attributed to the pbrUTRABCD cluster on pMOL30 (Rmet_5944–5949).
However, none of the other genes in this cluster were overexpressed. Additional cross-regulation was
observed in the complete upregulation of the cnr cluster on pMOL28 (Rmet_6205–6211), which encodes
resistance against Ni2+ and Co2+. It has previously been observed that the transcriptomic responses
of CH34 to Cu2+, Co2+, and Ni2+ overlap considerably [22]. Finally, the gig cluster on the chromid
(Rmet_4682–4687) was completely and strongly induced. This cluster was found to be upregulated
by Au3+ [84] and Ag+ [22] in a previous study and is controlled by the extracytoplasmic function
(ECF) RpoQ sigma factor [84], which is also overexpressed after acute Cu stress. RpoQ has also been
implicated in the resistance to Cd2+ and in the regulation of thiol/sulfide metabolism in CH34 [34].
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Figure 1. Differential gene expression of metal resistance genes from C. metallidurans CH34 exposed
for 10 min to 400 µM Cu2+. Significant (red diamond; p < 0.05) and non-significant (blue cross)
log2 ratios are shown for known metal resistance genes located on the chromosome (red line under
graph), chromid (orange), pMOL28 (blue), and pMOL30 (green). Dotted lines correspond to −1 and
1, respectively.

A second eggNOG class enriched upon Cu exposure was class O, comprising posttranslational
modification, protein turnover, and chaperones, which can be associated with the production of reactive
oxygen species and antioxidant depletion elicited by Cu toxicity [85]. In agreement with previous
studies [86], even after 10 min of Cu exposure, considerable changes were observed in the expression of
genes involved in redox cycling and their regulatory mechanisms. Redox sensors oxyR [87] and soxR [88]
were both upregulated. Curiously, CH34 lacks the homologs of their regulatory counterparts oxyS
and soxS, thus the exact mechanisms of transcriptional regulation are unknown and may differ from
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canonical mechanisms in, e.g., Escherichia coli [31]. In addition to oxyR and soxR, several peroxidase
genes, such as katA, aphC, and aphD but not sodB and sodC, genes involved in thioredoxin and
glutaredoxin metabolism and Fe-S cluster assembly as well as ohrR (coding for a transcriptional
regulator of organic hydroperoxide resistance [89,90]) and dpsA (encoding a DNA-binding protein
associated with oxidative stress protection), were upregulated (Supplementary Table S3, Sheet “DGE”).
Antioxidants such as glutathione as well as Fe-S cluster-containing proteins with roles as transcriptional
regulators, catalytic enzymes, or oxidative stress sensors have been shown to play an important role in
relieving oxidative stress [91–97]. Interestingly, this response to oxidative stress was not observed in
a previous experiment with a longer exposure time (30 min) at a lower concentration (100 µM) [22],
suggesting that oxidative stress is only elicited at higher Cu concentration or is rapidly counteracted.
Several genes related to protein turnover and protein chaperoning were differentially expressed, which,
together with the overrepresentation of class E (amino acid transport and metabolism), indicates the
need to reconfigure the proteome in order to protect the cell from Cu toxicity. One of two copies of
the chaperone clpB [98] was upregulated, as were dnaK [99], the hslUV operon (encoding a bipartite
ATP-dependent protease [100]), mucD (periplasmic endopeptidase) [101], prlC (oligopeptidase) [102],
and ftshH (metalloprotease) [103,104] (Supplementary Table S3, sheet “DGE”). The importance of
protein turnover, both as a direct result of and as an active response to Cu stress, has been well
established [105,106]. In addition, several upregulated pathways are associated with amino acid
metabolism (Supplementary Table S3, sheet “DGE”). For instance, the two cys clusters involved
in cysteine metabolism were almost completely upregulated [107]. The importance of the cysteine
metabolism, which is intimately linked to the use of cellular S pools, has been implied in Cu resistance
in other studies [86,108–111]. A prime example is the need for L-cysteine in the biosynthesis of
glutathione, of which the anabolic pathways were upregulated in the copper condition. Next to
changes in S-metabolism, the transcriptome governing the metabolism of several other amino acids
was also altered by exposure to Cu (Supplementary Table S3, sheet “DGE”).

