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Abstract: The advent of molecular diagnostics and the rising number of targeted therapies have
facilitated development of precision oncology for cancer patients. In order to demonstrate its impact
for patients with metastatic breast cancer (mBC), we initiated a Molecular Tumor Board (MTB) to
provide treatment recommendations for mBC patients who had disease progression under standard
treatment. NGS (next generation sequencing) was carried out using the Oncomine multi-gene panel
testing system (Ion Torrent). The MTB reviewed molecular diagnostics’ results, relevant tumor
characteristics, patient’s course of disease and made personalized treatment and/or diagnostic
recommendations for each patient. From May 2017 to December 2019, 100 mBC patients were
discussed by the local MTB. A total 72% of the mBC tumors had at least one molecular alteration
(median 2 per case, range: 1 to 6). The most frequent genetic changes were found in the following
genes: PIK3CA (19%) and TP53 (17%). The MTB rated 53% of these alterations as actionable and
treatment recommendations were made accordingly for 49 (49%) patients. Sixteen patients (16%)
underwent the suggested therapy. Nine out of sixteen patients (56%; 9% of all) experienced a clinical
benefit with a progression-free survival ratio ≥ 1.3. Personalized targeted therapy recommendations
resulting from MTB case discussions could provide substantial benefits for patients with mBC and
should be implemented for all suitable patients.

Keywords: precision oncology; personalized medicine; metastatic breast cancer; molecular tumor
board; molecular diagnostics

1. Introduction

Breast cancer is both the most common malignancy and the leading cause of cancer-
related death among women worldwide, with an estimated 2,088,849 new cases and
626,679 deaths in 2018 [1]. Diagnostic and treatment options have progressed substantially
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over the past few years, which led to slightly increasing incidence rates and a decline
in breast cancer mortality [2,3]. However, despite recent advances in oncology over the
past few years, not all patients equally benefit from these improvements. Survival rates
of patients with metastatic breast cancer (mBC) remain very poor compared to those of
breast cancer patients at earlier disease stages. While patients with a localized or regionally
confined breast cancer have a 5-year relative survival rate of 99% and 86%, mBC remains
an incurable disease with a median overall survival of approximately 3 years and a 5-year
survival of only 27% [4,5]. Moreover, as still 20–30% of breast cancer patients diagnosed at
an early stage are likely to develop metastatic disease during the course of their disease [6],
it is essential to develop new treatment concepts for this group of patients.

Recent technological advances in DNA sequencing have promoted discovery of
biomarkers or oncogenic drivers that provide new treatment strategies for patients lack-
ing other therapy alternatives. Biomarker analysis is a routine practice in breast cancer.
Historically, estrogen receptor (ER) and progesterone receptor (PR) have been successfully
used as predictive biomarkers for endocrine therapy [7]. Moreover, such biomarkers not
only provide information about patients’ response to a particular treatment but also have
a prognostic value. For instance, several studies demonstrated that patients with ER or
PR-positive tumors tend to have a better outcome than those lacking these receptors [8–11].
Recently, a heightened interest in the relevance of biomarkers in oncology has been wit-
nessed, as their potential for guiding treatment decisions has been recognized. In the
past years, impressive advances in cancer treatment outcomes through the combined use
of molecular diagnostics and targeted therapies have been seen in various tumor enti-
ties [12–15]. For breast cancer patients, a rising number of predictive biomarkers have led
to development of several new drugs designed for targeting specific genetic alterations,
such as PARP (poly(ADP-ribose)-polymerase) inhibitors like olaparib or talazoparib for
germline BRCA-mutated breast cancer [16] (Figure 1).
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ago-online.de assessed on 21 February 2021). (ER = estrogen receptor, PR = progesterone receptor, HER2 = human
epidermal growth factor, PD-L1 = programmed death-ligand 1, TNBC = triple-negative breast cancer, PARP = poly
(ADP-ribose) polymerase, gBRCA = germline BRCA, CTC = circulating tumor cell, LoE = levels of evidence, GR = grade,
AGO = Arbeitsgemeinschaft Gynäkologische Onkologie (German Gynecological Oncology Group).

Moreover, since the introduction of anti-HER2 targeted agents, survival rates of
patients with HER2-positive mBC have remarkably improved [17–19]. Patients with HER2-
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positive disease, who received the anti-HER2 agent trastuzumab, had a 44% decreased risk
of death compared to the control group, which has turned trastuzumab into a routinely used
drug today [20]. Besides HER2 amplification, HER2 mutations have become a predictive
marker as well. Responses to neratinib, a tyrosine kinase inhibitor, were seen in about 30%
of patients with HER2 mutations. Moreover, when combined with fulvestrant in previously
treated hormone receptor-positive HER2-mutated tumors, it showed responses in the range
of 40% [21]. Recently, multiple targeted agents have become available that have improved
the outcomes of patients with breast cancer, with alpelisib being the most recent example.
It proved to be beneficial for patients with a PIK3CA-mutated breast cancer, thus adding
the PIK3CA gene to the list of ESCAT Level 1 actionable mutations. Patients treated with
alpelisib had a progression-free survival (PFS) of 11 months (95% confidence interval [CI],
7.5 to 14.5), as compared with 5.7 months (95% CI, 3.7 to 7.4) in the control arm (hazard
ratio for progression or death, 0.65; 95% CI, 0.50 to 0.85; p < 0.001) [22].

The advent of multiple targeted therapeutics and the promising advances in DNA
sequencing techniques promoted research on molecular tumor characteristics and led to
development of a new approach now known as “precision medicine”. Its major aim is to
use targetable molecular alterations for identification of specific subpopulation of patients,
whose tumors express these markers and therefore could benefit from a certain treatment.

However, there is still a lack of clinical data on the impact of implementing precision
medicine for patients with mBC (Table 1). In order to evaluate whether this subset of
patients could benefit from this new approach, we initiated a molecular tumor board (MTB)
to give personalized treatment recommendations based on comprehensive molecular
tumor profiling. Here, we present the results of the first 100 mBC patients discussed at the
Comprehensive Cancer Center, LMU Munich Molecular Tumor Board.

Table 1. Overview of studies focusing on molecular profiling in breast cancer.

