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This paper has two aims. First, we investigate how often people make choices
conforming to Bayes’ rule when natural sampling is applied. Second, we show that
using Bayes’ rule is not necessary to make choices satisfying Bayes’ rule. Simpler
methods, even fallacious heuristics, might prescribe correct choices reasonably often
under specific circumstances. We considered elementary situations with binary sets of
hypotheses and data. We adopted an ecological approach and prepared two-stage
computer tasks resembling natural sampling. Probabilistic relations were inferred from
a set of pictures, followed by a choice which was made to maximize the chance of
a preferred outcome. Use of Bayes’ rule was deduced indirectly from choices. Study
1 used a stratified sample of N = 60 participants equally distributed with regard
to gender and type of education (humanities vs. pure sciences). Choices satisfying
Bayes’ rule were dominant. To investigate ways of making choices more directly, we
replicated Study 1, adding a task with a verbal report. In Study 2 (N = 76) choices
conforming to Bayes’ rule dominated again. However, the verbal reports revealed use
of a new, non-inverse rule, which always renders correct choices, but is easier than
Bayes’ rule to apply. It does not require inversion of conditions [transforming P(H) and
P(D|H) into P(H|D)] when computing chances. Study 3 examined the efficiency of three
fallacious heuristics (pre-Bayesian, representativeness, and evidence-only) in producing
choices concordant with Bayes’ rule. Computer-simulated scenarios revealed that the
heuristics produced correct choices reasonably often under specific base rates and
likelihood ratios. Summing up we conclude that natural sampling results in most choices
conforming to Bayes’ rule. However, people tend to replace Bayes’ rule with simpler
methods, and even use of fallacious heuristics may be satisfactorily efficient.

Keywords: Bayes’ rule, choices, binary hypothesis, heuristics, natural sampling, ecological rationality,
non-inverse rule
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Introduction

This paper aims to investigate whether people conform to Bayes’
rule when making choices in probabilistic situations, or whether
they tend to simplify their reasoning by using other methods.
To develop an understanding of what a Bayesian problem is,
consider the following example:

The red nose problem (Zhu and Gigerenzer, 2006, p. 289).
Pingping goes to a small village to ask for directions. In this

village, 10 out of every 100 people will lie. Of the 10 people who
lie, eight have a red nose. Of the remaining 90 people who do
not lie, nine also have a red nose. Imagine that Pingping meets a
group of people in the village with a red nose. Howmany of these
people will lie?

The red nose problem illustrates an elementary situation,
which is defined with binary sets of hypotheses (H and not-H)
and data (D and not-D). A person can lie or not and have a
red or non-red nose. There can be several hypotheses and data
sets, but discussing such situations is beyond scope of the present
article. According to Bayes’ rule, an estimate of the posterior
probability of a distinct hypothesis should be computed using the
observations provided and the prior probability of the hypothesis.
In the example, the goal is to compute the posterior probability of
being a liar given that a person has a red nose. We denote it with
P(H|D) and compute it with the formula:

P(H|D) = P
(
H and D

)
/ P(D) = (1)

P(H)P(D|H) / [ P(H)P(D|H) + P(not-H) P(D|not-H)]

To perform the calculation we need to know the base
rate P(H), which is the chance of a person being a liar,
P(H) = 10/100 = 10%. Thus, the chance of being a non-
liar, P(not-H) is 90%. This should be updated with new data,
conditional probabilities P(D|H) and P(D|not-H). Hence, there
are P(D|H) = 8/10 = 80% of people with a red nose among
liars, and P(D|not-H) = 9/90 = 10% among non-liars (people
who have a red nose when they tell the truth). This enables
computation of whether a person with a red nose will lie:

P(H|D) = 10% × 80% / [10% × 80% +
90% × 10%] = 47%

The conclusion is that those with a red nose will lie with a 47%
probability.

Bayesian estimates are counter-intuitive and people are
usually surprised by the discrepancy among a base rate (10% in
the above example), likelihood ratio (80%), and actual Bayesian
probability (47%). Similar discrepancies occur in such well-
known cases as the taxi cab problem (Tversky and Kahneman,
1982) and the mammography problem (Eddy, 1982). In the taxi
cab problem, given a witness’s evidence that a cab was blue, the
probability that the cab was actually blue is 41%. This Bayesian
result differs from – specified in the case – the base rate of
15% and the likelihood ratio of proper color identification which
equals 80%. In the mammography problem, while the base rate of
breast cancer is 1% and the likelihood ratios are 80% for a positive

test and 9.6% for a false alarm, the actual Bayesian probability is
7.8%.