3.2. Transcriptional Start Site Profiling

3.2.1. General Characteristics of Detected TSSs

In a next step, the tagRNA-seq data were used to identify and probe the type of the 5′ ends of
RNAs in order to obtain a global snapshot of the transcriptional organization in C. metallidurans CH34
and to scrutinize the impact of Cu stress on the RNA landscape. The transcription start site (TSS)
detection algorithm, as described in Materials and Methods, was fine-tuned to annotate the 7500 most
highly expressed TSSs in both the control and the copper condition. This number was roughly based
on the number of annotated genes and pseudogenes in CH34 (6514). These TSSs were divided into
primary, secondary, internal, antisense, and orphan TSS according to their location, similar to previous
publications [112] with minor modifications (Supplementary Figure S1). A primary TSS (pTSS) is the
main TSS of a gene or operon and is located within 200 bp upstream of a start codon. It is expressed at
least twice as strongly as the second most highly expressed TSS within those 200 bps. The remaining
TSSs in this region were classified as secondary TSSs (sTSSs). An internal TSS (iTSS) is located within
and on the coding strand, while an antisense TSSs (aTSS) is located on the non-coding strand of a CDS
or within 100 bp upstream of its start codon. The orphan TSSs (oTSSs) are not associated with CDSs.
An overview of this classification for every replicon is shown in Table 2. As TSS classification was
prioritized via the following cascade: pTSS > sTSS > iTSS > aTSS > oTSS; there is no overlap between
the different classes. In addition, the tagRNA-seq data was verified with 5′ and 3′ RACE of selected
transcripts, including copA1 messenger RNA (mRNA) and several antisense and orphan transcripts
(see below) (Supplementary Figure S3). Similarly, the previously identified TSSs of cnrC, czcI, and pbrA
were also detected and confirmed by the tagRNA-seq results [113–115], both of which corroborate the
validity of the TSS identification with the tagRNA-seq procedure.
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Table 2. Number and overlap of detected transcription start sites (TSSs) in each replicon 1.

pTSS sTSS iTSS aTSS oTSS

CT Cu ∩ CT Cu ∩ CT Cu ∩ CT Cu ∩ CT Cu ∩

CHR1 1490 1382 1231 729 734 483 1294 1390 916 1015 934 723 278 248 216
CHR2 741 674 586 187 166 102 497 526 359 499 446 348 161 155 134

pMOL28 45 43 38 19 19 13 89 83 74 97 92 77 21 22 18
pMOL30 86 108 78 17 42 11 100 150 76 129 132 101 53 54 46
Genome 2362 2207 1933 952 961 609 1980 2149 1425 1740 1638 1249 513 479 414

1 For each replicon and the full genome, the number of TSSs detected in the control (CT) and Cu condition, as well as
the intersection (∩), are shown per TSS category (primary (pTSS), secondary (sTSS), internal (iTSS), antisense (aTSS)
and orphan (oTSS)).