Author/Study Tumor Entity Enrolled Patients
(n =) MP Patients Actionable

Alterations

Implemented
Therapies-n (%

of Enrolled)
Results

André et al.
(SAFIR01/UNICANCER) breast cancer 423 299 (71%) 195 (46%) 55 (13%)

ORR: 4 patients had
a PR and 9 had

SD > 16 weeks (3%
of all patients)

Parker et al. breast cancer 43 43 (100%) 40 (93%) 17 (40%)
7 patients (16% of

all patients)
achieved SD or PR

Van Geelen et al. breast cancer 322 234 (72%) 74 (23%) No data
No data about

implementation
rate and outcome

MP = molecular profiled, PFS = progression-free survival, ORR = overall response rate, SD = stable disease, PR = partial response,
n.a. = not available.

2. Materials and Methods
2.1. Patient Recruitment and Study Design

A total of 100 patients from Breast Center LMU were enrolled in a prospective single-
center registry “The Informative Patient”, conducted at the LMU University Hospital
Munich in cooperation with the Comprehensive Cancer Center Munich. Informed consent
was obtained from all individual participants. The registry was approved by the ethics
committee of the LMU University Hospital Munich (reference number: 284-10). The study
protocol was in accordance with the Declaration of Helsinki. The population presented
here were accrued between May 2017 and December 2019. Key inclusion criteria were
as follows: histological confirmation of breast cancer disease, at least one metastatic site,
Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, and willingness
to take part in potential clinical trials or to start an off-label treatment. Molecular diagnostic
testing was performed at the Pathology Institute of the LMU University Munich. The
primary objective of the study was to use personalized recommendations made by a
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multidisciplinary tumor board to improve the progression-free survival compared to
the previous treatment and to prove the impact of the MTB recommendation on the
overall survival of mBC patients. Here, we present an organ-specific analysis of the first
100 patients with metastatic breast cancer, who took part of the “The Informative Patient”
study. Details on progression-free survival, as well as on overall survival of all patients,
who took part of the study, are yet to be presented.

2.2. Panel-Guided Next-Generation Sequencing

Molecular analyses were performed at the LMU Institute of Pathology. Sections
from formalin fixed paraffin embedded (FFPE) tissue samples were prepared followed
by hematoxylin-eosin staining of the first slide. Appropriate tissue regions were selected,
and nucleic acids were extracted from subsequent sections using the GeneRead (DNA)
and RNeasy FFPE kits (RNA) (both from Qiagen, Hilden, Germany). Targeted NGS
was performed with the Oncomine Focus Panel (covering 52 cancer-associated genes) till
November 2018 and then with the Oncomine Comprehensive v.3 assay screening for genetic
alterations in 161 cancer-associated genes at the levels of DNA (single-nucleotide variants
(SNV), multi-nucleotide variants (MNV), small ins, del, indels, copy number variation
(CNV)) and RNA (gene fusions). Briefly, libraries were generated employing Ampliseq Li-
brary Plus-, Ampliseq cDNA synthesis-, Ampliseq CD index, Ampliseq Equalizer- together
with AmpliSeq for Illumina Comprehensive Panel v3 (all Illumina) or Oncomine Compre-
hensive Assay v3 and Ion AmpliSeq Library-, IonXpress Barcode Adapter-, Ion Library
Equalizer-kits together with Ion Chip kits (540 and 550) (all Thermo Fisher, Waltham, MA,
USA) following each step of the respective user manuals. Libraries were sequenced on an
Ion Torrent GeneStudio S5 Prime (Thermo Fisher) or Illumina 500 Next Seq (Illumina) next
generation sequencing (NGS) machine. Analysis of the results was performed with either
the Ion Reporter System (Thermo Fisher) followed by further variant and quality interpre-
tation with a home-made excel tool or the Illumina Local Run Manager with subsequent
annotation of VCF-files using wAnnovar [23] and a home-made python-script filtering for
clinically relevant mutations. Alterations were confirmed with the Integrated Genomics
Viewer (IGV, Broad Institute, Cambridge, MA, USA) Mutations were judged as relevant on
the basis of the interpretation criteria utilized in ClinVar [24]. Only likely pathogenic and
pathogenic mutations as well as VUS (variant of unknown significance or not evaluated in
ClinVar with a prediction trend of being likely pathogenic—majorly frameshift or truncat-
ing variants) with allele frequencies ≥3% were reported. A comprehensive pathological
report comprising NGS results together with data from immunohistochemistry (used for
HER2 and PD-L1 testing), fluorescence in situ hybridization (FISH) (used for confirming of
the HER2 status) and histo-morphology was submitted to the MTB for further discussion
of therapeutic options.

2.3. Study Procedure

A flowchart of the trial “The informative patient” is shown in Figure 2.
All patients (n = 100) were first discussed in an organ-specific breast cancer tumor

board (LMU, Department of Obstetrics and Gynecology), where the treating gyneco-
oncologist presented the patient’s case and requested case discussion at the Molecular
Tumor Board (MTB). If eligible, after patient informed consent, all tumors underwent com-
prehensive molecular profiling and the results were then presented to the MTB. Each case
was then discussed by the multidisciplinary MTB team, consisting of gyneco-oncologists
with expertise in various cancer entities along with molecular pathologists, and genetic
counselors. Each patient was presented by a moderator, who provided information about
patient’s course of disease, prior treatment history with response and comorbidities. After
reviewing clinical history and molecular profile of each tumor, the MTB discussed action-
ability of the discovered mutations by reviewing literature and publicly available databases,
such as PubMED, clinicaltrials.gov accessed on 10 April 2021, ClinVar, Varsome, OncoKB
and CIViC [25]. The purpose of this research was to determine frequency of particular

clinicaltrials.gov
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molecular alterations across patient populations as well as relevant pathways that may
be affected, and then matching them to available drugs (in- and off-label) or clinical trials.
For each patient, the MTB discussed possible diagnostic and treatment options and issued
recommendations accordingly. Treatment recommendations were supported by levels
of evidence for molecular targets by using the European Society for Medical Oncology
(ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT), defined according to
their implications for patient management (Table 2) [26].
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Table 2. List of genomic alterations Level I/II/III in breast cancer as classified by the European Society
for Medical Oncology (ESMO) Scale for Clinical Actionability of Molecular Targets (ESCAT) [27].