Numerous studies show that people have difficulty in finding
solutions for Bayesian problems. Subjects acquainted with
new evidence are conservative and underestimate posterior
chances (Phillips and Edwards, 1966; Edwards, 1968). They
also demonstrate the base rate fallacy, neglecting P(H), and the
inverse fallacy, confusing likelihood ratios P(D|H) with Bayesian
estimates P(H|D) (Koehler, 1996; Villejoubert andMandel, 2002).
Systematic ignorance of prior probabilities and overuse of the
representativeness heuristic have led to the conclusion that
people are not Bayesians (Kahneman and Tversky, 1972, 1973;
Tversky and Kahneman, 1982).

Misapprehension of the probabilities may lead to inadequate
decisions and entail severe consequences. Gigerenzer et al.
(1998) reported the case of seven out of 22 blood donors
who committed suicide after they were shown to be HIV-
positive by the ELISA and Western Blot tests, which had
a 100% detection efficiency. It transpired that the actual
Bayesian probabilities were around 50%. The authors concluded
that there is a need to develop tools for understanding and
appropriately communicating risks in AIDS counseling centers.
Such problems occur not only in the domain of medical diagnosis
but in other domains where probabilistic evaluations depend
on both prior distributions and newly obtained information
(e.g., in management, law and intelligence analysis – see
Nance and Morris, 2005; Hoffrage et al., 2015; Mandel, 2015).
A vast amount of research was focused on pedagogical issues
surrounding Bayesian inference. Methods were elaborated to aid
the understanding of Bayes’ rule and facilitate communication
of risk appropriately. These used visual representations such
as Venn diagrams, trees, pictorial representations, or frequency
grids (Mellers and McGraw, 1999; Yamagishi, 2003; Brase,
2008; Mandel, 2014; Navarrete et al., 2014; Sirota et al.,
2014).

Bayesian reasoning issues have been of particular interest
to evolutionary psychologists, who have proposed an ecological
rationality framework for research (Gigerenzer and Hoffrage,
1995; Cosmides and Tooby, 1996; Brase et al., 1998). According
to this approach, people are not evolutionarily prepared for
performing abstract computations. In particular, the concept
of probability is an ecologically invalid notion. The calculus
of probability is a relatively recent discovery in humankind’s
history, and the human mind having evolved to maintain
information in the form of absolute numbers. Such numbers
are termed natural frequencies and the process of gathering
information on natural frequencies through real life experience
is termed natural sampling (Kleiter, 1994; Gigerenzer and
Hoffrage, 1995; Gigerenzer, 1998). Because humans have
collected information in the form of natural frequencies
throughout evolution, such representations facilitate correct
Bayesian reasoning (Cosmides and Tooby, 1996; Sedlmeier and
Gigerenzer, 2001).

For example, the natural frequencies in the red nose problem
are:

• The total number of village inhabitants, a = 100,
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• Numbers of liars, b = 10,
• Non-liars, c = 90,
• People with a red nose among liars, d = 8,
• Liars with no red nose, e = 2,
• Non-liars with a red nose, f = 9,
• Non-liars with no red nose, g = 81.

Studies by Zhu and Gigerenzer (2006) showed that even
children can give appropriate answers to Bayesian problems if
they are presented with natural frequencies. The frequencies
simplify computations because posterior probabilities can be
estimated as:

P(H|D) = d/[ d + f ]

To compute whether a person with a red nose will lie it is
sufficient to calculate:

P(H|D) = 8/(8 + 9) = 47%

The evolutionary approach has been criticized for being
difficult to falsify (Girotto and Gonzalez, 2001). While people
deal with natural formats better than with probabilities, this does
not necessarily mean that this ability has developed through
natural selection or adaptation. One cannot simply rely on
previous experience to perform successfully in a novel or complex
environment. Frequencies help visualize nested sets and relations,
and thereby facilitate solution of Bayesian problems, but this
does not necessarily result from Bayesian inference (Sloman
et al., 2003). Solving probabilistic problems requires also the
comprehension of elementary logic, set operations and relations
(Barbey and Sloman, 2007). For instance in Girotto and Gonzalez
(2001) studies subjects performed better when subset relations
were activated.

We agree that the evolutionary approach is not convincing in
its explanation of how reasoning developed, and the issue of how
the ability to collect and process natural frequencies developed in
humans is debatable. However, there is agreement that natural
frequencies are easier to process and that people learn about
statistical relationships from natural sampling in real life. Hence,
the ecological framework seems to be valid at least in that:

(1) Statistical information is gathered via natural sampling,
(2) The environment defines objectives and supplies means to

achieve them, and
(3) Human rationality is ecological.