3.2.2. Primary TSSs

Primary TSSs were detected for 2422 CDSs, amounting to 35.8% of all annotated CDSs. In a first
step, this information was combined with the output of the recently developed GeneMarkS-2 gene
prediction tool [116]. CDSs for which no pTSS was detected and that contained an iTSS between the
original start codon and the newly predicted one, being preceded by a predicted ribosome-binding
site (RBS), were scrutinized. This resulted in the putative reannotation of 182 CDSs. In addition,
the consensus RBS and the spacer length were derived (Figure 2).
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Four cases were related to metal resistance. First, related to copper, copM encoding a 136 aa
uncharacterized pre-protein was putatively re-annotated to be 114 aa. The cleavage site was similar
for both, i.e., the processed proteins were identical, but the signal peptide prediction was much
better for the newly annotated CDS (0.82 vs. 0.66; SignalP-5.0) (Supplementary Figures S4 and S5).
In addition, cupC encoding 133 aa Cu chaperone was putatively reannotated to be 66 aa
(Supplementary Figures S4 and S6). Related to the czc cluster involved in cadmium, zinc, and cobalt
resistance, czcN (273 aa; 30.1 kDa predicted molecular weight) encoding a membrane-bound
isoprenylcysteine carboxyl methyltransferase was putatively reannotated to be 216 aa (23.7 kDa
predicted molecular weight) (Supplementary Figures S4 and S7). CzcN is homologous to
NccN of Alcaligenes xylosoxidans 31 (reclassified as C. metallidurans), which was found to be a
23.5 kDA protein [117]. Finally, the pbrD gene coding for a Pb2+-binding protein [114] could be
putatively reannotated based on both TSS identification and GeneMarkS-2 prediction (CDS and RBS)
(Supplementary Figure S8). However, the new CDS is not in frame and codes for a 150 aa protein
unrelated to PbrD. These results merit further study of its function and sequence, since pbrD appears
not to be necessary for Pb2+ resistance and is absent in all other known lead-resistant bacteria [118].
Moreover, although it is heterologously expressed in E. coli, it does show Pb2+ absorption [119].
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Next, the 5′ untranslated region (5′ UTR) lengths and their distribution were calculated (Figure 3),
which showed a peak at a length of 26 nt, after which it tapered off. No difference was noted
between the control and the Cu condition, indicating that Cu exposure does not entail a global
measurable bias in the 5′ UTR length of expressed genes. A curious observation was the high number
of leaderless mRNA (4.67% of all pTSSs), defined as those mRNAs with a 5′ UTR length shorter than
5 nt. Because of the lack of a 5′ UTR, these transcripts are translated via non-canonical mechanisms.
Similar observations have been made in Burkholderia cenocepacia [120], Streptomyces coelicor [121],
Salmonella enterica [122], Caulobacter crescentus [123,124], and Helicobacter pylori [125,126]. A functional
enrichment analysis showed that leaderless mRNAs was significantly enriched in eggNOG class K
(transcription), which has already been observed in many bacterial species [127], and class L (replication,
recombination, and repair). Several leaderless mRNAs coding for transcriptional regulators were also
differentially expressed in the presence of Cu2+, including arsR, ompR, ohrR, and zniR. In addition, copJ,
merP, rpoN, and czcI2 were transcribed into leaderless mRNAs. The prevalence of leaderless mRNAs
has been shown to be higher in organisms with an earlier evolutionary age, and has been linked to
extreme habitats [127,128].Genes 2020, 11, x FOR PEER REVIEW 10 of 24 
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Finally, to complete the promoter information, the consensus sequence in a region of 100 nt
around each pTSS was identified with Improbizer [129], which allowed us to weight the location
of detected motifs. On the chromosome, the chromid, and the megaplasmid pMOL30, a TAnAAT
consensus motif was detected around the −10 position, generally flanked by GC-rich stretches
(Supplementary Figure S9). At the −35 position, a TTGACA-like motif with higher variability was
detected, again flanked by short GC-rich stretches (Supplementary Figure S9). It is possible that CDSs
preceded by these consensus motifs, which are similar in location and sequence to those found in E. coli,
are under transcriptional control of the two housekeeping σ70-factors rpoD1 (Rmet_2606) and rpoD2

(Rmet_4661) [31]. Interestingly, although pMOL28 and pMOL30 do not contain essential housekeeping
genes, TAnAAT consensus motifs were found on pMOL30 but not pMOL28, indicating a difference in
sigma factor recruitment for the initiation of pMOL28 and pMOL30 gene transcription. Noteworthy,
in contrast with pMOL30, which does not encode any sigma factors, pMOL28 encodes the ECF sigma
factor CnrH. However, it is only involved in transcription of the cnr locus [113]. In addition, it has been
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shown that none of the remaining 10 ECF sigma factors, which are encoded on the chromosome (6) and
the chromid (4), are necessary for the upregulation of any of the operons responding to metal shock [34].
Nevertheless, the involvement of non-plasmidic sigma factors in the transcription of plasmidic genes
is not unexpected. On pMOL30, most CDSs preceded by a TAnAAT motif have an unknown function,
but some genes involved in metal resistance are preceded by a TAnAAT-like pattern (czcE, pbrT, ubiE,
and copM). Further determination of the functions of the remaining hypothetical proteins on both
pMOL28 and pMOL30 may provide conclusive insights in this matter.

3.2.3. Secondary TSSs

Alternative mRNAs deriving from secondary TSSs were detected for 623 CDSs. Among the genes
differentially expressed under Cu stress, a high number of regulatory proteins was readily apparent,
including the main regulators of pMOL30-based (copR1) and chromid-based periplasmic (copR2) Cu
detoxification systems as well as ohrR (Rmet_3619), zniS (Rmet_5322), bzdR (Rmet_1223), iscR, rpoH,
and czcR2. In addition, several genes involved in HMR and stress responses were transcribed from
alternative TSSs (Supplementary Table S3, Sheet “sTSS”). Alternative TSSs have been reported in
several bacterial and archaeal species [130–132] and have been linked to differences in translational
efficiency and mRNA stability [133]. Longer 5′ UTRs enable more extensive post-transcriptional
regulation, e.g., via sRNAs, and can contain riboswitches that respond to various environmental
cues [134]. Interestingly, many mRNAs coding for sigma factors showed multiple TSSs, including rpoA,
rpoD1, rpoE, rpoH, rpoI, rpoK, and rpoM (Supplementary Figure S10), which could have an impact on
the transcription of genes associated with a particular sigma factor.