Genomic Alterations Prevalence

ESCAT Level I
BRCA1/2 germline mutations 4%

ERBB2 amplifications 15–20%
Microsatellite instability-high 1%

PIK3CA hotspot mutations 30–40%
ESCAT Level II

AKT1E17K mutations 5%
ERBB2 hotspot mutations 4%

ESR1 mutations 10%
ESCAT Level III

BRCA1/2 somatic mutations 3%
ERBB3 mutations 2%

MDM2 amplifications 1%

2.4. Analysis of Results

In order to determine the clinical impact of panel-guided NGS adjusted therapies, we cal-
culated progression-free survival ratio (PFSr) as previously described by Von Hoff et al. [28],
by comparing progression-free survival on matched therapy (PFS2) with progression-free
survival on the most recent therapy prior to NGS testing on which the patient experienced
disease progression (PFS1). Progression-free survival (PFS) was calculated from start of
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recommended treatment to disease progression (as assessed by RECIST guidelines (ver-
sion 1.1) or death whatever occurred first) [29]. Cut-off date for follow-up analysis was
1 August 2020.

3. Results
3.1. Patient Characteristics

Between May 2017 and December 2019, 100 female mBC patients were included in the
“The Informative Patient” study. The median age was 52 years (range: 30 to 82). Patients
had a median of four therapies prior to inclusion (range: 1 to 13). The median number of
metastatic sites per patient was 2 (range: 1 to 6). Regarding organ sites, the majority of
patients had bone metastases (62%), followed by liver (51%), and lung (40%) metastases
(Supplementary Table S2.)

More information about patients’ characteristics is listed in Table 3.

Table 3. Patient characteristics (n = 100).

Patient Characteristics n =

Median age 52 (range 30–82)
Number of metastatic sites at time of presentation

1 25
2 39
3 20

>3 16
Metastatic sites

visceral 87
bone 62
brain 21

cutaneous 11
Number of previous therapies

1 6
2 26
3 13

>3 55

The plurarity of patients had triple-negative breast cancer (ER, PR and HER2 negative;
n = 30; 46.9%), followed by estrogen receptor (ER)—positive and/or progesterone receptor
(PR)—positive, human epidermal growth factor receptor 2 (HER2)—negative (luminal-like)
(n = 28; 43.8%), or HER2-positive, ER-negative, PR-negative disease (n = 5; 7.8%) at time of
the initial MTB presentation; one patient (1.6%) had triple-positive disease (ER-positive,
PR-positive and HER2-positive) (Figure 3).

3.2. Molecular Diagnostics

NGS was done for all patients. All tissue samples were collected either prior to
molecular profiling or prior to the initiation of the last therapy a patient received. When
selecting appropriate tissues, we set the criteria of using samples that were not older
than two years prior to initiation of molecular profiling, and when possible, collecting
tissue samples after the last standard line of therapy, in order to provide the most accurate
analysis of molecular profile data.

All tumor samples used for molecular profiling have been collected no more than
24 months prior to molecular profiling. The median turnaround time for completing
molecular profiling was 19 days (range: 10–48). The median turnaround time between
initiation of molecular profiling and MTB case discussion was 33 days, which is similar to
reported median turnaround times in other studies [30].

In seven cases (7%) tumor sequencing was performed more than once. In 73 (73%) of
the received samples, at least one molecular alteration was found. Among these 73 tumor
samples, 53 (53%) had at least one actionable mutation, as classified by the MTB. More than
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one molecular alteration was found in 51 cases (51%). No genomic alterations were found
in 27 samples (27%), 11 of which (11%) had insufficient material quality and therefore led
to technically not successful molecular analysis.
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All in all, we detected 161 molecular alterations, with a median of two alterations
per sample (range: 0–6). In total, molecular changes in 42 genes were found. As shown
in Figure 4, the most common molecular alterations across the sequenced samples were
found in the PIK3CA gene (19/100; 19%); followed by TP53 gene (17/100; 17%), and FGFR1
gene (15/100; 15%) (Supplementary Table S1).
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In our cohort, the most altered oncogenic signaling pathway was the RTK/RAS path-
way, with 15% FGFR1 alterations, 10% ERBB2 and 6% MET alterations, followed by the
PI3K/mTOR/AKT pathway. A total 20% of the patients had a non-actionable mutation, most
frequently in the TP53 gene (17%).

3.3. Recommendations

In total, 49 patients (49%) received at least one treatment recommendation from the
MTB. Further, 18% of all patients obtained more than one treatment recommendation, as
their samples contained more than one actionable alteration. The most common therapy
recommendation (in 21 of 49 cases with at least one treatment recommendation) was
everolimus, a mTOR inhibitor. Of note, five patients carrying a now actionable mutation
(PIK3CA, found in 19% of patients in the presented cohort) received no therapy recom-
mendation, as the drug targeting this mutation (alpelisib) was not approved at the time of
MTB presentation.

In five of the cases (5%), the MTB suggested further diagnostic tests, three of which
then resulted in a treatment recommendation. In the Appendix A, details on actionable
mutations and following MTB treatment recommendations made by the MTB are provided.

All in all, 51 patients (51%) received no recommendation from the MTB. The main
reasons for no recommendation were absence of molecular alterations in the NGS testing
(27%), non-actionable mutations (20%), patient comorbidities or general condition by
the time of MTB case discussion (3%). More information about the results of MTB case
discussions is listed in Figure 5.

Diagnostics 2021, 11, x  9 of 23 
 

 
Diagnostics 2021, 11, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/diagnostics 

 
Figure 5. Consort flow diagram showing the results of Molecular Tumor Board (MTB) case discussions based on molecular 
diagnostics results and implementation of treatment recommendations in our cohort (n = 100). 

3.4. Progression Free Survival Analysis. 
Follow-up information was available for 48 out of 49 patients with a treatment rec-

ommendation. In 16 out of 49 cases (16% of all patients), treatment recommendations were 
implemented. Lack of implementations was mostly caused by deterioration of the pa-
tient’s health condition (10%), inaccessibility to treatment recommendation (8%), not ful-
filling trial inclusion criteria (6%), or patient preferences (5%). 