Nevertheless, these propositions lead us to conclude that single
probability judgments do not provide sufficient information for
attaining goals in situations such as the red nose problem, where
choices are placed before people in fact. In the original story
(Zhu and Gigerenzer, 2006), Pingping’s goal is to obtain the
right directions to continue his journey, and he is expected to
assess the chance of being cheated by people with a red nose.
However, exploring the truthfulness of people with red noses
only is not enough: Pingping has to decide whether to ask for
directions someone with a red nose or refrain from this and ask
a person without a red nose, actually. ‘Having no red nose’ is also

a clue with some ecological validity. Thus, we propose a modified
question in the red nose problem:

Should Pingping ask a person with a red nose for directions,
or find a person who does not have a red nose?

What works for evaluating the truthfulness of people with red
noses will also work for evaluating the truthfulness of people
without red noses. To answer the question, Pingping should
calculate the proportion of liars among both people with red-
noses and people without red noses, applying Bayes’ rule twice:

• P(H|D) = d/(d + f ) = 8/(8 + 9) = 47%
• P(H|not-D) = e/(e+ g) = 2/(2 + 81) = 2%

Having compared these chances, Pingping should conclude
that he takes a far greater risk of being lied to when he asks
someone with a red nose and conclude that it is better to find
someone without a red nose.

Reconsidering the red nose problem in such a way shows that,
to solve such problems, estimates referring to all the options are
needed. This is in the line with probabilistic functionalism, which
proposes that people do not evaluate probabilities for their own
sake, but to achieve specific goals. People infer missing data from
probabilistic indicators to reduce incompleteness and uncertainty
in their knowledge (Brunswik, 1943; Dhami et al., 2004; Pleskac
and Hertwig, 2014).

There is common agreement that natural sampling may
facilitate correct Bayesian reasoning. People acquire knowledge
about probabilities from their own experience rather than
compiled frequency statistics (Gigerenzer, 1998). Surprisingly,
natural sampling is not reflected in most experiments, where
participants are provided with well-prepared and well-arranged
natural frequencies or probabilities (Kleiter, 1994; Girotto and
Gonzalez, 2001). We postulate that experiments should attempt
to approximate the experiential aspect of natural sampling.
However, such experiments should not give clues to participants
about processing data at the same time. An understanding of
conditions in general is a crucial step in solving a Bayesian
problem. After realizing that the inferential process should be
narrowed to a given condition (the first step in Eq. 1), one should
invert one’s thinking about conditions from D|H into H|D (the
second part of Eq. 1). Framing tasks with natural frequencies
(“Imagine that Pingping meets a group of people in the village
with red noses. How many of these people will lie? __ out of __,”
as originally in Zhu and Gigerenzer, 2006, p. 289) is suggestive
and entails scaffolding the answers. The group characterized by
data D is identified directly (“these people”) and the subsequent
question suggests narrowing thinking to this set (“__ out of __”).
A person has no need to perform the first step on their own in
tasks framed this way, and the clue about how to answer helps
people to avoid comitting the inverse fallacy. Hence, we postulate
that research techniques should reflect natural sampling, but in
a way that gives no clues to participants about how to process
probabilistic information.

In our studies, we mimic the process of natural sampling and
present participants with actual events instead of probabilities or
frequencies. We anticipate that participants should have learned
these from their own experience and that they should make
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choices based upon them. This approach reflects a paradigm
in which decisions based upon participants’ own experience are
explored, as proposed by Hertwig et al. (2004) and continued
by their followers (for a review, see Hertwig and Erev, 2009;
Rakow and Newell, 2010). As these researchers argue, people
make everyday decisions, such as backing-up a hard drive or
crossing a busy street, by relying on the recall of events that
they have previously experienced, not based upon descriptions of
outcomes or likelihoods (Hertwig et al., 2004). Everyday decisions
or choices rarely need to be articulated in exact numbers and
the outcome of one’s inference is usually expressed in his actions
or choices, not in estimates of probabilities. Therefore, it should
be easier for people to deal with Bayesian problems by choosing
between two alternatives (differing with respect to a posteriori
probabilities of success) rather than giving exact numbers. Hence
the first question regarding choices in elementary situations that
we aim to answer is:

[Q1] How often do people make choices satisfying Bayes’
rule, when probability information is gathered through natural
sampling?

In answering Q1, one can expect that [H] choices will conform
to Bayes’ rule in natural sampling settings:

[Ha] in most of the tasks (a strong criterion) or
[Hb] more frequently than at random (a weak criterion).
On the one hand, people tend to maximize their performance.

