
RESEARCH ARTICLE

Accuracy assessment methods for

physiological model selection toward

evaluation of closed-loop controlled medical

devices

Ramin BighamianID
1*, Jin-Oh Hahn2, George Kramer3, Christopher Scully1

1 Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States

Food and Drug Administration, Silver Spring, MD, United States of America, 2 Department of Mechanical

Engineering, University of Maryland, College Park, MD, United States of America, 3 Department of

Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America

* Ramin.Bighamian@fda.hhs.gov

Abstract

Physiological closed-loop controlled (PCLC) medical devices are complex systems integrat-

ing one or more medical devices with a patient’s physiology through closed-loop control

algorithms; introducing many failure modes and parameters that impact performance.

These control algorithms should be tested through safety and efficacy trials to compare their

performance to the standard of care and determine whether there is sufficient evidence of

safety for their use in real care setting. With this aim, credible mathematical models have

been constructed and used throughout the development and evaluation phases of a PCLC

medical device to support the engineering design and improve safety aspects. Uncertainties

about the fidelity of these models and ambiguities about the choice of measures for model-

ing performance need to be addressed before a reliable PCLC evaluation can be achieved.

This research develops tools for evaluating the accuracy of physiological models and estab-

lishes fundamental measures for predictive capability assessment across different physio-

logical models. As a case study, we built a refined physiological model of blood volume (BV)

response by expanding an original model we developed in our prior work. Using experimen-

tal data collected from 16 sheep undergoing hemorrhage and fluid resuscitation, first, we

compared the calibration performance of the two candidate physiological models, i.e., origi-

nal and refined, using root-mean-squared error (RMSE), Akiake information criterion (AIC),

and a new multi-dimensional approach utilizing normalized features extracted from the fit-

ting error. Compared to the original model, the refined model demonstrated a significant

improvement in calibration performance in terms of RMSE (9%, P = 0.03) and multi-dimen-

sional measure (48%, P = 0.02), while a comparable AIC between the two models verified

that the enhanced calibration performance in the refined model is not due to data over-fitting.

Second, we compared the physiological predictive capability of the two models under three

different scenarios: prediction of subject-specific steady-state BV response, subject-specific

transient BV response to hemorrhage perturbation, and leave-one-out inter-subject BV

response. Results indicated enhanced accuracy and predictive capability for the refined

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0251001 April 30, 2021 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Bighamian R, Hahn J-O, Kramer G, Scully

C (2021) Accuracy assessment methods for

physiological model selection toward evaluation of

closed-loop controlled medical devices. PLoS ONE

16(4): e0251001. https://doi.org/10.1371/journal.

pone.0251001

Editor: Chi-Hua Chen, Fuzhou University, CHINA

Received: December 14, 2020

Accepted: April 18, 2021

Published: April 30, 2021

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This work was supported in part by the U.

S. Army (Grant No. W81XWH-19-1-0322) [JH &

GK] and the U.S. Office of Naval Research (ONR)

(Grant No. N00014-19-1-2402) [JH]. Sponsors did

not play any role in the study design.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-2660-0851
https://doi.org/10.1371/journal.pone.0251001
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0251001&domain=pdf&date_stamp=2021-04-30
https://doi.org/10.1371/journal.pone.0251001
https://doi.org/10.1371/journal.pone.0251001
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


physiological model with significantly larger proportion of measurements that were within

the prediction envelope in the transient and leave-one-out prediction scenarios (P < 0.02).

All together, this study helps to identify and merge new methods for credibility assessment

and physiological model selection, leading to a more efficient process for PCLC medical

device evaluation.

Introduction

Physiological closed-loop controlled (PCLC) medical devices pertain to a rapidly advancing

technology that work based on feedback from physiological sensors to make their own deci-

sions for patient treatment without human input. These devices and their algorithms have

been studied across a range of different applications [1–7]. During the 2015 public workshop

on PCLC challenges and opportunities held by the U.S. Food and Drug Administration

(FDA), it was emphasized that compared to the standard of care, a well-designed PCLC medi-

cal device can benefit patients, physicians, and more broadly the quality of healthcare by ensur-

ing the delivery of effective therapy with reduced side effects and length of hospital stay and

lowering the level of workload in hospitals [8, 9]. These potential benefits have inspired

researchers to introduce automation in the biomedical instruments ever since, to which the

Transparency Market Research has predicted a compound annual growth rate of 8.8% for the

global healthcare automation market over the forecast period of 2017-2025 [10].

The autonomous nature of PCLC medical devices, however, has made researchers approach

with a certain degree of caution. The decision for dose adjustment and treatment delivery

made by the technology instead of human clinicians introduces new sources of hazard and

safety issues for patients, such as algorithm robustness, stability, and hardware-software inte-

grability [9, 11, 12]. Furthermore, the automation brings complexity to the design and use of

the biomedical devices as compared to their use in manual care [8, 9]. Due to these challenges,

development of tools and verification methods for the safety properties of PCLC medical

devices is essential before they can be used in practice.

To take advantage of the technology’s promise against the given potential drawbacks inher-

ent in the use of a PCLC medical device, appropriate hardware and software design as well as

evaluation techniques must be ensured to demonstrate the performance and maximize safety

precautions required before the device becomes available to patients. This can be obtained by a

combination of data from nonclinical laboratory, animal, and clinical testing [13, 14]. Labora-

tory studies involve controlled environments that are different from those of standard care,

while animal studies and clinical trials are expensive in time, effort and costs and have to com-

ply with ethical requirements; thus, are often limited and prohibitive. For a specific intended

use, running a small number of clinical studies does not guarantee that a device is safe every-

where, particularly for automated PCLC medical devices that may have performance affected

by various patient responses and disturbance conditions that may not occur during a clinical

study [15]. Due to these challenges, computational modeling has been proposed as an alterna-

tive approach to answer the critical questions related to the safety and effectiveness of a device

[14]. Well-designed mathematical models can generate physiological variables corresponding

to virtual patients and satisfy the need for creating inter- and intra-subject variability. They

can be used to simulate wide spectrum of patient physiology and possibly their interaction

with sensors and actuators, including those associated with the worst-case conditions that are

less likely to happen in a limited number of clinical trials.
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Uncertainties about the quality and fidelity of mathematical models and ambiguities about

choice of measures for modeling performance need to be addressed before PCLC medical

devices can be reliably evaluated. This can be done through validation processes to quantita-

tively establish the extent to which a mathematical model is an adequate representation of the

real world [16]. Validation process in the field of medical device is an open-ended task and

includes response assessment of mathematical models with respect to the real physiology.

These models are often complex, with diverse structure and strong coupling between physio-

logical compartments and mechanisms. Due to these complexities, conceptual questions

immediately arise regarding proper ways to assess the adequacy of such mathematical models.

