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Understanding themechanisms of glioblastoma at themolecular and structural level is not only interesting for basic science but also
valuable for biotechnological application, such as the clinical treatment. In the present study, bioinformatics analysis was performed
to reveal and identify the key genes of glioblastoma multiforme (GBM). The results obtained in the present study signified the
importance of some genes, such as COL3A1, FN1, andMMP9, for glioblastoma. Based on the selected genes, a predictionmodel was
built, which achieved 94.4% prediction accuracy.These findings might provide more insights into the genetic basis of glioblastoma.

1. Introduction

Glioblastomas are highly invasive tumors associated with
high levels of mortality in the central nervous system, and
their symptoms include bloating, pelvic pain, difficult eating,
and frequent urination. It is difficult to diagnose glioblastoma
at its early stages (I/II) as most symptoms of this disease are
nonspecific [1]. Glioblastoma is a rare disease, with a rate of
2-3 cases per 100,000 person life-years in Europe and North
America [2], accounting for 77–80% of primary malignant
tumors of the brain. Among the patients diagnosed with
glioblastoma, approximately 50% die within one year, while
90% die within three years [3]. Due to the great threat of
glioblastoma to human health, the treatment of glioblastoma
remains a major challenge.

Over the past years, tremendous genomics and pro-
teomics studies have been conducted to explore themolecular
mechanisms underlying the development and progression
of glioblastoma. The characterization of glioblastoma has
provided invaluable data related to thismolecularly heteroge-
neous disease. Recent advances in high-throughput microar-
rays have received extensive attention and made substantial
progress in reconstructing the gene regulatory network of

medical biology [4–11]. Usingmicroarray analysis, significant
differences in gene expression between normal and disease
tissues have been observed. However, as a result of the
underlying shortcomings of microarray technology, such
as small sample size, measurement error, and information
insufficiency, unveiling this diseasemechanism has remained
amajor challenge to glioblastoma research. Hence, GO, path-
way information, network-based approaches, and machine
learning algorithms have been employed to identify the
mechanisms underlying this disease.

In the present study, we identified the differentially
expressed genes (DEGs) between the glioblastoma samples
and normal brain samples. In addition, eleven significant tar-
get genes for diagnosing glioblastoma were identified based
onGOprocesses, KEGGpathways, and protein-protein inter-
action networks. Based on the results, a predictionmodel was
built with a prediction accuracy of 94.4% with these eleven
genes using Bayes net.

2. Materials and Methods

2.1. Data Preparation. The datasets available in this analysis
contained 18 samples, including 9 glioblastoma tissue samples
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Figure 1: Histogram of the raw fluorescence intensity data.

and 9 normal brain tissue samples from epilepsy surgery.
All specimens had confirmed pathological diagnosis and
were classified according to the World Health Organization
(WHO) criteria. All the tumor samples were obtained from
primary surgery. For the use of these clinical materials for
research purposes, prior consent from patients and approval
from the Ethics Committees of Nanfang Hospital (number
2013105) were obtained. These data (CEL form) and annota-
tion files were collected for further analysis. Figure 1 shows
that the gene expression signals for the 18 samples fit well
with each other and could be employed in the bioinformatics
analysis in the present study.

3. Results

3.1. Raw Data. Limma package in R was used to identify
the DEGs between the glioblastoma samples and the normal
controls. According to the cut-off criteria of |log FC| > 2.0
and 𝑝 value < 0.05, we obtained 2365 DEGs, including 1021
up- and 1344 downregulated genes (please visit the following
website for more raw data information: https://www.ncbi
.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90886).

3.2. Gene Ontology Analysis. GO analyses were performed
by DAVID which demonstrated that the majority of DEGs
were enriched in cellular components, cytoplasm, integral
to membrane, intrinsic to membrane, biopolymer metabolic
processes, cytoplasmic parts, and nucleus (Figure 2). The
upregulated genes were significantly enriched in cytoplasm,
nucleus, nucleobase-containing compounds, metabolic pro-
cesses, and biopolymer metabolic processes.

3.3. Analysis of KEGG Pathways. To obtain further insight
into the functions of DEGs, DAVID was applied to identify

Table 1: DEG pathway distribution.