3.2.4. Intragenic TSSs

The second most abundant TSS class after the pTSSs was that of the iTSSs. As all TSSs were
derived from primary 5′-PPP-RNA, these iTSSs are unlikely to be the result of RNA degradation, e.g.,
by 5′-exonucleases, although some could be pTSSs or sTSSs due to misannotated CDSs, or transcriptional
noise from spurious promotors. More importantly, iTSSs can also mark the start site of noncoding RNAs.

Even though the roles of the detected iTSSs are unclear, they are pervasive in the CH34
transcriptome. Functional enrichment analysis showed that, in the copper condition, eggNOG classes
C, F, J, M, O, P, and T were enriched in iTSSs. In total, 55 of the 167 genes involved in metal resistance
contained at least 1 iTSS, e.g., almost all cop1 genes (Supplementary Table S3, sheet “iTSS”) and
follow-up functional analyses could provide more insights into their specific role in metal resistance.
The iTSSs related to the Cu resistance mechanisms (cop1 and sil clusters on pMOL30) are provided and
discussed in detail below (Section 3.2.7).

In both the control and the Cu condition, iTSSs were enriched in the first 10% of the encompassing
CDS, while iTSSs were relatively depleted in the last 10% (Figure 4). This observation lends credibility
to the hypothesis that many detected iTSSs are pTSSs or sTSSs to misannotated CDSs. However,
these were not included in our re-annotation, as the current approach does not allow discriminating
between the original and the putative new start codon. Of course, these uncertainties could be addressed
with additional protein-based experiments such as proteome profiling (although not straightforward
as the absence of a longer protein over the presence of a shorter one needs to be shown), but this is
out of the scope of this study. Since there is currently no evidence that iTSSs in the first percentile are
linked more to coding RNAs than in other percentiles, we conclude that many iTSSs either mark the
start site of noncoding RNA or are the result of transcriptional noise.
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3.2.5. Antisense TSSs

Similar to intergenic TSSs, antisense TSSs are ubiquitously found in the CH34 transcriptome.
In total, 2129 aTSSs were associated with 692 CDSs, indicating that many mRNAs can putatively be
complexed by multiple antisense transcripts. Of all aTSSs, 408 showed a logFC smaller than −1 or
greater than 1, indicating differential expression. Six differentially expressed aTSSs were validated by
5′ RACE experiments (Supplementary Table S1 and Supplementary Figure S3). It is generally assumed
that aTSSs mark the start of noncoding transcripts, however, whether a detected antisense transcript has
a (regulatory) function or is the result of transcriptional noise [135] needs to be determined case-by-case.
Since antisense transcripts can obscure regulatory features of the sense transcript by perfect base
pairing [136], the location of aTSSs relative to the 5′ and 3′ ends of the sense transcript was scrutinized
(Figure 4b). There is a clear enrichment of aTSSs near the 5′ end of the sense CDS, with a less prominent
enrichment near the 3′ end, indicating a putative regulatory role of the antisense transcripts.

Specifically related to copper resistance, aTSSs were found in silB, copA1, copF, copG, copH,
copL, and copM (Figures 5 and 6). The aTSSs in silB (nt position 168,587 on pMOL30) and copL
(nt position 181,548 on pMOL30) were further selected for 3′ RACE validation (detailed in Section 3.2.7),
indicating transcript lengths of approximately 700 and 500 bp, respectively (Supplementary Figure S3).
In addition, an aTSS was found in czcA1 (Supplementary Figure S7).