In particular, the accuracy of the models may not be evaluated in a substantive way, except

when inputs, boundary conditions, and model predictions are in very close vicinity of condi-

tions in the calibration database [17]. Prior studies have mostly quantified the accuracy by

comparing experimental data and responses computed by a mathematical model calibrated

(fitted) to those data, assuming that the validation domain and its intended use fall within the

experimental inputs and conditions used for model calibration (e.g., [18–20]). For a model to

be used for PCLC medical device assessment, however, inputs and boundary conditions could

be outside of the ones in calibration data. Thus, a mathematical model should be tested in

terms of its predictive capability against physiological states and conditions for which it has

not been calibrated, via numerical interpolation or extrapolation of the model to specific con-

ditions defined by its intended use [21].

While mathematical models have been proposed in different physiological domains, there

is no consensus about criteria for proper model selection toward evaluating PCLC medical

devices. In particular, no guidance is available on proper number of parameters, goodness of

fit, or predictive capability of a mathematical model for an effective PCLC medical device

assessment. Furthermore, the mathematical model must not be judged based on the PCLC

testing results since the PCLC medical device performance does not indicate the extent to

which the mathematical model adequately represents physiological measurements—thus,

assessment of a computational model should be performed in advance and independently

from the PCLC medical device evaluation. Instead, a comparison can be made between differ-

ent physiological models to choose the one with the best calibration performance while not

overfitting the data due to a large number of parameters, and the best predictive capability dur-

ing different treatment scenarios. Hence, it is essential to establish methods to assess both cali-

bration performances and predictive capability across multiple candidate physiological models

for PCLC medical device assessment.

To address the above mentioned challenge, this research develops tools for properly assess-

ing accuracy of physiological models and establishes fundamental measures for evaluating pre-

dictive capability across different mathematical models. This research only engages in

comparing the physiology-based first principles models —which as opposed to their black-

box counterparts, are limited in their variety due to the use of physiological principles. There-

fore, as a case study, we examine the adequacy of lumped-parameter mathematical models of

patient physiology developed for evaluating PCLC fluid resuscitation devices. We build a

refined physiological model of blood volume (BV) response by expanding an original model

we developed in our prior research [19, 20]. We use the experimental data collected from

sheep subjects undergoing hemorrhage and fluid resuscitation. First, we compare the calibra-

tion performance of two candidate physiological models, i.e., original and refined, using root-

mean-squared error (RMSE), Akiake information criterion (AIC), and a new multi-dimen-

sional approach that utilizes normalized features extracted from fitting error. Then, the accu-

racy and predictive capability of the two mathematical models are compared under three

different scenarios, i.e., their use in 1) subject-specific prediction of steady-state response, 2)
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subject-specific interpolation of transient response to hemorrhage, and 3) prediction of the

entire (transient and steady-state) response through a leave-one-out procedure. While this

research proposes tools and methods for selecting the best between multiple candidate physio-

logical models, it does not intend to provide recommendations on whether or not further

refinement is needed for a mathematical model before it can be used for the PCLC medical

device evaluation.

The remainder of this paper is organized as follows: section Materials and Methods presents

two mathematical models of BV response to hemorrhage and fluid resuscitation that are com-

pared in this research, describes the animal data used, and elaborates on the tools employed

for model accuracy and predictive capability assessment. The comparison between the two

candidates mathematical models is then made under three different scenarios, which is pre-

sented and discussed in Results and Discussion sections.

Materials and methods

In this section, we first present the two candidate physiological models and elaborate how the

original model is expanded to develop the refined model. After describing the experimental

data, we present the parameter identifiability analysis for each model, parameter estimation

procedures, and the methods employed for model calibration assessment and evaluation of the

model accuracy and predictive capability between the two candidate models.

Candidate physiological models of blood volume response

In this section, we briefly present the original model of BV response. Next, we show how this

model is expanded to develop the refined model of BV response.

Model 1: The original BV model. The details on this model can be found in our previous

research [19, 20]. This mathematical model is built based on the physiological principle related

to body fluid balance, indicating a gain (fluid infusion) or loss (hemorrhage and urinary out-

put) perturbation in BV is distributed between the intravascular and interstitial fluid compart-

ments to regulate the ratio between their volume changes [22] (see Fig 1). This distribution

mechanism is modeled through a feedback controller that adjusts the rate of fluid shift between

the two compartments to achieve a desired steady-state BV response (see Fig 1A and 1B).

Since the inter-compartmental fluid shift behaves differently under the gain or loss situation

due to the different compositions of the involved fluids, the model assumes distinct distribu-

tion ratios for infusion versus loss rate (see Fig 1C, left picture) [20]. For a given rate of infu-

sion U and loss V at each time t, the desired steady-state change in BV, rBV, is defined as:

rBVðtÞ ¼
1

1þ au

Z t

0

UðtÞdt �
1

1þ av

Z t

0

VðtÞdt ð1Þ

where αu and αv denote the fluid distribution ratio between intravascular and interstitial com-

partments under gain and loss situations. This equation formulates the physiological principle

associated with steady-state change in BV response. In the steady-state, the intravascular com-

partment gains 1/(1 + αu) or loses 1/(1 + αv) fraction of the total infusion or loss, respectively.

In other words, in the steady-state, the remaining αu/(1 + αu) or αv/(1 + αv) fraction transfers

to or is removed from the interstitial compartment.

The feedback controller replicating inter-compartmental shift attempts to minimize the dif-

ference between change in BV response (ΔBV) and rBV, denoted by eBV (eBV = rBV − ΔBV; see

Fig 1A). The shift is computed by a proportional-integral (PI) response to eBV at each time,
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Fig 1. Lumped parameter model of blood volume (BV) response to fluid infusion and hemorrhage. (A): The model includes intravascular and

interstitial (extravascular) fluid compartments with a bi-directional inter-compartmental fluid shift. The sign of eBV, which is the discrepancy between

the change in BV (ΔBV) and desired steady-state change in BV (rBV), determines the direction of shift. As shown in the figure, a negative eBV sets a shift

of fluid toward interstitial compartment. (B): Fluid shift is modeled through a control-theoretic approach (see part A) and computed through the

proportional-integral response to eBV; a larger eBV leads to a larger amount of shift to achieve desired response. (C): rBV is shown for the original and

refined model. This is the main difference between the two models, in which rBV in the refined model is affected by both the rate of infusion and loss

and the current desired state of BV response for infusion and loss (right picture), while rBV in the original model is only determined based on the rate of

infusion and loss (left picture).

https://doi.org/10.1371/journal.pone.0251001.g001
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driving the BV response to its desired state (see Fig 1B):

qðtÞ ¼ � KpeBVðtÞ � Ki

Z t

0

eBVðtÞdt ð2Þ

where Kp and Ki denote the controller’s proportional and integral gains. The direction of shift

is determined by the sign of error, e.g., a negative eBV sets a shift of fluid toward interstitial

compartment (see Fig 1A).