KEGG pathway DEGs Upregulation Downregulation
Calcium signaling
pathway 45 4 41

MAPK signaling
pathway 61 24 37

Endocytosis 37 11 26
Regulation of actin
cytoskeleton 44 19 25

Long-term
potentiation 24 2 22

Pathways in cancer 57 41 16
Focal adhesion 48 36 12
Leukocyte
transendothelial
migration

29 19 10

ECM-receptor
interaction 33 29 4

p53 signaling
pathway 22 22 0

the significant dysregulated KEGG pathways. The pathways
obtained with a 𝑝 value < 0.05 and a gene count > 2 for
the up- and downregulated genes were collected (Table 1).
According to the enrichment results, the genes were signifi-
cantly enriched in following pathways: cancer pathways, reg-
ulation of the actin cytoskeleton, the MAPK signaling path-
way, focal adhesion, the calcium signaling pathway, ECM-
receptor interaction, long-term potentiation, endocytosis,
leukocyte transendothelial migration, and the p53 signaling
pathway. Among these pathways, the upregulated genes were

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90886
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90886
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Figure 2: (a) GO enrichment of DEGs. (b) DEGs in BP. (c) DEGs in CC. (d) DEGs in MF.

significantly enriched in the pathways of focal adhesion,
cancer, ECM-receptor interaction, MAPK signaling, and p53
signaling. The downregulated DEGs were enriched in the
pathways of calcium signaling,MAPK signaling, endocytosis,
regulation of actin cytoskeleton, and long-term potentiation.

3.4. PPI Network Construction. The STRING tool was used
to determine the PPI relationships of the DEGs. In total, 2182
PPI relationships were obtained with a combined score >0.4.
After filtering out the nodes of degree ≤5, we constructed a
network with 240 nodes and 2182 edges (Figure 3(a)).

Based on the PPI network constructed above, PPI net-
work enrichments were performed. The results revealed 5
enriched modules with a size >5 and a p < 0.05. Among
the five modules, two significant enrichments, Module A and
Module B, are shown in Figures 3(b) and 3(c). According to
Figure 3(b), it is difficult to determine whichmodule is better,
as they had similar sizes and edges. However, as Module A
has 38 nodes and 340 edges compared withModule B with 36

nodes and 320 edges, we considered Module A as the better
module.

To investigate the biological functions of the genes in
ModuleA,GO functional enrichments were performed using
STRING tools. A total of 31 genes in Module A were signif-
icantly enriched in biological processes and cellular compo-
nents, such as extracellular matrix organization, extracellular
structure organization, extracellular region part, locomotion,
and cell movement or subcellular components. Subsequently,
these 31 genes were further investigated using KEGGpathway
enrichment analysis. The results showed that the genes in
ModuleAwere primarily enriched by the following pathways:
ECM-receptor interaction, focal adhesion, the PI3K-Akt
signaling pathway, amoebiasis, protein digestion/absorption,
and pathways in cancer.

The connectivity degree of each node of the PPI network
was calculated, and the results of some nodes are shown
in Table 2. As shown in Table 2, several genes, including
MMP9, CD44, COL1A1, COL1A2, CAMK2A, and CAMK2B,
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Figure 3: (a) Protein-protein interaction networks of the corresponding DEGs. ((b) and (c)) Modules of the PPI network.

exhibited a high connectivity degree >25. Hence, these genes
were selected as key nodes and might play important roles in
the progression of GBM.

3.5. Prediction Model. Based on the selected eleven genes, a
predictive glioblastoma model was constructed using Bayes
net algorithm. To validate the predictive capability of the
model, a leave-one-out (LOO) cross-validation test, widely
used in prediction-related problems, was adopted in the
present study. For the LOO cross-validation test tests, the
datasetswere randomly divided into 18 subsets. Each classifier
was constructed using the samples from seventeen of the
subsets and the samples in the remaining subset were treated

as untrained data, which were used in the prediction as
independent test samples. Each subset was omitted when
constructing the classifier and predicted in turn. The total
prediction accuracy was obtained after averaging the correct
prediction rates of the 18 data subsets. The following predic-
tion results were obtained using the Bayes net method: SN:
88.9%, SP: 100%, ACC: 94.4%, and MCC: 0.795.

4. Discussion

In the present study, we obtained 2365 genes, including
1021 upregulated genes and 1344 downregulated genes using
gene expression profiling. Among the 2365 genes identified,
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Table 2:The statistical results of the connectivity degrees of the PPI
network.