Antisense TSSs were enriched in CDSs belonging to eggNOG classes L (replication, recombination,
and repair), M (cell wall/membrane/envelope biogenesis), and T (signal transduction mechanisms) in
the control condition, and classes J (translation, ribosomal structure and biogenesis), L, and M in the
copper condition. Class T was only significantly overrepresented in the control condition, which could
indicate that repression of translation via antisense transcription is common for CDSs related to
signal transduction and partially relieved under copper stress. Many sigma factors, such as rpoB
(Rmet_3334), rpoD1 (Rmet_2606), rpoN, rpoB, and rpoS (Rmet_2115), showed antisense transcription
to a high extent (Supplementary Figure S10). The role of alternative sigma factors in the initiation
of antisense transcription has been described before [137–139]; inversely, an interesting case of the
regulation of the sigma factor RpoS itself by antisense and anti-antisense RNAs has been shown in
E. coli [140].
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Figure 5. Transcription profile analysis of the cop cluster from C. metallidurans CH34 when exposed
to copper. Combined TSS read counts of the three biological replicates for control (upper) and Cu
condition (lower) are shown for positive (green) and negative (red) strands, with the y-axis containing
a break pair (1000–1200) represented as striped grey lines. CDSs related to the cop cluster (coordinates
for the pMOL30 region shown at the bottom) are colored based on their log2 fold change. The small
black arrows indicate clearly identified primary and internal TSSs. The green arrow represents a
re-annotated CDS.
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RNAs. Eleven oTSSs showed a log2 fold change above 1 or below −1. As the expression of these oTSSs 
is affected by Cu stress, they are especially interesting as candidates for sRNAs with regulatory 
functions in the response to metal exposure. Three of them, based on interesting locations relative to 
known HMR genes, were experimentally validated by 5′ RACE (Supplementary Table S1 and 
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Figure 6. Transcription profile analysis of the sil cluster from C. metallidurans CH34 when exposed
to copper. Combined TSS read counts of the three biological replicates for control (upper) and Cu
condition (lower) are shown for positive (green) and negative (red) strands. CDSs related to the sil
cluster (coordinates for the pMOL30 region shown at the bottom) are colored based on their log2 fold
change. The small black arrows indicate clearly identified primary and internal TSSs.

3.2.6. Orphan TSSs

In total, 578 TSSs were detected in intergenic regions unassociated with CDSs. These orphan TSSs
could mark the start of transcripts resulting from the 5′ of mRNAs with exceptionally long 5′ UTRs,
unidentified CDSs, often coding for short peptides [141], and trans-acting sRNAs [142], or they could
result from transcription by spurious promoters.

First, the prevalence of long 5′ UTRs was investigated. A 200–300 nt region upstream of
known start codons was scrutinized for oTSSs, and uninterrupted coverage from the oTSS to the
start codon was manually verified. In this way, 126 oTSSs marked the 5′ of putative long 5′ UTRs.
Interestingly, hfq, coding for a small RNA-binding protein that stabilizes sRNAs and modulates
RNA–RNA interactions [143] showed a long 5′ UTR (209 bp) next to two other mRNA isoforms with
5′ UTRs of 25 and 137 bp. Relative expressions of these three isoforms (25, 137, and 209 nt 5′ UTR) were
6.1%, 81.1%, and 12.8% and 15.0%, 74.7%, and 10.3% for control and copper conditions, respectively.
These disparate 5′ UTRs might have given rise to differences in post-transcriptional regulation of the
hfq mRNA. While the relative coverage of each alternative TSS was quite similar in control and copper
conditions, it is possible that stronger selection of differential TSSs exists in other (stress) conditions.

In a subsequent analysis, the existence of putative open reading frames (ORFs) downstream
of oTSSs was studied. In total, 417 oTSSs were located upstream an ORF with ATG, GTG, or TTG
as start codons and either with a minimum length of 150 nt or with homology to proteins in the
non-redundant protein database. A list of these proteins with their inferred function, among which are
several transporters, can be found in Supplementary Table S3, sheet “oTSS ORF BLAST”.

Consequently, the remaining 35 oTSS were neither located within 300 nt upstream of known CDSs
nor associated with putative ORFs. These oTSSs were assumed to mark the 5′ end of noncoding RNAs.
Eleven oTSSs showed a log2 fold change above 1 or below −1. As the expression of these oTSSs is
affected by Cu stress, they are especially interesting as candidates for sRNAs with regulatory functions
in the response to metal exposure. Three of them, based on interesting locations relative to known
HMR genes, were experimentally validated by 5′ RACE (Supplementary Table S1 and Supplementary
Figure S3). Two of these differentially expressed orphan transcripts (Supplementary Figure S11)
were also experimentally validated by 3′ RACE (one at CHR1 nt position 3,784,309 and one at CHR2
nt position 147,562), indicating lengths of roughly 550 bp and 450 bp (Supplementary Figure S3).
It must be mentioned that 3′ ends of coding and non-coding RNAs cannot be accurately inferred from
tagRNA-seq coverage, hence the need for additional experimental validation (via 3′ RACE or other
techniques).
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3.2.7. Detailed Analysis of cop and sil Clusters on pMOL30