By seeking the conservation of volume for the intravascular compartment, the rate of

change in BV response can be obtained as follows:

D _BV ðtÞ ¼ UðtÞ � VðtÞ � qðtÞ ð3Þ

Combining Eqs 1 to 3 leads us to the following equation for governing the BV response sub-

ject to fluid gain and loss:

DBV⃛ðtÞ þ KpD
€BV ðtÞ þ KiD

_BV ðtÞ ¼ €UðtÞ � €V ðtÞ þ
Kp

1þ au

_UðtÞ

�
Kp

1þ av

_V ðtÞ þ
Ki

1þ au
UðtÞ �

Ki

1þ av
VðtÞ

ð4Þ

Model 2: The refined BV model. The fluid distribution ratios αu and αv in the original

model are assumed to be constant over the entire range of BV no matter how much the intra-

vascular volume has expanded or compressed during fluid perturbation. Based on the physio-

logical principles, however, the distribution ratio parameters can vary over time depending on

the state of intravascular volume expansion or compression [22]. For example, looking toward

the steady-state response to a same amount of fluid infusion, intravascular compartment can

gain a larger fraction of fluid (smaller αu) when the BV is at a lower range. However, when the

BV is at a higher range, the shift of fluid toward interstitial volume becomes more pronounced

(larger αu) which avoids intravascular fluid overload. This motivate us to enhance the original

model with a refined rBV that is dynamically corrected over time as the state of BV response

updates, even when no infusion or hemorrhage input is present (see the right picture in

Fig 1C):

rBVðtÞ ¼ rBV;uðtÞ þ rBV;vðtÞ ð5Þ

_rBV;uðtÞ ¼ AurBV;uðtÞ þ
1

1þ au
UðtÞ; rBV;uð0Þ ¼ 0 ð6Þ

_rBV;vðtÞ ¼ AvrBV;vðtÞ �
1

1þ av
VðtÞ; rBV;vð0Þ ¼ 0 ð7Þ

where rBV,u and Au denote the desired steady-state change in BV and state parameter due to

infusion, while rBV,v and Av indicate the same parameters for the fluid loss. Using the revised
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model of rBV, the refined model is obtained as below:

DBV⃛ðtÞ þ KpD
€BV ðtÞ þ KiD

_BV ðtÞ ¼ €UðtÞ � €V ðtÞ þ
Kp

1þ au

_UðtÞ

�
Kp

1þ av

_V ðtÞ þ
Ki þ KpAu

1þ au
UðtÞ �

Ki þ KpAv

1þ av
VðtÞ

þAuðKpAu þ KiÞrBV;uðtÞ þ AvðKpAv þ KiÞrBV;vðtÞ

ð8Þ

where rBV,u(t) and rBV,v(t) are shown in Eqs 6 and 7.

Experimental data

Details about experimental data can be found in our prior study [23]. In short, the BV data

were collected from 11 conscious sheep undergoing hemorrhage and fluid infusion. All the

animals received Lactated Ringer’s solution (LR), a commonly used crystalloid fluid. In a sepa-

rate study, 5 of the animals received Hextend (Hex), made from natural sources of starch.

These 5 animals received LR and Hex in a randomized order, each 5 days apart from the last

experiment.

Each study lasted for 180 min. After a baseline measurement, each study was started with a

25 ml/kg hemorrhage, lasted for 15 min. 15 min after the end of hemorrhage, fluid infusion

was started and continued for 150 min, until the experiment ended. Rate of fluid administra-

tion was determined by a closed-loop controller described in a prior work [23]. Two additional

5 ml/kg hemorrhage was also applied 35 and 55 min after the end of first hemorrhage, each

lasted for 5 min.

Baseline BV, BV(0),was measured in each animal using indocyanine green dye (ICG) [24].

Hematocrit (Hct), the ratio between the red blood cell (RBC) volume and BV, was measured

every 5 or 10 min throughout the experiment and used to compute the change in BV at each

measurement point tk:

DBVðtkÞ ¼ BVðtkÞ � BVð0Þ ¼ RBCðtkÞ þ PVðtkÞ � BVð0Þ ð9Þ

RBCðtkÞ � RBCð0Þ þ Sk
i¼1
DRBCðtiÞ ¼ BVð0ÞHð0Þ � Sk

i¼1
VHðtiÞHðtiÞ ð10Þ

PVðtkÞ � ð1 � HðtkÞÞRBCðtkÞ=HðtkÞ ð11Þ

where PV, H, and VH are plasma volume, Hct, and amount of blood withdrawn for hemor-

rhage, respectively.

Model parameter estimation

The approach we take to learn the model parameters is the maximum-likelihood estimation

(MLE), which finds the parameter values maximizing the likelihood of measured BV response

to hemorrhage and fluid infusion. The original mathematical model includes 4 parameters to

tune, i.e., {αu, αv, Kp, Ki}, while the refined model has two additional parameters, {Au, Av}. We

first assess the identifiability of each model. Next, we define an optimization problem to deter-

mine the model parameters with the best fitting performance.

Structural identifiability analysis. Original model. In this section, we convert the original

model to the frequency domain for simple assessment of the model identifiability. By taking
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the Laplace transform of Eq 4, the following equation is obtained:

DBVðsÞ ¼

� Kp

� Ki

1

Kp=ð1þ auÞ

� Kp=ð1þ avÞ

Ki=ð1þ auÞ

� Ki=ð1þ avÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

T s� 1DBVðsÞ

s� 2DBVðsÞ

s� 1ðUðsÞ � VðsÞÞ

s� 2UðsÞ

s� 2VðsÞ

s� 3UðsÞ

s� 3VðsÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼ Y
0

FðsÞ ð12Þ

where s is the complex frequency variable with a unit of sec−1 [25]. Based on estimation theory

[26], with a perturbation input that is rich in the frequency content and as a result by virtue of

an informative data setF [27], the vector Θ becomes fully identifiable with a unique set of

parameters. Simply put, Kp can be determined from the 1st element, Ki from the 2nd, αu from

the 4th and αv from the 5th element of Θ. Although the model identifiability is obvious from Eq

12, the model parameters should be obtained through an optimization problem for the best

calibration results.

Refined model. We take the Laplace transform of the refined model. First, using Eqs 5–7,

the following frequency domain equation is obtained for rBV,u and rBV,v:

rBV;uðsÞ ¼
1=ð1þ auÞ

s � Au
UðsÞ ð13Þ

rBV;vðsÞ ¼ �
1=ð1þ avÞ

s � Av
VðsÞ ð14Þ

By taking the Laplace transform of Eq 8 and using Eqs 13 and 14, the following equation is

obtained in the frequency domain.