The median turnaround time between the discussion in the molecular tumor board 
and the initiation of recommended therapies was 53 days. Among patients with imple-
mented treatment recommendations, 13 (13%) received an in-label treatment, whereas 
three (3%) received an off-label drug. The most frequently implemented treatment recom-
mendation was a mTOR inhibitor (mostly everolimus) in combination with endocrine 
therapy (mostly exemestane) in seven cases (7%). A total 9 of 16 patients (56%, 9% of all 
patients) with implemented treatment recommendations were found to have a PFSr ≥ 1.3, 
with a median of 1.3 (range: 0.2 to 11.8). Further, 6 patients (6%) achieved a state of partial 
remission or stable disease lasting over 16 weeks, with one patient having an ongoing PFS 
(Table 4). 

Table 4. Patients with implemented treatment recommendations (in- and off-label). 

Gene Alteration 
Implemented Therapy  

(MTB Recommendation) Previous Therapy Label 
PFS2 

(Weeks) 
PFS1 

(Weeks) PFSr 

1 FGFR1  Everolimus [31,32]  Capecitabine in 14 81 0.2 
2 FGFR1 Everolimus Capecitabine/Bevacizumab in 4 13 0.3 
3 PIK3CA Alpelisib (ESCAT I) Everolimus/Exemestan in 14 44 0.3 
4 PIK3CA Alpelisib (ESCAT I) Palbociclib/Anastrozol in 15 32 0.5 
5 FGFR1 Everolimus Trastuzumab/Eribulin In 4 8 0.5 

6 ERBB2 
Trastuzumab/Lapatinib 

(ESCAT I) 
Trastuzumab-Emtansin in 21 25 0.8 

Figure 5. Consort flow diagram showing the results of Molecular Tumor Board (MTB) case discussions based on molecular
diagnostics results and implementation of treatment recommendations in our cohort (n = 100).
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3.4. Progression Free Survival Analysis

Follow-up information was available for 48 out of 49 patients with a treatment recom-
mendation. In 16 out of 49 cases (16% of all patients), treatment recommendations were
implemented. Lack of implementations was mostly caused by deterioration of the patient’s
health condition (10%), inaccessibility to treatment recommendation (8%), not fulfilling
trial inclusion criteria (6%), or patient preferences (5%).

The median turnaround time between the discussion in the molecular tumor board and
the initiation of recommended therapies was 53 days. Among patients with implemented
treatment recommendations, 13 (13%) received an in-label treatment, whereas three (3%)
received an off-label drug. The most frequently implemented treatment recommendation
was a mTOR inhibitor (mostly everolimus) in combination with endocrine therapy (mostly
exemestane) in seven cases (7%). A total 9 of 16 patients (56%, 9% of all patients) with
implemented treatment recommendations were found to have a PFSr ≥ 1.3, with a median
of 1.3 (range: 0.2 to 11.8). Further, 6 patients (6%) achieved a state of partial remission or
stable disease lasting over 16 weeks, with one patient having an ongoing PFS (Table 4).

Table 4. Patients with implemented treatment recommendations (in- and off-label).

# Gene
Alteration

Implemented Therapy
(MTB Recommendation) Previous Therapy Label PFS2

(Weeks)
PFS1

(Weeks) PFSr

1 FGFR1 Everolimus [31,32] Capecitabine in 14 81 0.2
2 FGFR1 Everolimus Capecitabine/Bevacizumab in 4 13 0.3
3 PIK3CA Alpelisib (ESCAT I) Everolimus/Exemestan in 14 44 0.3
4 PIK3CA Alpelisib (ESCAT I) Palbociclib/Anastrozol in 15 32 0.5
5 FGFR1 Everolimus Trastuzumab/Eribulin In 4 8 0.5

6 ERBB2 Trastuzumab/Lapatinib
(ESCAT I) Trastuzumab-Emtansin in 21 25 0.8

7 FGFR1 Everolimus Eribulin in 13 13 1
8 PIK3CA Everolimus Trastuzumab/Pertuzumab in 69 55 1.3
9 FGFR1 Everolimus Docetaxel/Pertuzumab/Trastuzumab in 13 9 1.4
10 PIK3CA Everolimus Paclitaxel in 18 12 1.5
11 CCND1 Palbociclib Carboplatin/Gemcitabine in 21 13 1.6
12 PIK3CA Alpelisib (ESCAT I) Carboplatin/Gemcitabine in 15 9 1.7
13 FGFR1 Pazopanib Cyclophosphamid/Methotrexat/Fluorouracil off 12 6 2
14 FGFR1 Pazopanib Eribulin off 6 3 2 *
15 ERBB2 Lapatinib (ESCAT II) Epirubicin in 26 3 8.7
16 p16, MYC Pembrolizumab [33–35] Cisplatin/5-Fluorouracil off 59 5 11.8

PFS1 = progression-free survival on the most previous line of therapy (standard of care). PFS2 = progression-free survival on the
implemented recommended therapy. PFSr = PFS ratio = PFS2/PFS1. * Clinically not meaningful result, as PFS1 is too short [36].

Figure 6 details the actual comparison of PFS on recommended therapy (PFS2) versus
PFS on last therapy the patient received (PFS1).
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4. Discussion

Modern sequencing techniques together with newly targeted therapies have revo-
lutionized cancer medicine by providing substantial benefits for cancer patients in com-
parison to prior medical standards. However, the precision oncology movement remains
controversial, as evidence supporting this approach is still missing. In 2015, a meta-analysis
conducted by Schwaederle et al. compared results of 570 studies comprising 32,149 patients,
divided in two groups of patients who received a personalized treatment strategy versus
those that did not. The results supported the personalized approach, as it correlated with
higher median response rate (31% vs. 10.5%), prolonged median PFS (5.9 vs. 2.7 months)
and overall survival (13.7 vs. 8.9 months) [37]. Many other studies demonstrated similar
positive results [38–41]. For instance, in the WINTHER trial, 22.4% of the patients receiving
therapy based on molecular profiling had a survival ratio > 1.5. However, in the first ran-
domized trial, SHIVA (n = 741 screened) no significant improvement in PFS was seen in the
precision oncology arm compared to the standard-of-care arm, suggesting that off-label use
of targeted therapies does not improve PFS compared with standard-of-care treatment [42].
All in all, over the past few years, many researchers have investigated the effect of using
panel-guided molecular diagnostics on the PFS and OS of patients with advanced cancers.
While some of them were able to demonstrate a clinical benefit and longer survival for
patients with individualized therapies, the overall impact remains small, and therefore, a
subject to discussions of the cost-effectiveness of this approach [43].