As mentioned earlier, the copVTKMNS1R1A1B1C1D1IJGFOLQHEW cluster on pMOL30 harbors
two of the three main Cu resistance systems. It is aided by the neighboring clusters silDCBA, gtrM2A2B2,
ompP2, ubiE, and ubiE2. Homologous but less extensive combinations of Cu/Ag resistance mechanisms
are widespread and are often associated with mobile genetic elements [144]. Although the cop cluster
was almost completely induced by Cu2+, not all genes were induced to the same extent (Figures 1 and 2).
It has previously been shown that the transcriptomic response of some cop genes to Cu2+ stress is
time-dependent [78], which indicates an additional level of regulatory complexity. Based on expression
levels and TSS data, pTSSs were identified for copW, copE, copH, copQ, copL, copO, copF, copGJ, copI, copC,
copA, copR1S1N, copK, copM, and copTV. The copA pTSS was validated with 5′ RACE. We investigated
whether regulatory motifs could be found upstream of these pTSSs. Results using MEME [145] showed
a 37 bp conserved motif around 50 bp upstream of all pTSSs, except copG, copK, and copO (Figure 7).
In repeating this analysis with Improbizer, a 10 bp consensus motif was detected for all detected
pTSSs, ca. 60 upstream for most and ca. 70 bp upstream for copE, copL, copC, and copK. Palindromic or
direct-repeat chromosomal binding sites have been demonstrated for many response regulators of
OmpR, NarL, LytR, and PrrA families [146] as well as autoregulation (motif in promoter region of copR1).
Consequently, this could be a putative CopR1 binding site. Interestingly, we observed considerable
variation in the expression levels of cop1 genes with similar consensus motifs. This could indicate that
these small variations of the operator sequence have large effects on their interaction with regulatory
proteins (e.g., CopR1), as was shown for binding of response regulator AgrR in C. metallidurans
NA4 [147], or that additional regulatory factors are involved. In addition, this motif was also detected
upstream of the pTSSs of cusA, cupA, cupC, and copB2 (FIMO; p < 0.001 [148]). This discovery implies
similarities in the regulation of different Cu-responsive clusters on the chromosome, the chromid,
and the pMOL30. Evidently, this putative cross-regulation needs to be validated further.Genes 2020, 11, x FOR PEER REVIEW 15 of 24 
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Several other TSSs were detected in the cop cluster. Secondary TSSs were found for copA1, copT,
and possibly copR1. The sTSS at position 191326, likely related to copA1, was detected in both conditions,
but the much stronger pTSS at position 191,243 was only detected in the Cu condition. This observation
provides a good example of a Cu-inducible promotor region with a strong signal-to-noise ratio,
which can be exploited, e.g., for the construction of optimal Cu-responsive biosensors. Intragenic TSSs
were found in 13 of the 21 cop genes. Interestingly, the iTSS in copQ was expressed more strongly than
the pTSS in the CT condition, while the inverse was detected in the Cu condition. This iTSS could
potentially lead to an alternative, shortened CDS, where the N-terminal signal peptide as well as one
of the typical motifs is absent [82]. Whether this transcript is really translated and has a biological
role needs to be further analyzed. Noteworthy, there are 21 copQ homologs in C. metallidurans CH34,
and although this protein family is still poorly characterized, many of them are transcriptionally
induced in C. metallidurans CH34 in response to different metals [22], and an interplay between different
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homologues appears to confer metal resistance [82]. Antisense TSSs were identified in copA1, copF,
copH, copL, and copM, but only the aTSS in copL was overexpressed in the Cu condition, and a motif
resembling the 10-bp motif, detected with Improbizer and described above, was detected around the
–80 position. The aTSS in copL was also validated by 5′/3′ RACE, indicating a transcript size of ± 700 bp
(Supplementary Figure S3). The functional role of these putative identified sRNAs in copper resistance
will be tested in future studies. In addition to these observations, it is possible that trans-acting sRNAs
(see Section 3.2.7) interact with mRNAs from the cop cluster.