DBVðsÞ ¼

Au þ Av � Kp

KpðAu þ AvÞ � AuAv � Ki

� KpAuAv þ KiðAu þ AvÞ

� KiAuAv

1

� ðAu þ AvÞ þ Kp=ð1þ auÞ

ðAu þ AvÞ � Kp=ð1þ avÞ

AuAv þ ðKi � KpAvÞ=ð1þ auÞ

� AuAv þ ðKpAu � KiÞ=ð1þ avÞ

� KiAv=ð1þ auÞ

KiAu=ð1þ avÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

T s� 1DBVðsÞ

s� 2DBVðsÞ

s� 3DBVðsÞ

s� 4DBVðsÞ

s� 1ðUðsÞ � VðsÞÞ

s� 2UðsÞ

s� 2VðsÞ

s� 3UðsÞ

s� 3VðsÞ

s� 4UðsÞ

s� 4VðsÞ

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼ Y
0

FðsÞ ð15Þ

Similarly, when subject to a fluid perturbation input with rich frequency content and thus,

an informative data setF, the vector Θ is fully identifiable [27]. For instance, Kp, Ki, Au, and Av
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can be determined by simultaneously solving 1st to 4th elements, αu from either 6th, 8th, or 10th,

and αv from either 7th, 9th, or 11th element. Again, for a better calibration performance, an

optimization problem involving all the elements needs to be solved.

Practical identifiability analysis. A variance-based global sensitivity analysis [28] was

performed to identify the behavior of model parameters subject to the range of estimated

parameters and individual profiles of hemorrhage and fluid infusion. Unlike local sensitivity

analysis methods, this method varies all parameters simultaneously and each variable is

adjusted through its entire range identified across all individual subjects receiving LR or Hex.

Once the range of each model parameter is identified (see the next subsection Parameter Esti-

mation), each parameter is simulated 1000 times via a uniform distribution. The first-order or

main effect G of ith parameter on the BV response under individual input profile is computed

through a Monte Carlo simulation:

Gi ¼ Vi=VarðBVÞ ð16Þ

where Vi is the effect of ith parameter on BV variation, leveraged over variation in other model

parameters (refer to [29] for more details about calculating Vi). It is standardized by the total

variance in BV response to provide a fractional contribution. Therefore, the first-order effects

across all the parameters should add up to 1. For better assessment, the sensitivity indices were

reported at 4 different time instants: 30 min, 80 min, 120 min, and 180 min. Similar to prior

studies [30–33], at each time, first-order sensitivity indices less than 0.01 are regarded as insen-

sitive parameters. We also consider those larger than 0.1 as highly sensitive and the ones

between 0.01 and 0.1 as sensitive parameters. A parameter whose sensitivity index is less than

0.01 at all time instants is considered insignificant and might be removed with minimal degra-

dation in the model performance.

Parameter estimation. The models presented in the last section provide an approxima-

tion of BV response over time

DBVðtkÞ ¼ ^DBVðtkÞjYþ �ðtkÞ ð17Þ

where k = 1, . . .K is the time index for K successive discrete observations, ^DBV ðtkÞjY is the

model reproduced BV response for a chosen Θ, and �(tk) is the error between the model output

and BV observations over time. Assuming that �(tk) is distributed normally, independently,

and identically with mean E(�(tk)) = 0 and variance V(�(tk)) = σ2 for all tk, the following equa-

tion is defined according to a normal distribution.

Nð�; 0; s2Þ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p expf

� 1

2s2
ðDBVðtkÞ � ^DBV ðtkÞjYÞ

2
g ð18Þ

Therefore, the observations ΔBV(t) have a density function NðDBV; ^DBVðtÞjY; s2Þ which

are the same form as those of the �. Thus, the likelihood function of Θ and σ2, based on the

sample, is

LðY; sÞ ¼
YK

k¼1

NðDBVðtkÞ; ^DBVðtkÞjY; s
2Þ

¼ ð2ps2Þ
� K=2 expf

� 1

2s2
ðDBVðtkÞ � ^DBVðtkÞjYÞ

0

ðDBVðtkÞ � ^DBVðtkÞjYÞg

ð19Þ
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The log-likelihood function L� is obtained by taking the logarithm of Eq 19.

L�ðY; sÞ ¼ �
K
2
ln ð2pÞ �

K
2
ln ðs2Þ

�
1

2s2
ðDBVðtkÞ � ^DBVðtkÞjYÞ

0

ðDBVðtkÞ � ^DBVðtkÞjYÞ

ð20Þ

To identify the model parameters, an optimization problem is defined

mML ¼ fY
�
; s�g ¼ argmin

m
ð� L�ðY; sÞ þ 2g k Y k2Þ ð21Þ

where γ> 0 is the L2 penalty term, k.k2 denotes the L2 norm operator and penalizes the L2

norm of the model parameters to force them to be small with reduced estimation variance,

thus to avoid over-fitting. Using ΔBV measured for a given subject, solution to the optimiza-

tion problem 21 minimizes the negative log-likelihood and derive the set of optimal parame-

ters, i.e., {αu, αv, Kp, Ki} for the original and {αu, αv, Kp, Ki, Au, Av} for the refined model,

leading to a fully individualized model with minimum discrepancy between the true versus

model-reproduced BV response.

We tuned the regularization parameter γ> 0 for each data-set using an inner-level valida-

tion procedure. We used three different penalty levels, γ> 0 2 {1, 3, 5}, identified the parame-

ters for both models using the first 120 min of the data, and reproduced the remaining 60 min.

For each model, the penalty with the least AIC value (see Eq 23) was selected and used in solv-

ing the optimization problem (Eq 21).

Model evaluation

We compared the original and refined models in terms of their calibration performance and

predictive capability. For a comprehensive assessment, the models were examined through dif-

ferent tools and techniques explained below.

Model calibration assessment. We used data from 16 animals (11 LR and 5 Hex) to iden-

tify 16 individualized models. For each subject, we utilized measured BV data and solved Eq

21 to identify the optimum set of parameters for each subject. The model reproduced BV

response was then compared with its true counterpart and the following measures were

reported:

Root-mean-squared error. RMSE is the square root of the second moment of the estimation

error, which aggregates the estimation error for various times into a single value, computed by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SK
i¼1
ðDBVðtiÞ � ^DBV ðtiÞÞ

2

K

s

ð22Þ

Akaike information criterion. AIC is a model selection tool and deals with the trade-off

between model’s accuracy and complexity to prevent over-fitting. AIC seeks a model that has a

good fit to the true data but with fewer parameters, and is defined as

AIC ¼ � 2L� þ 2P ð23Þ

where L� is the log-likelihood function defined in Eq 20, and P is the number of model param-

eters, 4 in the original and 6 in the refined model.