Gene Degree Differential rates
CDC42 73 −6.928589
MMP9 49 16.665218
CD44 41 14.821273
CAV1 39 5.418803
THBS1 35 6.9339356
CAMK2B 33 −7.2954154
CAMK2A 32 −14.86015
COL1A2 30 9.719963
FN1 28 9.536128
COL4A2 27 7.803446
COL3A1 26 27.03572

there were 365 differentially expressed genes, including 237
upregulated genes and 124 downregulated genes. Most of
these genes were enriched in ten pathways, including MAPK
signaling, cancer, focal adhesion, calcium signaling, actin
cytoskeleton regulation, endocytosis, ECM-receptor interac-
tion, leukocyte transendothelial migration, long-term poten-
tiation, and p53 signaling pathways. Moreover, the upregu-
lated DEGs were primarily enriched in pathways in cancer,
focal adhesion, and ECM-receptor interaction, while the
downregulated DEGs were significantly related to pathways,
such as the calcium signaling pathway,MAPK signaling path-
way, and endocytosis. COL3A1, MMP9, CAMK2A, CD44,
HTR2A, SV2B, GRIN2A, COL6A3, and SH3GL3 have been
identified as significant genes in these pathways.MMP9, FN1,
FGF13, and COL4A2 are significant genes in the pathways
associated with cancer. COL3A1, COL6A3, COL1A2, FN1,
and TNC are significant genes in the focal adhesion pathway.
CAMK2A, HTR2A, and GRIN2A are significant genes in
the calcium signaling pathway. COL3A1, CD44, SV2B, and
COL6A3 are significant genes in ECM-receptor interactions.

These results indicate that the ECM-receptor interaction
pathway is a significant pathway enriched by upregulated
DEGs. In the present study, COL3A1 and CD44 in ECM-
receptor interaction pathway were significantly upregulated.
CD44, an unclassified cell adhesion molecule, is involved
in cell-cell interactions, cell adhesion, and migration [12,
13]. Studies have shown that CD44 participates in a wide
variety of cellular functions, including lymphocyte activa-
tion and the recirculation, recurrence, and development of
tumors [14]. In a previous study, Yoshida indicated that the
overexpression of CD44 was important for the growth and
survival of glioblastomas, and the monoclonal anti-CD44
antibody affects the migration of glioblastoma cells [15, 16].
COL3A1 encodes fibrillar collagen, a major component of
the extracellular matrix protein surrounding cancer cells [17,
18]. The presence of ECM protein prevents the apoptosis of
cancer cells. COL3A1 plays an important role in apoptosis,
proliferation regulation, and anticancer drug resistance [19],
indicating that the ECM-receptor interaction pathway plays
an important role in GBM, and CD44 and COL3A1 might be
potential diagnostic and therapeutic targets in this disease.

In the present study, MMP9 and FN1, key proteins in
cancer pathways, were also upregulated. The proteins of
the matrix metalloproteinase (MMP) family are involved in
the breakdown of extracellular matrix in normal biological
processes, such as embryonic development, angiogenesis,
cell migration, intracerebral hemorrhage, and metastasis [20,
21]. As a member of the MMPs, MMP9 is involved in the
degradation of the extracellular matrix. MMP9 also plays
roles in tumor development, as these proteins facilitate extra-
cellular matrix remodeling and participate in angiogenesis.
Forsyth et al. reported the involvement of MMP9 in different
aspects of the pathophysiology of malignant gliomas by
remodeling associated with neovascularization [22]. Choe et
al. detected MMP9 in the tumor samples of GBM patients
but not in normal brain tissue samples. Moreover, these
authors also showed that EGFRvIII overexpression affects
MMP9 activation by the activation of MAPK/ERK [23].
FN1, a high-molecular weight glycoprotein of the extracel-
lular matrix, binds extracellular matrix components, such
as collagen, fibrin, and heparan sulfate proteoglycans. Wang
et al. reported that FN is involved in the maintenance of
integrin b1 fibronectin receptors in glioma cells and could be
regarded as an important mediator [24]. Han et al. proposed
that fibronectin stimulates non-small cell lung carcinoma
cell growth and survival through the activation of the
Akt/mTOR/p70S6K pathway [25], and recently, fibronectin
has been implicated in carcinoma development as a potential
biomarker for radioresistance [14].

Yu and Stamenkovic identified a functional relation-
ship between the hyaluronan receptor CD44, MMP9, and
transforming growth factor-beta in the control of tumor-
associated tissue remodeling [26, 27]. These authors also
showed that several isoforms of CD44, expressed on murine
mammary carcinoma cells, provide cell surface docking
receptors for proteolytically active MMP9. The localization
of MMP9 on the cell surface is required to promote tumor
invasion and angiogenesis. Moreover, the cell surface expres-
sion of MMP9 stimulated the formation of capillary tubes by
bovine microvascular endothelial cells.

5. Conclusions

The results of the present study suggested that glioblastoma
is closely associated with the dysregulation of the pathways
in cancer, MAPK signaling, focal adhesion, and calcium
signaling. In addition, we also identified key genes, including
MMP9, CD44, CDC42, COL1A1, COL1A2, CAMK2A, and
CAMK2B, as potential target genes for diagnosing glioblas-
toma.
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