The third main Cu resistance mechanism on pMOL30 is the HME-RND tripartite efflux pump
encoded by silDCBA. While none of the sil genes are upregulated after acute copper exposure,
as discussed previously, we detected several interesting TSSs in this cluster (Figure 6). Two clearly
defined TSSs with similar expression levels were found upstream of silD, coding for a conserved
protein with unknown function. The upstream TSS was preceded by a motif similar to the putative cop
motif shown in Figure 7, suggesting (partially) shared regulation between these systems. No pTSSs
were detected for silC, silB, or silA, indicating that the four-gene sil cluster is transcribed as one
polycistronic mRNA of over 6 kb in length. A strong iTSS was found at nt 165,562, more or less halfway
through the silA gene. In addition, we detected a differentially expressed aTSS that could putatively
interact with the silDCBA mRNA, partially overlapping the ORFs of both silC and silB. Interestingly,
this aTSS was downregulated in the Cu condition, hinting at a role of the antisense transcript in
the post-transcriptional regulation of either or both of these two genes. This aTSS was validated by
5′/3′ RACE, indicating a transcript size of ± 500 bp (Supplementary Figure S3). These data could
provide insights with regard to the regulation of the sil cluster, which has thus far not been elucidated,
considering the cluster lacks adjacent proteins with regulatory functions. The possible role of this aTSS
will be elucidated in further research.

4. Conclusions

In an effort to map the transcriptomic profile and the regulatory features of C. metallidurans CH34
in response to acute Cu stress, we performed tagRNA-Seq on C. metallidurans CH34 cultures exposed
to Cu2+ and analyzed both differential gene expression and transcription start sites. Most differentially
expressed genes belonged to eggNOG classes representing either transport and metabolism of inorganic
ions, transport and metabolism of amino acids, and posttranslational modification, protein turnover,
and chaperoning. A considerable fraction of CH34′s impressive HMR arsenal was overexpressed,
not limited to Cu-specific detoxification clusters. The importance of the cysteine/sulfur metabolism
was also highlighted, in agreement with similar studies. Finally, Cu toxicity via the production of
reactive oxygen species (ROS) was detected by the upregulation of multiple clusters involved in
cellular redox chemistry. Interestingly, several key differences with previous microarray data were
found, likely owing to the lower dose and the longer exposure time used in those experiments.
This comparison demonstrates the highly transient nature of the transcriptomic response to Cu
stress. Analysis of transcription start sites enabled us to (re)annotate TSSs of over 35% of known
CDSs. Many leaderless mRNAs were discovered, often with functions in transcription and replication,
recombination, and repair. An unexpectedly high number of TSSs were found inside CDSs, both in sense
and antisense. Antisense TSSs were enriched near the 5′ and the 3′ ends of sense transcripts, indicating a
function in post-transcriptional regulation of these transcripts. In addition, several transcripts starting
in intergenic regions were detected, of which 35 were likely sRNAs. We did not detect sRNAs found in
related strains Burkholderia cenocepacia [149] and Bordetella pertussis [150]. An interesting consensus
motif upstream of cop1 cluster pTSSs was detected, which could be a shared operator of many cop1