Multi-dimensional measure. Mean-squared error is the sum of variance and square of the

bias observed in an estimation. As a result, RMSE outputs a trade-off between variance and

bias but not their segregated values [34]. A comprehensive fitting assessment, however,

requires to examine the adequacy of multiple estimation features individually defined over
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time and the range of the data. For instance, an underfitting occurs when the model shows

low variance but high bias, while overfitting leads to a fit with high variance and low bias

[35]. Therefore, a joint measure of features cannot completely determine the extent to

which a model captures the underlying structure of the data. Here, we developed a tool that

considers multiple individual features of a model calibrated to each subject to examine the

fitting performance between the two models. We defined four features, bias, standard error

of residuals, trend of error over time, and trend of error over the BV range. We fitted both

models to each individual subject using Eq 21 and collected the features for both original

and refined models. We then normalized the features to have values between 0 and 1 across

all the subjects. Next, we statistically compared the features in a 4-dimensional space in

Cartesian coordinates. In addition, for each individual fit, we identified the Euclidean dis-

tance as a distance between the origin and the points corresponding to the normalized fea-

tures

Ud ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
X4

i¼1

f 2

i

s

ð24Þ

where Ud and f denote the Euclidean distance and features, respectively. We identified and

compared the euclidean distance values across the original and refined models.

Predictive capability assessment. Besides the calibration performance assessment

described above, it is important to quantitatively examine the extent to which a mathematical

model is an adequate representation of physiological measurements under conditions for

which the model has not been calibrated, as the intended use inputs and boundary conditions

can be different from those in the calibration data. In addition, a model fitted to a physiologi-

cal variable may be judged as fit for purpose and may not adequately work against new data,

even those obtained from the same subject, in the same environment, and for a similar

intended application [36]. Therefore, accuracy assessment of a predicted response by an

interpolation or extrapolation of the model to diverse inputs and boundary conditions is

essential. To include a wide range of fluid perturbation conditions for predictive capability

performance assessment, we examined the model response prediction under three different

scenarios, shown in Fig 2. First, we assessed the adequacy of subject-specific predictions for

the steady-state BV responses, during the last 30 min of each experiment, and through an

extrapolation of the model response that was calibrated to a sub-sample of data occurred ear-

lier (upper panel in Fig 2). We considered this as steady-state response prediction since no

hemorrhage took place during this time and the amount of inputted fluid and BV variation

were much less compared to those in earlier times. Second, we assessed the subject-specific

predictions for a transient BV responses during 45-80 min, which includes the second and

third hemorrhage events, through an interpolation of the model response calibrated to a sub-

sample of the remaining data, i.e., those outside of 45-80 min time range (middle panel in Fig

2). Finally, we assessed the entire BV response prediction for each individual through a leave-

one-out procedure, where the model parameters were selected based on their values identi-

fied from all other subjects (lower panel in Fig 2). These three scenarios are very distinct and

replicate different input profiles—e.g., low and large fluid perturbation in the steady-state

and transient prediction scenarios—and boundary conditions, where the leave-one-out pro-

cedure intends a new subject with different treatments and environmental uncertainty as

compared to others. It is noted that the effects of sensor inaccuracy have not been explicitly

considered in this study. BV response measurements are used for predictive performance

evaluation, assuming that the effects of noise in measurements are included in the reported

prediction interval in the Results section.
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Fig 2. Predictive capability assessment under three scenarios, (A): subject specific prediction of steady-state BV response

(150+-180 min) via bootstrapping the rest of data (0-150 min), (B): subject specific prediction of transient BV response to

second and third hemorrhage perturbations (45-80 min) via bootstrapping the rest of data (0-45− and 80+-180 min), (C):

Leave-one-out prediction of BV response in each subject using the normal distribution of parameters identified in other

subjects (for more details please refer to text). The distribution of αu in the original model and Au in the refined model
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(A) Subject-specific prediction of steady-state BV response. The 95% confidence interval for

model-predicted steady-state BV response was obtained through a sub-sampling procedure,

known as bootstrapping. For each individual, we selected a 75% sub-sample of BV data col-

lected in 0-150 min time range and fitted both models to the sub-sampled data. We used a

75% sub-sample to avoid the large parameter estimation uncertainty and keep the number of

experimental data points at least 4 times as large as the number of model parameters. Next, the

identified models were used to predict the steady-state BV responses occurred after 150 min

till the end of experiment. We repeated this procedure for 100 times (it is noted that the boot-

strapping results remained unchanged by doing this for more than 100 times). After collecting

all predicted responses, we used the percentile method for constructing the 95% confidence

interval, which included all the predictions between the 2.5th and 97.5th percentiles of the fore-

cast at each prediction time.

After collecting the 95% confidence interval, we measured and compared predictive capa-

bility of the two mathematical models by evaluating their forecasts. In this work, we used the

interval score developed in [37], that measures a confidence interval using a performance

score. The score rewards a forecast for a narrower prediction envelope, while applies a penalty,

the magnitude of which depends on a significance level α, when the measurement misses the

confidence interval. For a prediction point tk, if DB̂VðtkÞ
l
and DB̂VðtkÞ

u
are the lower and

upper (1 − α) × 100% prediction envelope and ΔBV(tk) is the true measurement, the interval

score is defined as

SðtkÞ ¼

DB̂VðtkÞ
u
� DB̂V ðtkÞ

l
þ 2

a
ðDB̂V ðtkÞ

l
� DBVðtkÞÞ; DBVðtkÞ < DB̂VðtkÞ

l

DB̂VðtkÞ
u
� DB̂V ðtkÞ

l
þ 2

a
ðDBVðtkÞ � DB̂V ðtkÞ

u
Þ; DB̂V ðtkÞ

u
< DBVðtkÞ

DB̂VðtkÞ
u
� DB̂V ðtkÞ

l
; Otherwise

8
>>>><

>>>>:

ð25Þ

In this study, the significance level α is considered to be 0.05. The identified scores were

compared between the two models using statistical methods. We also compared the propor-

tion of measurements that were within the prediction envelope, denoted as PM, for both origi-

nal and refined models.

(B) Subject-specific prediction of transient BV response to perturbation. The 95% confidence

interval for model predicted BV response to the second and third hemorrhage events was

obtained through a sub-sampling procedure. For each individual, the BV response was pre-

dicted in the 45-80 min time span, using a model fitted through 75% sub-sample of the

remaining BV data. This procedure was repeated for 100 times. The percentile method was

used to construct the 95% confidence interval at each prediction point. The forecast interval

performance at each prediction point was measured using the interval score defined in Eq 25.

The identified scores as well as proportion of measurements within the prediction envelope

were compared between the two models using statistical methods.