In this study, we demonstrated that individual treatment recommendation based
on molecular profiling using NGS could improve PFS of mBC patients. Among those
patients with implemented treatment recommendations, more than a half had a PFSr ≥ 1.3,
which demonstrates the potential relevance of involving targeted NGS-guided therapies in
mBC. Previous studies focusing on implementation of precision oncology in breast cancer
care also showed similar results, demonstrating that this approach is feasible and of great
importance—at least for a subset of patients [44]. For instance, in the SAFIR01 trial, 9% of
the patients with implemented treatment recommendation had an objective response, while
21% responded with stable disease lasting more than 16 weeks [45]. Other recent studies,
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such as the one by Geelen et al., which accrued 357 breast cancer patients of whom 74%
had a potentially actionable alteration, also demonstrated feasibility of using molecular
diagnostics to detect actionable molecular alterations. This suggests that clinical utility of
genomic profiling in combination with more available targeted therapies will expand over
time [46].

Within the context of mBC, there are various applications of molecular diagnostics,
which could potentially improve patient outcome. Apart from identifying oncogenic driver
mutations, it is also possible to define genomic alterations, associated with secondary
resistance, another major clinical problem in mBC. For example, ESR1 mutations, occurring
in 10–30% of pre-treated ER-positive mBC, are known to cause resistance to aromatase
inhibitors [47]. Thus, detecting such alterations could provide valuable information about
signaling pathways causing resistance to certain treatments. As tumor biological factors
of breast cancer often tend to differ in the primary and in the distant metastatic tissue,
affecting patient prognosis, there is a need of understanding the tumor biology of these
malignancies at a higher level [48].

In the presented study, approximately 25% of the patients had a Level 1 actionable
alteration, corresponding to ESCAT levels of evidence (LOE) I/II genes, with PIK3CA being
the most frequently altered gene. The latest breakthrough in breast cancer oncology was
the approval of alpelisib in combination with fulvestrant. Of note, some patients in our
cohort, harboring a PIK3CA mutation, did not receive a treatment recommendation, if the
PIK3CA gene was not classified as “actionable” at time of their initial MTB presentation.
Thus, considering the high frequency of PIK3CA gene alterations in breast cancer (more
than 25% of all breast malignancies), the discovery of alpelisib was of great importance
for many patients, proving that detecting genomic alterations is crucial, as research in the
past decade has been mainly focused on developing new drugs targeting such molecular
aberrations [49].

However, although the number of MTAs (molecular targeted agents) is constantly
rising, there is still a lack of drugs targeting many genes, commonly expressed in breast
cancer, like TP53 mutations (17% of our patients expressed this alteration) for example,
making matching genomic alterations with targeted therapies still a great challenge for the
majority of patients and one of the greatest limitations for precision oncology. Developing
newly targeted therapies represents a major issue, as it requires a large number of patients
to be screened in order to perform a clinical trial. Accruing many patients for this purpose
appears to be problematic, as the cost for high-throughput genomic profiling to identify
patients carrying particular mutations is still relatively high. However, with the advent of
NGS technologies and prices of this innovative approach constantly decreasing, it has now
become easier than ever to incorporate molecular diagnostics into clinical routine [50].

Nevertheless, the cost of molecular profiling accounts for a very small amount of the
whole therapy. Molecular-guided treatment still represents the main cost driver, accounting
for more than 50% of all costs [51]. Undeniably, the high costs associated with molecular
profiling and targeted therapies, and limited drug access represent more barriers for
successful translation of precision oncology into clinical breast cancer practice [52,53]. In
our study, the cost of the recommended targeted therapy was one of the most common
reason why patients did not receive the recommended treatment. Unfortunately, with the
rising number of approved targeted drugs, their costs have increased during the same
time [54].

As shown in this study, clinical trials unfortunately often remain unavailable for pa-
tients, mainly because of deterioration of patients’ physical condition or existing exclusion
criteria for a given trial. Considering the fact that breast cancer accounts for one of the
highest uses of targeted therapies, we need to find a way to ensure access to targeted
therapies for patients with actionable mutations. One possible solution is to develop basket
trials, testing the effectiveness of a single drug against a molecular alteration in various
cancer entities. Another option is to create umbrella trials, which focus on the effect of
different drugs targeting different gene alteration in a single cancer entity [55]. MTBs could



Diagnostics 2021, 11, 733 12 of 22

serve as a platform to improve access to targeted therapies by constantly reviewing relevant
clinical trial options for particular groups of patients. As other authors already suggested,
the access to a MTB increases the chance for application of genetics-guided cancer care [56].
According to the recently published 5th ESO-ESMO international consensus guidelines for
advanced breast cancer (ABC 5), suitable patients, ready to participate in clinical trials of
novel therapies, should undergo NGS testing in centers with relevant trial options [57].

Another major benefit of implementing MTBs into clinical care is that they also
improve clinicians’ knowledge about molecular oncology [58]. The complexity of the large
amounts of data generated by genomic profiling requires expert review for maximum
clinical benefit. MTBs provide a system to guide clinical decision-making in precision
oncology, while also training physicians who are still inexperienced in this topic and
improving their confidence in understanding this new field.