genes. In addition, a substantial number of internal and antisense TSSs were found in this cluster,
indicating supplementary levels of regulation. In conclusion, our data not only present new insights in
the response of C. metallidurans to copper, they also reveal different regulatory aspects that still need to
be clarified in order to fully comprehend, optimize, and control possible biotechnological applications
of this strain.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/9/1049/s1,
Table S1: Primers used for 5′ and 3′ RACE experiments, Table S2: MLP output for functional enrichment
analysis, Table S3: Data summarization of differential gene expression and transcriptional start site profiling of
C. metallidurans CH34 in response to Cu2+ exposure, Figure S1: General overview of the tagRNA-seq workflow
and analysis, Figure S2: Scatter plot of RNA-Seq-derived gene expression of pMOL28 (top) and pMOL30
(bottom) from C. metallidurans CH34 exposed for 10 min to 400 µM Cu2+. Dots (blue p < 0.05) represent Log2
ratios with red and green lines corresponding to −1 and 1, respectively. CDSs involved in metal resistance are
color-coded, Figure S3: Agarose gel images of RACE experiments. Ladder used in all images is GeneRuler 1 kb
Plus (Thermo Fischer Scientific). All used primers are described in Supplementary Table S1). Nested PCR as per
SMARTER® 5′/3′ RACE User Manual (Takara Bio USA Inc., Mountain View, CA, USA, p. 15–17). Primers used
are Universal Primer Short (all reactions) and pasRNA1_5′RACE_NGSP1 (1.1), pasRNA2_5′RACE_NGSP1
(1.2), pasRNA3_5′RACE_NGSP1 (1.3), pasRNA4_5′RACE_NGSP1 (1.4), pasRNA5_5′RACE_NGSP1 (1.5),
pasRNA6_5′RACE_NGSP1 (1.6). All amplified sequences were cloned into a pRACE vector and sequenced
as described in the 5′/3′ RACE protocol. (2A) Additional nested PCR reactions. Primers used
are Universal Primer Short (all reactions) and 3492_o_5′_RACE_NGSP1 (2A.1), 3492_o_3′_RACE_NGSP1
(2A.2), 3492_o_3′_RACE_NGSP2 (2A.3), 3493_o_5′_RACE_NGSP1 (2A.4), 3493_o_3′_RACE_NGSP1 (2A.5),
copL_as_5′_RACE_NGSP1 (2A.6), copL_as_3′_RACE_NGSP1 (2A.7), 3616_o_5′_RACE_NGSP1 (2A.8),
3616_o_3′_RACE_NGSP1 (2A.9), pasRNA4_5′RACE_NGSP1 (2A.10), silB_as_3′_RACE_NGSP1 (2A.11).
(2B) Control reactions for 5′ and 3′ RACE reactions in (2A), omitting gene-specific primers from the reaction
mixture. (2C) Control reactions for 5′ and 3′ RACE reactions in (2A), omitting Universal Primer Short from
the reaction mixture, Figure S4: Alignment of original and newly annotated CDSs related to gene clusters
involved in metal resistance, Figure S5: SignalP-5.0 output of signal peptide prediction for the re-annotated CopM,
Figure S6: Transcription profile analysis of the cupRAC cluster from C. metallidurans CH34 when exposed to copper.
Combined TSS read counts of the three biological replicates for control (upper) and Cu condition (lower) are shown
for positive (green) and negative (red) strand, with the y-axis containing a break pair (2000–50,000) represented
as striped grey lines. CDSs related to the cupRAC cluster (coordinates for the chromosome region shown at the
bottom) are colored based on their log2 fold change. The small black arrows indicate clearly identified primary
and internal TSSs. The green arrow represents a re-annotated CDS, Figure S7: Transcription profile analysis of the
czc cluster from C. metallidurans CH34 when exposed to copper. Combined TSS read counts of the three biological
replicates for control (upper) and Cu condition (lower) are shown for positive (green) and negative (red) strands,
with the y-axis containing a break pair (600–2000) represented as striped grey lines. CDSs related to the czc cluster
(coordinates for the pMOL30 region shown at the bottom) are colored based on their log2 fold change. The small
black arrows indicate clearly identified primary and internal TSSs. The green arrow represents a re-annotated
CDS, Figure S8: Transcription profile analysis of the pbr cluster from C. metallidurans CH34 when exposed to
copper. Combined TSS read counts of the three biological replicates for control (upper) and Cu condition (lower)
are shown for positive (green) and negative (red) strands. CDSs related to the pbr cluster (coordinates for the
pMOL30 region shown at the bottom) are colored based on their log2 fold change. The small black arrows
indicate clearly identified primary and internal TSSs. The green arrow represents a re-annotated CDS, Figure S9:
Consensus motifs (−35 and −10) in C. metallidurans CH34 promoters on chromosome (CHR1), chromid (CHR2),
and pMOL30, Figure S10: Transcription profile analysis of sigma factors from C. metallidurans CH34 when exposed
to copper. Combined TSS read counts of the three biological replicates for control (upper) and Cu condition (lower)
are shown for positive (green) and negative (red) strands. CDSs are colored based on their log2 fold change,
Figure S11: Transcription profile analysis of two identified oTSSs (small black arrows; top figure: located on the
negative strand of the chromosome at nt 3,784,309; bottom figure: located on the minus strand of the chromid at nt
147,562) from C. metallidurans CH34 when exposed to copper. Combined TSS read counts (red) and combined
TSS, PSS, and unassigned read counts (grey, mirrored) of the three biological replicates for control (upper) and
Cu condition (lower) are shown for the negative strand. Neighboring CDSs are colored based on their log2 fold
change, File TSS_res_finder.py: Python 2 script for the detection of TSSs from coverage files in-depth format with
added arguments resolution, replicon length, and coverage cutoff value, File TSS_res_finder_testfile.txt: test file
for TSS_res_finder.py with example data.
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