(C) Leave-one-out prediction of BV response. We predicted the BV response for each indi-

vidual using both original and refined mathematical models and tuned parameters in other

subjects. In each subject, a sample of size 1000 was generated for each parameter through a

normal distribution identified from the tuned parameters in other subjects and within the

was identified based on LR or Hex, depending on whether the subject received LR or Hex, and not a combination of both

LR and Hex due to their distinct dispersion. Green and purple colors show the data used for model calibration and

prediction assessment, respectively.

https://doi.org/10.1371/journal.pone.0251001.g002
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lower and upper bound of these parameters. Except the αu in the original model and Au in the

refined model, normal distribution of a parameter was identified from its values across other

15 subjects, while the lower and upper bound were minimum and maximum values across the

range of the parameter in those 15 subjects. Normal distribution of αu in the original or Au in

the refined model was determined solely based on the parameter values in LR or Hex subjects,

depending on type of fluid given to the subject, and not their combination due to the distinct

dispersion of the parameter between two groups (for more details please see Table 1 in the

Results section). Since no clear correlation was seen between each pair of parameters (original

model r2 = 0.11±0.14, refined model r2 = 0.15±0.15), all the parameters were allowed to freely

change within their range, i.e., regardless of variation in other parameters, and based on their

identified distribution. The leave-one-out BV response confidence intervals were predicted

through 1000 simulations, the parameters of which were randomly selected from the normally

distributed samples. The percentile method was used to construct the 95% confidence interval

at each point. The performance of the model forecast at each time was measured through

interval score and proportion of measurements within the prediction envelope and examined

between the two models.

Results

In this section, we first present the identified parameters in both mathematical models and

show how the identified parameters differ between LR and Hex. Next, the calibration perfor-

mance is presented and compared between the two models. Finally, predictive capability

assessments are shown and examined in both models.

Parameter estimation and identifiability analysis

Original and refined model parameters were identified by solving Eq 21 in each individual

subject. Table 1 shows the averaged identified parameters grouped per model and fluid type.

Statistical test performed for each parameter and across fluid types shows that the mean of

only one parameter in each model is significantly different between LR and Hex: αu in the

original model (P = 2 × 10−6, 2-sample unequal t-test, LR: N = 11 and HEX: N = 5); and Au in

the refined model (P = 0.04, 2-sample unequal t-test, LR: N = 11 and Hex: N = 5). Given that

the models have different dynamic characteristics and mechanisms in updating the reference

blood volume, a comparison between the common parameters of the two models was not

made.

Using the identified range of parameters, global sensitivity indices were computed using Eq

16 and a Monte Carlo simulation. The sensitivity indices were averaged across all 16 subjects

Table 1. Calibrated parameters for the original and refined models across LR and HEX data, along with the P-values (2-sample unequal t-test) reported between the

identified parameters for each model. Underline bold numbers indicates significant difference between the parameters for LR and HEX data. The calibrated parameters

for each subject are provided in the Supporting information section.

Au Av αu αv Kp Ki

Original Model (LR) - - 1.72±0.66 1.06±0.78 0.08±0.04 0.003±0.001

Original Model (HEX) - - -0.18±0.31 0.91±0.46 0.13±0.08 0.007±0.004

P-value (Original) - - 2e-6 0.63 0.25 0.09

Refined Model (LR) -0.16±0.23 -0.007±0.006 0.20±0.69 0.60±0.47 0.28±0.36 0.01±0.01

Refined Model (HEX) -0.004±0.006 -0.006±0.005 -0.06±0.27 0.64±0.30 0.19 ±0.14 0.01±0.003

P-value (Refined) 0.04 0.63 0.30 0.83 0.47 0.57

https://doi.org/10.1371/journal.pone.0251001.t001
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and reported at 30 min, 80 min, 120 min, and 180 min.

Gi
Original =

0
BB@

T30 T80 T120 T180

®u 0:004 0:491 0:698 0:795
®v 0:830 0:442 0:270 0:177
Kp 0:014 0:021 0:014 0:015
Ki 0:153 0:046 0:018 0:012

1
CCA

Gi
Refined =

0
BBBBBB@

T30 T80 T120 T180

Au 0:002 0:342 0:364 0:296
Av 0:239 0:402 0:478 0:631
®u 0:002 0:100 0:020 0:024
®v 0:639 0:148 0:106 0:049
Kp 0:096 0:002 0:016 0:001
Ki 0:022 0:005 0:016 0:001

1
CCCCCCA

It is clear that all parameters in both models remain significant as there is no parameter

with a sensitivity index less than 0.01 at all time instants. At time 30 min, before the fluid infu-

sion is initiated, αu in the original model and Au and αu in the refined model are insensitive,

while αv in the original model and Av and αv in the refined model remain highly sensitive. At

time instants greater than 30 min and when fluid has started to be given to subjects, αu in the

original model and Au in the refined model become highly sensitive, and αu in the refined

model turn to be sensitive, all supporting the adequacy of the results. In addition, Kp and Ki,

those in the refined model in particular, are mostly sensitive at 30 min, when the rate of fluid

shift between intravascular and interstitial compartments is presumably maximal.

Model calibration assessment. Table 2 compares the goodness-of-fit and calibration per-

formance between the two models using three different methods: RMSE, AIC, and multi-

dimensional measure. Averaged among all individuals, the results show that the RMSE is sig-

nificantly lower in the refined model (see Table 2, P = 0.03, paired t-test, N = 16). In addition,

the refined model shows comparable AIC to that of the original model, as among all 16 sub-

jects, the frequency in which each model attained the minimum AIC is equal, i.e., each model

is suggested as the better model in 8 subjects (see Table 2), indicating the better calibration per-

formance is not due to over-fitting the BV data. Fig 3 shows the multi-dimensional measure in

a 4-dimensional space, where the Euclidean distance for each point, i.e., each individual, can

be obtained as the distance between the point from the origin. As it can be seen from the

Table 2. Model calibration assessment based on root-mean-squared error (RMSE), Akaike information criterion

(AIC) and the frequency in which each model attained the minimum AIC (FR), and multi-dimensional measure.

Regarding the multi-dimensional measure, 4-D features, i.e., bias, standard error of residuals, trend of error over time,

and trend of error over the BV range, as well as the Euclidean distance defined in Eq 24 are computed and compared

between the two models. Results show that the refined model has significantly better performance in terms of RMSE

and multi-dimensional measure. In addition, the models are comparable in terms of AIC, where among all 16 subjects,

the frequency in which each model attained the minimum AIC is equal, i.e., 8. P-values are obtained using paired t-

test. Underline bold numbers indicates significant difference between calibration performance of the two models.

RMSE AIC (FR) Multi-dimensional 4-D features & Euclidean distance

Original Model 60.4±73.2 -96.5±36.2 (8) [0.24±0.29,0.24±0.23,0.14±0.24,0.22±0.29] & 0.46±0.49

Refined Model 55.4±68.1 -100±35.1 (8) [0.11±0.16,0.20±0.19,0.06±0.07,0.14±0.17] & 0.31±0.27

P-value 0.03 0.06 0.03±0.03& 0.02

https://doi.org/10.1371/journal.pone.0251001.t002
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figure, the points in the refined model are scattered in closer vicinity of the origin as compared

to the original model. This is also evidenced from Table 2, where among the multi-dimen-

sional error features in the 4-D space, bias, standard error of residuals, and trend of error over

the BV range are significantly smaller in the refined model (P< 0.04, paired t-test, N = 16),

while a comparable trend of error over time is seen between the two models (P = 0.08, paired

t-test, N = 16). In addition, the Euclidean distance is significantly smaller in the refined model

(P = 0.02, paired t-test, N = 16). In summary, the results show that the calibration performance

is significantly enhanced in the refined model.