However, the concept of MTBs is not fully defined, as guidelines and quality criteria
are still missing, which is the reason why there are great discrepancies in outcomes of
clinical trials focusing on precision oncology. Different centers tend to have different patient
selection criteria and also differ in selection of multigene panels used for molecular profiling.
The right time of enrolling patients into trials enabling access to precision cancer care is still
a matter of debate. As seen in our cohort, patients’ disease stage at time of enrollment is of
great importance for evaluating the impact of personalized treatment recommendations
for cancer patients. Rapid deterioration of the physical condition was one of the main
reasons why patients did not receive the recommended treatment. The median turnaround
times from indication for molecular profiling to MTB case discussion are still in some cases
quite long for cancer patients at a late disease stage. This suggests a need to evaluate
which patient groups would benefit most from implementing of precision oncology in
standard oncology care. Defining actionability of genomic alterations, providing access
to clinical trials and off-label drugs and quality assurance of molecular diagnostics also
seem to vary from center to center. In the constantly changing world of precision oncology,
there is a need for standardizing and optimizing the work of MTBs and for developing
international guidelines and real-world databases to guide clinician decision-making in
precision oncology.

The precision oncology field is constantly evolving. In our clinical center, we managed
to evaluate this trend over the past two and half years. Comparing the results of the
presented study with those of our first study where we presented results of the first
100 patients with mBC or gynecologic malignancies, we have observed an improvement in
the therapy implementation rates (16% in the presented study vs. 12.5% in the previous
study), in the number of recommendations given (49% vs. 42%), and in the number
of mutations found (53% vs. 48%) [59]. In addition, the number of technical problems
occurring in the molecular diagnostics was significantly lower in the presented trial as
compared to our earlier experiences (11% vs. 17% in our last presented study). These
results demonstrate the importance and potential of developing precision oncology access
programs in academic centers.

In view of our results and recently published experiences, we expect molecular profil-
ing and molecular tumor boards to become increasingly implemented in breast cancer care
over the next few years. In order to maximize clinical benefit for more patients, it is essen-
tial to optimize MTB structures, reconsider selection patient criteria for tumor molecular
profiling, and to determine new biomarkers and associated targeted therapies by improv-
ing access to clinical trials. In addition, it’s important to consider using liquid biopsies for
molecular profiling, a revolutionary but still limited new tool for precision medicine. As an
important diagnostic tool, it has advantages such as providing representative analysis in
the presence of multiple tumor foci and being less invasive compared to traditional tumor
biopsy analysis, but also disadvantages such as high costs and questionable sensitivity.
Within the setting of our molecular tumor board, liquid biopsies were only considered
in a minor part of the patients (other tumor entities) where no recent tumor biopsy was
available or performable. Reasons for this were the potential false negative rates, high
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analyses cost due to high sensitivity systems combined with a very low chance of health
insurance reimbursement.

The presented study has several limitations. First, the cohort presented, comprising
100 mBC patients, is relatively small. Moreover, our patients already had advanced-
stage disease and a therefore limited number of available, previously not implemented
treatment options. Thus, it is possible that our findings may not be applicable to patients
exposed to comprehensive molecular profiling and MTB discussion at an earlier disease
stage. Second, defining actionable mutations is challenging and also depends on approved
targeted therapies at time of case presentation. As the field of molecular oncology is rapidly
evolving, the importance of specific biomarkers may vary. Third, as tumors tend to evolve
during the disease course, it is possible that the molecular landscape of the tumor may
have changed by the time of molecular profiling. Furthermore, some studies suggest a
possibility of cancers evolving under cancer therapy [60]. As some of the tissue samples
were collected prior to the last systemic treatment, this may have caused inaccuracy in the
matching of targeted therapies and actionable mutations. Lastly, the presented study was
not designed as a randomized controlled trial, but rather as a real-world data registry.

5. Conclusions

Although the number of patients is still low, our experience shows that patients with
mBC may benefit from implementation of MTB recommendations based on targeted panel-
guided sequencing into clinical care. MTBs have proven to be a helpful tool for patient care,
as they combine clinical expertise in several oncology areas in order to improve patient
outcome by providing a personalized tailored-based treatment advice. They also encourage
interdisciplinary knowledge transfer and are a great platform for expanding experience in
precision oncology. In order to maximize the clinical utility of precision oncology, logistical
support to ease access to drugs and clinical trials is needed.
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Appendix A

# Alteration Found Treatment Recommendation Follow-Up

1 PIK3CA, ESR1 and TP53 mutations

PIK3CA-Gene: chr3: 178952085, Exon 21, c.3140A > G (NM_006218.3), p.His1047Arg

alpelisib lost to follow upESR1-Gene: chr6: 152332832, Exon 6, c.1138G > C (NM_001122740.1), p.Glu380Gln

TP53-Gene: chr17: 7579558, Exon 4, c.128delT (NM_000546.5), p.Leu43Ter

2 FGFR1, AR and CCND1 amplifications

FGFR1-Gene: chr8: 38271444, CNV: 9.83
1. CDK4/6 inhibitor
2. Everolimus
3. AR inhibitor

not implementedAR-Gene: chrX: 66776185, CNV: 8

CCND1-Gene: chr11: 69456941, CNV: 10.57

3
PIK3CA and ESR1 mutations;

TBL1XR1-PIK3CA gene fusion
External analysis 1. alpelisib

2. everolimus
implemented

4 PIK3CA mutation PIK3CA-Gene: chr3: 178936091, Exon 10, c. 1633G>A (NM_006218.3), p.Glu545Lys alpelisib implemented

5 ERBB2 amplification External analysis HER2 inhibitor not implemented

6 CCND1 amplification CCND1-Gene: 11q13.3, chr11: 69456941, CNV: 9.3
1. CDK4/6 inhibitor
2. palbociclib + fulvestrant
3. everolimus

implemented

7
PIK3CA, PTEN mutations and AKT3

amplification

PIK3CA-Gene: chr3: 178936082, Exon 10, c. 1624G > A (NM_006218.3), p.Glu542Lys

mTOR inhibitor implementedPTEN-Gene: chr10: 89720803, Exon 8, c.955_956insA, (NM_000314.6 p.Thr319fs

AKT3-Gene: 1q43q44, chr:1: 243662992, CNV: 5.9

8 FGFR1 and AKT2 amplifications;
TP53 mutation

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 15.33

FGF1 inhibitor not implementedAKT2-Gene: 19q13.2, chr19: 40739755, CNV: 11.61

TP53-Gene: chr17: 7579320, Exon 4, c.365_366delTG (NM_000546.5), p.Val122fs

9 ERBB2 mutation ERBB2-Gene: Exon 19, chr17: 37880220, c.2264T > C (NM_004448.3), p.Leu755Ser afatinib/neratinib not implemented