Predictive capability assessment. Fig 4 shows the predictive capability assessment for

both models and under 3 different scenarios for a representative subject. In the first scenario,

shown in the upper panel, the steady-state response (150-180 min) was predicted by fitting a

75% sub-sample of the remaining data. As it can be seen, the prediction envelope of the refined

mathematical model (right column) is much closer to the measurements and includes two out

of three measurements (i.e., the last two data points in the prediction region), while the predic-

tion envelope of the original model (middle column) includes only one measurement (i.e., the

last data point in the prediction region). In the second scenario, shown in the middle panel,

the transient response to the second and third hemorrhage events was predicted by fitting a

75% sub-sample of data in 0-45 min and 80-180 min range. It can be seen from Fig 4 that the

prediction envelope in the refined model is closer to the measurement, where it includes four

out of nine measurements (i.e., the first four data points in the prediction region), as compared

to one measurement in the original model (i.e., the fourth data point in the prediction region).

In the third scenario, shown in the lower panel, the prediction envelope is obtained through a

leave-one-out procedure. It is seen from the figure that the prediction envelope corresponding

to the refined model includes one more measurement compared to the original model. The

refined model, however, produces a slightly wider prediction envelope after 60 min, leading to

slightly larger interval scores. Averaged across all individuals, Table 3 compares the predictive

capability performance between the two models and under the three scenarios. The results

indicate that the original and refined models similarly perform in the steady-state response

Fig 3. Multi-dimensional measure shown for 16 individuals in both original (left) and refined (right) mathematical models. As compared to the

original model, the points in the refined model are significantly closer to the origin in terms of bias, standard error of residuals, and trend of error over

the BV range (P< 0.04, paired t-test, N = 16), while comparable trend of error over time is observed between the two models (P = 0.08, paired t-test,

N = 16). Averaged Euclidean distance from each point is also significantly smaller in the refined model (see Table 2, P = 0.02, paired t-test, N = 16).

https://doi.org/10.1371/journal.pone.0251001.g003
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Fig 4. Predictive capability assessment across the original (middle column) and refined (right column) mathematical models under three

scenarios. A) upper panel: predicting the steady-state response (150-180 min) by fitting a 75% sub-sample of BV measurement between 0-150 min, B)

middle panel: predicting transient response (45-80 min) by fitting a 75% sub-sample of BV measurement between 0-45 and 80-180 min, C) lower panel:

leave-one-out prediction of the inter-subject response using a normal distribution of identified parameters in other individuals.

https://doi.org/10.1371/journal.pone.0251001.g004
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prediction, whereas the means of interval score and proportion of measurements within the

prediction envelope do not show a significant difference (interval score: P = 0.3, paired t-test,

N = 45; proportion of measurements: P = 0.8, Chi-squared test, N = 45). The refined model

shows significantly better performance in transient response prediction, whereas both the

interval score and proportion of measurements within the prediction envelope are signifi-

cantly better in the refined model (interval score: P = 7 × 10−4, paired t-test, N = 127; propor-

tion of measurements: P = 0.02, Chi-squared test, N = 127). Finally, the interval score for the

leave-one-out procedure was comparable in both models (P = 0.8, paired t-test, N = 438).

However, significantly larger number of measurements were included in the refined model’s

prediction envelope (P = 3 × 10−3, Chi-squared test, N = 438).

Discussion

Toward the goal of establishing methods to compare models intended for use in PCLC medi-

cal device assessment and determine a mathematical model that better represents the physio-

logical measurement, we proposed a pathway that can be potentially used as a guide for

physiological model selection between candidate mathematical models. As a case study, we

compared two physiological models for BV response to fluid perturbation: the original

model that was developed in our prior work [19, 20], and a refined model that was built in

this research, based on an expansion to the original model. This research focuses on first-

principle physiological —as opposed to black-box— models aimed for PCLC medical device

assessment. Our methods, therefore, should assess the models in terms of their physiological

transparency and allow to compare the modeling performance in both calibration as well as

predictive capability. We formulated a maximum likelihood estimation problem to separately

identify the parameters for each model. We compared the calibration performance in terms

of RMSE, AIC, and multi-dimensional measure. In addition, the predictive capability of the

models were assessed under three different scenarios to investigate the adequacy of their pre-

dicted response under different input profiles and hemodynamic conditions. To compare the

predictive capability, we used two measures: interval score (S) [37] and the proportion of

measurements within the prediction envelope (PM). Based on the results, the refined mathe-

matical model turned out to better represent the BV physiological data since it (1) signifi-

cantly improved individualized model calibration performance to the experimental data,

(2) did not increase the risk of overfitting despite its larger number of parameters compared

to the original model, and (3) showed significantly enhanced predictive capability in subject-

specific transient response prediction to hemorrhage, while at least comparable performance

in steady-state and leave-one-out predictions. Taken together, the proposed mathematical

approach can serve as a tool to select the best between multiple candidate physiological mod-

els for evaluation of PCLC medical devices.

Table 3. Predictive capability assessment for different prediction scenarios in both original and refined models. S and PM indicate the prediction interval score and

proportion of measurements within the prediction envelope and are reported for prediction of steady-state BV response (150-180 min, i.e., S150 − 180 and PM150−180), pre-

diction of transient response (45-80 min, i.e., S45−80 and PM45−80), and leave-one-out prediction (i.e., SLeave-One-Out and PMLeave-One-Out). P-values for the S and PM are

obtained using paired t-test and Chi-squared test, respectively. Underline bold numbers indicates significant difference between the two models.

S150−180 PM150−180 S45−80 PM45−80 SLeave−One−Out PMLeave−One−Out

Original Model 2.4±3.6 24% 2.1±2.4 28% 1.0±1.6 88%

Refined Model 2.7±3.8 27% 1.7±2.4 43% 1.0±1.3 94%

P-value 0.34 0.81 7e-4 0.02 0.79 3e-3

https://doi.org/10.1371/journal.pone.0251001.t003
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A physiological model should be identifiable and transparent

A model to be used for performance evaluation of a PCLC medical device should be identifi-

able, that is, the model parameters can be uniquely estimated under the input and boundary

conditions relevant to the intended use of a device. Based on Eqs 12 and 15, it was shown that

similar to the original model, the refined mathematical model which involves more parameters

is theoretically identifiable. In addition, the optimization problem in Eq 21 was solved using

different initial conditions for the parameters, where the identified parameters remained

unchanged, further supporting the identifiablity of both models. Furthermore, based on Eqs

26 and 27, it was shown that all parameters in both models are significant, as their global sensi-

tivity indices are not less than 0.01 at all the reported time instants.

Regarding the model transparency, both models are expected to be physiologically inter-

pretable. In the original model, αu denotes the steady-state distribution of fluid between intra-

vascular and interstitial compartments under fluid administration. Unlike LR, Hex is made of

high-molecular-weight hydroxyethyl starch 6% in isotonic saline, causing the body to keep the

fluid longer in the intravascular space rather than leaving through its vascular endothelium

[38]. Therefore, it is anticipated to have a smaller αu for Hex compared to LR, as seen in

Table 1 (P = 2 × 10−6). The original model dictates the reference BV (rBV) to update only dur-

ing fluid administration, as shown in Eq 1. However, rBV can change continuously over time,

even in the absence of fluid administration. Indeed, it is an individual’s physiology that mostly

determines the dynamics of change in BV response over time, so much as when no infusion is

present. Motivated by this, the refined physiological model is built based on the concept that

patient’s physiology can continuously alter the target state of BV, due to the dynamics of

change in the colloid osmotic concentration in plasma [22]. Table 1 indicates that, while αu in

the refined model is still slightly smaller under Hex administration (P = 0.3), it is the state

parameter Au and it’s dynamical impact on rBV —through subject’s physiology— that con-

structs the basis of difference in BV response to Hex and LR fluids (P = 0.04). Based on Eq 13,

a smaller Au leads to a larger low-frequency (DC) gain, amplifying the steady-state BV

response under Hex administration. All together, Au in the refined model represent a physio-

logical mechanism modulating the target BV state under different fluid types.

Selected model offers enhanced model calibration

The refined mathematical model can serve as a better model in terms of the model calibration

performance. While it is important for a model to adequately capture the dynamics of change

in physiological data used to infer the model parameters, the model should not be overly com-

plex to avoid over-fitting. In this work, we assess the adequacy of data calibration using RMSE,

AIC to evaluate the trade-off between complexity and accuracy of each model, and a new

multi-dimensional measure that compares the adequacy of 4 major estimation features indi-

vidually defined over time and range of the data. First, the results reported in Table 2 show

that, compared to the original model, the refined model has significantly smaller RMSE

(P = 0.03). It is noted that the RMSE in both original and refined models have a large standard

deviation, which is due to large calibration error seen in one of the animal subjects —subject

number 14 shown in Fig 3. Second, the models are comparable in terms of AIC, where the fre-

quency in which each model attained the minimum AIC is equal. This indicates that enhanced

calibration performance in the refined model is not trivial and not obtained due to over-fitting

the BV data. Instead, the calibration performance improvement is based on the physiological

model refinement and inclusion of the dynamic behavior of BV response to fluid perturbation.

Finally, the multi-dimensional measure in the refined model is significantly smaller than the

original model (P = 0.02), as seen in Fig 3. The figure clearly depicts how error features in the
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refined model are scattered in closer vicinity of the origin, leading to a significantly smaller

average Euclidean distance from the origin to each point. It is noted that based on the figure

and results shown in Table 2, the refined model significantly improves the calibration perfor-

mance in terms of three estimation error features; bias, standard error of residuals, and trend

of error over the BV range (P< 0.04), while the trend of error over time is comparable

between the two models (P = 0.08). All together, the results indicate the suitability of the

refined model in fitting BV data.

Selected model offers enhanced predictive capability performance

The refined mathematical model performs better in terms of predictive capability against phys-

iological states and under conditions to which the model has not been calibrated. This has

been shown based on the predictive capability performance obtained under three different sce-

narios. The performance was measured via S score and proportion of measurements within

the prediction envelope. As it is seen from Table 3, refined and original models showed com-

parable prediction performance in the steady-state BV response scenario, where S score as well

as proportion of measurement that were within the prediction envelope were not significantly

different (P> 0.34). Enhanced prediction performance of the refined model was the most evi-

dent in the transient BV response scenario, where the S score was significantly smaller

(P = 7 × 10−4) and larger proportion of data points were within the generated prediction enve-

lope (P = 0.02). While some of this discrepancy in prediction performance is due to different

quality of calibration via training data (see results on calibration performance), a model with

larger number of parameters can inherently explore a broader range of patient heterogeneity,

named patient cohorts, thus, constructing a wider prediction envelope. As a result, the refined

model has led to a broader prediction envelope to include a larger number of measurements,

i.e., 15%, but not too wide to get a larger S score than the original model. Similarly, the refined

model led to a significantly larger proportion of measurement within the prediction envelope

for the leave-one-out scenario (P = 3 × 10−3). However, due to the same reason mentioned ear-

lier, S score was identified to be similar between the two models (P = 0.79). Taken together, the

refined model performed significantly better in the transient BV response and leave-one-out

scenarios, while similar performance was seen for the steady-state response prediction. It is

noted that the S scores identified in this study are obtained for a 0.05 significance level. A

smaller significance level will benefit the refined model as its prediction envelopes contain a

larger percentage of measurements. These evaluation results obtained by the use of experimen-

tal data suggest that for future evaluation of PCLC medical devices for fluid resuscitation, the

refined model may lead to more realistic virtual patient cohorts for inputs and boundary con-

ditions to which the model is not calibrated. Therefore, it may provide more credible results

when testing PCLC medical device performance.

Study limitation

This research provide a comparison pathway to select a model between a set of candidate mod-

els. As a case study, we examined the proposed pathway for two physiological models of BV

response to fluid perturbation, intended for fluid resuscitation PCLC medical devices. This

study, however, needs to be extended to other physiological domains, e.g., respiratory treat-

ment, that are outside of the scope of the models in this work, or when patients go under mul-

tiple interactive PCLC medical devices. In addition, we studied the models that correspond

only to the physiological response, while the effects of sensor inaccuracy or input disturbance

has not been explicitly considered. Instead, data measured from the animal subjects that may

have been contaminated by noise were used for model evaluation. Given that these factors play
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a major role in PCLC medical device performance assessment, some work is needed to deter-

mine the effects of inaccuracy of hardware on model performance assessment. Finally, the

results of this research are based on only 16 subjects. This proposed pathway should be further

examined when a smaller or larger number of subjects are used for model calibration, which

could potentially emphasize the need for comparison methods between candidate models and

lead to best practices for computational models based on the subject sample size.

Conclusion

This research developed tools for model selection and evaluation of first-principle physiologi-

cal models for use in PCLC medical device assessment. As a case study, we used two physiolog-

ical models of BV response to fluid perturbation; one developed in our prior work and another

expanded from the original model in this research. The models were compared in three aspects

of identifiability and interpretability, model calibration, and predictive capability performance.

We showed that between the two candidate mathematical models, the refined model per-

formed better, or at least comparable, in all three aspects and thus, it could offer more credibil-

ity toward PCLC medical device assessment. The developed pathway in this research can be

extended to model selection in other physiological domains.
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