10 PTEN deletion PTEN-Gene: Exon 8, chr10: 89720798, c.955_958delACTT (NM_000314.4), p.Thr319Ter
1. IPATunity130 trial

(NCT03337724)
2. exemestane + everolimus

not implemented

11 PIK3CA mutation PIK3CA-Gene: chr3: 178936091, Exon 10, c. 1633G > A (NM_001127500.2), p.Glu545Lys everolimus not implemented

12 FGFR1, FGF19 and FGF3 mutations

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 24.97
1. mTOR inhibitor
2. pazopanib

implementedFGF19-Gene: 11q13.3, chr11: 69513954, CNV: 19.73

FGF3-Gene: 11q13.3, chr11: 69624976, CNV: 12.97
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# Alteration Found Treatment Recommendation Follow-Up

13 MET mutation MET-Gene: Exon 14, chr7: 116411990, c.3029C > T (NM_001127500.1), p.Thr1010Ile crizotinib not implemented

14 MYC, FGFR1 and CCND1 amplifications

MYC-Gene: chr8: 128748884, CNV: 18.8

everolimus implementedFGFR1-Gene: chr8: 38271444, CNV: 20.13

CCND1-Gene: chr11: 69456941, CNV: 38.33

15
BRCA1 mutation;
AR amplification

BRCA1 (external analysis)AR-Gene: chrX: 66776185, CNV: 7.87
1. trial (NCT01945775)
2. trial (NCT02163694)
3. bicalutamide/tamoxifen

not implemented

16 PIK3CA mutation PIK3CA-Gene: Exon21, chr3: 178952074, c. 3129G > A (NM_006218.2), p.Met1043Ile
1. SOLAR-1 trial
2. IPATunity130 trial
3. everolimus

not implemented

17
AKT2 amplification;

SF3B1 mutation

AKT2-Gene: 19q13.2, chr19: 40739755, CNV: 5.44
everolimus + hormone therapy not implemented

SF3B1-Gene: chr2: 198266834, Exon 15, c.2098A > G (NM_012433.3), p.Lys700Glu

18
PIK3CA mutation;
MET amplification

PIK3CA-Gene: chr3: 178952085, Exon 21, c. 3140A > G (NM_006218.3), p.His1047Arg
crizotinib not implemented

MET-Gene: 7q31.2, chr7: 116339592, CNV: 4.61

19 FGFR1 amplification FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 9.6 1. pazopanib
2. MASTER trial

not implemented

20 ESR1 and PALB2 mutations;
ESR1-CCDC170 fusion

ESR1-Gene: chr6: 152419923, Exon 9, c.1610A > C (NM_001122740.1), p.Tyr537Ser
1. platin-based chemotherapy
2. olaparib

not implementedPALB2-Gene: chr16: 23641065, Exon 5, c.2409_2410insAC (NM_024675.3), p.Ser804fs

ESR1-CCDC170 fusion: chr6: 151894309, t(6;6) (q25;q25), ESR1(Ex2)-CCDC170(Ex6)

21
FGFR1 and MYC amplifications;

TP53 mutation

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 19.83
1. FGFR1 inhibitor
2. mTOR inhibitor

not implementedMYC-Gene: 8q24.21, chr8: 128748724, CNV: 12.17

TP53-Gene: chr17: 7578500, Exon 5, c.423_432delinsCA (NM_00546.5), p.Pro 142fs

22 ERBB2 amplification ERBB2-Gene: chr17: 37868125, CNV: 24.98
lapatinib, trastuzumab emtansine

and pertuzumab
not implemented

23 ARID1A and PIK3CA mutations
ARID1A-Gene: chr1: 27023060, Exon 1, c.166C > T (NM_006015.5), p.Gln56Ter

everolimus implemented
PIK3CA-Gene: chr3: 178936091, Exon 10, c.1633G > A (NM_006218.3), p.Glu545Lys

24 ESR1 mutation ESR1-Gene: chr6: 152419926, Exon 9, c.1613A > G (NM_001122740.1), p.Asp538Gly fulvestrant + everolimus not implemented
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# Alteration Found Treatment Recommendation Follow-Up

25
FGFR1, CCND1, FGF19 and IGF1R

amplifications; ATM mutation

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 10.33

mTOR inhibitor implemented

CCND1-Gene: 11q13.3, chr11: 69455972, CNV: 7.54

FGF19-Gene: 11q13.3, chr11: 69513954, CNV: 7.95

IGF1R-Gene: 15q26.3, chr15: 99192814, CNV: 27.06

ATM-Gene: chr11: 108190701, Exon 44, c.6370_6371insT (NM_000051.3), p. Tyr2124fs

26
TP53 mutation; FGFR1, CCND1, FGF19

und FGF3 amplifications

TP53-Gene: chr17: 7577121, Exon 8, c.817C > T (NM_000546.5), p.Arg273Cys

FGFR1 inhibitor not implemented

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 20.63

CCND1-Gene: 11q13.3, chr11: 69455972, CNV: 8.37

FGF19-Gene: 11q13.3, chr11: 69513954, 1 CNV: 0.93

FGF3-Gene: 11q13.3, chr11: 69624976, CNV: 15.77

27 PIK3CA, ERBB2, CDKN2A mutations

PIK3CA-Gene: chr3:178936091, Exon 10, c.1633G > A (NM_006218.3), p.Glu545Lys
1. TDM1 + alpelisib
2. neratinib
3. CDK4/6 inhibitor
4. everolimus; in combination

with trastuzumab

not implementedERBB2-Gene: chr17: 37880219, Exon 19, c.2264T > C (NM_004448.3), p.Leu755Ser

CDKN2A-Gene: chr9:21974748, Exon 1, c.79G > T (NM_001195132.1, p.Glu27Ter

28 TPM3(7)-NTRK1(10) fusion TPM3(7)-NTRK1(10)-Gene: Exon 7 (I), chr1: 154142875-chr1: 156844362 trial (NCT02568267) not implemented

29 MET mutation MET-Gene: Exon 2, chr7: 116411990, c.3029C > T (NM_001127500.1), p.Thr1010Ile cabozantinib not implemented

30 KRAS and PIK3CA mutations

KRAS-Gene: chr12: 25398284, Exon 2, c.34G > C (NM_033360.3), p.Gly12Arg
peg-Doxorubicin/bevacizumab und

temsirolimus/everolimus
not implementedPIK3CA-Gene: chr3: 178936082, Exon 10, c.1624G > A (NM_006218.3), p.Glu542Lys

PIK3CA-Gene: chr3: 178938934, Exon 14, c.2176G > A (NM_006218.3), p.Glu726Lys

31 AR and PIK3CA mutations
AR-Gene: chrX: 66941751, Exon 6, c.2395C > G (NM_000044.3), p.Gln799Glu

everolimus not implemented
PIK3CA-Gene: chr3: 178936091, Exon 10, c.1633G > A (NM_006218.3), p.Glu545Lys

32
MET, CCND1, FGF19, FGF3

amplifications

MET-Gene: 7q31.2, chr7: 116339592, CNV: 4.66

FGF1 inhibitor implemented
CCND1-Gene: 11q13.3, chr11: 69455972, CNV: 20.87

FGF19-Gene: 11q13.3, chr11: 69513954, CNV: 18.61

FGF3-Gene: 11q13.3, chr11: 69624976, CNV: 18.49

33
FGFR1, CCND1, EGFR, PIK3CA und

PDGFRA amplifications
External analysis pazopanib not implemented

34 PIK3CA mutation; ERBB2 amplification External analysis
1. HER2 inhibitor
2. HER2 inhibitor + neratinib
3. PIK3CA inhibitor

not implemented
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35
ERBB2 mutation; CCNE1, AKT2, ERBB2

amplifications

ERBB2-Gene: chr17: 37868208, Exon 8, c.929C > A (NM_004448.3), p.Ser310Tyr

trastuzumab + lapatinib implemented
CCNE1-Gene: 19q12, chr19: 30303882, CNV: 5.51

AKT2-Gene: 19q13.2, chr19: 40739755, CNV: 6.09

ERBB2-Gene: 17q12, chr17: 37868168, CNV: 8.46

36 ESR1 and PIK3CA mutations
ESR1-Gene: chr6: 152419922, Exon 9, c.1609T > A (NM_001122740.1), p.Tyr537Asn 1. trial (NCT03056755)

2. everolimus
not implemented

PIK3CA-Gene: chr3: 178936091, Exon 10, c.1633G > A (NM_006218.3), p.Glu545Lys

37
p16 high expression and MYC

amplification
MYC-Gene: chr8: 128748884, CNV: 5.61 checkpoint inhibitors implemented

38 AKT3 amplification and TP53 mutation
AKT3-Gene: 1q43q44, chr1: 243662992, CNV: 6.04

MASTER trial not implemented
TP53-Gene: chr17: 7578189, Exon 6, c.660T > A (NM_000546.5), p.Tyr220Ter

39 AR amplification AR-Gene: chrX: 66776185, CNV: 7.65 AR inhibitors not implemented

40 AKT1 mutation AKT1-Gene: chr14: 105246551, Exon 3, c.49G > A (NM_001014431.1), p.Glu17Lys

1. AKT inhibitors
2. IPATunity130 trial

(NCT03337724)
3. everolimus

not implemented

41
SLX4 mutation; FGFR1, CCND1, FGF19,

FGFR3 amplifications

SLX4-Gene: chr16: 3640038, Exon 12, c.3601C > T (NM_032444.3), p.Gln1201Ter

pazopanib implemented

FGFR1-Gene: 8p11.23, chr8: 38271114, CNV: 15.4

CCND1-Gene: 11q13.3, chr11: 69455972, CNV: 5.83

FGF19-Gene: 11q13.3, chr11: 69513954, CNV: 6.01

FGF3-Gene: 11q13.3, chr11: 69624976, CNV: 6.05

42 ESR1 mutation
ESR1-Gene: Exon 9, chr6: 152419919, c.1606_1608delCTCinsAAA (NM_001122740.1),

p.Leu536Lys
fulvestrant + CDK4/6 inhibitors not implemented

43 CCND1 and FGF19 amplifications; AKT1
mutation

CCND1-Gene: 11q13.3, chr11: 69455972, CNV: 9.13 1. IPATunity130 trial
(NCT03337724)

2. mTOR inhibitor
not implementedFGF19-Gene: 11q13.3, chr11: 69513954, CNV: 9.99

AKT1-Gene: chr14:105246551, Exon 3, c.49G > A (NM_001014431.1), p.Glu17Lys

44 PIK3CA and TP53 mutations
PIK3CA-Gene: chr3: 178952085, Exon 21, c.3140A > G (NM_006218.3), p.HIS1047Arg

alpelisib implemented
TP53-Gene: chr17: 7577538, Exon 7, c.743G > A (NM_000546.5), p.Arg248Gln
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45 CCND1 and FGFR1 amplifications External analysis
1. everolimus + hormone

therapy
2. dovitinib

not implemented

46 PIK3CA and ERBB2 mutations; ERBB2
high expression

PIK3CA-Gene: chr3: 178927980, Exon 8, c.1258T > C (NM_006218.3), p.Cys420Arg 1. dual HER2 inhibitors
2. Neratinib

implemented
ERBB2-Gene: chr17: 37881000, Exon 20, c.2329G > T (NM_004448.3), p.Val777Leu

47 FGFR1 amplification FGFR1-Gene: 8p11.23p11.22, chr8: 38271444, CNV: 6.61 everolimus + hormone therapy implemented

48 CCND1 amplification CCND1-Gene: 11q13.3, chr11: 69456942, CNV: 5.48 exemestane + everolimus not implemented

49 CCND1 and FGFR1 amplifications
CCND1-Gene: 11q13.3, chr11: 69456941, CNV: 20.18 1. exemestane + everolimus

2. trial (NCT03517956)
implemented

FGFR1-Gene: 8p11.23p11.22, chr8: 38271444, CNV: 28.5
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