It should also be easier for people to articulate a solution
by choosing between two alternatives, rather than articulating
exact numbers. Hence, their choices should comply with
Bayesian rule (Ha). On the other hand, using the rule is
cognitively costly, so it may often be ignored or replaced
with heuristics or other methods. For instance, comparing
fractions may turn out to be just as hard as comparing
probabilities or percentages (Kleiter, 1994; Gigerenzer and
Hoffrage, 1995; Gigerenzer, 1998). Even if fractions are estimated
properly, computational complexity increases with the necessity
of performing two correct Bayesian evaluations and performing
a correct comparison of them when making choices. We
therefore also formulated a weaker expectation that the choices
would comply with Bayes’ rule more frequently than other
methods (Hb).

To answer question Q1, we created experiments that reflected
natural sampling, with the intention of showing how often people
make choices satisfying Bayes’ rule (Studies 1 and 2).

Using Bayes’ rule requires cognitive effort and only pays-
off when one can make significantly better decisions. Cognitive
limitations and the avoidance of effort make people turn to
the use of fallacious heuristics, which are popular because they
are frugal and still roughly correct (Gigerenzer et al., 1999;
Gigerenzer, 2004, 2008). As Simon (1955, 1956) hypothesized,
people select strategies that meet minimal standards and
aspirations. Ecological rationality postulates that calculations do
not have to be correct, however, they should be correct reasonably
often (Gigerenzer, 2004; Over, 2004). As Gigerenzer (2008, p. 25)
further explained, “The goal of an organism is not to follow logic,
but to pursue objectives in its environment, such as establishing
alliances, finding a mate, and protecting offspring. Logic may or
may not be of help. The rationality of the adaptive toolbox is not

logical, but ecological; it is defined by correspondence rather than
coherence.”

Summing up, the interesting issue is whether heuristics can
prescribe correct answers satisfactorily often, given some specific
circumstances. Thus, we raise the question:

[Q2] How often do fallacious heuristics yield choices that
conform to Bayes’ rule?

Zhu and Gigerenzer (2006) observed that, instead of Bayes’
rule, people use the following fallacious heuristics (following
these authors, we apply the term “cognitive strategies” or in short
“strategies” describing them and Bayes’ rule):

• the conservatism strategy: b/a,
• the evidence-only strategy: (d + f )/a,
• the representativeness strategy: d/b,
• the pre-Bayesian strategy: b/(d + f ).

By analogy, people may apply these cognitive strategies to
simplify their choices in elementary situations through the
following comparisons:

• the evidence-only strategy: comparing (d + f )/a with
(e + g)/a,

• the representativeness strategy: d/b with e/b,
• the pre-Bayesian strategy: b/(d + f ) with b/(e + g), and
• the conservatism strategy: b/a with c/a.

In the red nose problem, the Bayes’ rule, the representativeness
strategy (d/b = 8/10 > e/b = 2/10) and the pre-Bayesian strategy
[10/(8 + 9) > 10/(2 + 81)] would result in a decision not to ask
a person with a red nose. Only the evidence-only strategy would
render a different conclusion [(8 + 9)/100 < (2 + 81)/100].

To answer question Q2 we investigated how often fallacious
strategies (representativeness, pre-Bayes, and evidence-only)
prescribe the same choices as Bayes’ rule by carrying out
computer simulations of natural frequencies (Study 3).

Study 1

The goal of Study 1 was to answer Q1: how often do choices
conform to Bayes’ rule in elementary situations?

Materials and Methods
We used a computer program with a sequence of 16 simulation
tasks, which we called “adventures.” Introductory instructions
were as follows: “The study you will be taking part in is aimed
at finding out how people find precious objects. You will be
presented with 16 opportunities to acquire precious objects:
diamonds and amber. Each of the 16 adventures consists of two
stages. The initial phase should familiarize you with the area. The
second part requires you to identify where the gem is hidden.
Each adventure is independent and concerns treasures in the
form of diamonds or amber. The next screen will reveal the first
phase of adventure number one. You will be presented with seven
cards. On the face of each card you will find a diamond (a piece
of amber) or a stone (a piece of broken glass). Clicking the card
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FIGURE 1 | The computer task: the learning stage – (A) before, (B) during, and (C) after turning over the cards.

will turn it over and reveal a color: green or yellow. Your task
is to click on, i.e., turn over, all the cards to reveal colors on the
back of the diamonds and stones. In the second stage, you should
select the card with the color that has a diamond or a piece of
amber underneath. You will take part in 16 such adventures.”
Subsequently, participants were asked if they understood the
instructions. If so, they proceeded to perform the 16 tasks. Half
of the adventures contained diamonds and stones, the other half,
amber and glass, respectively. (For clarity, henceforth we only
describe the method referring to diamonds and stones.)

Each adventure consisted of two stages.
The first stage was the learning stage, which was a simulation

of natural sampling and was intended to develop intuition about
Bayesian relationships. A participant was presented with seven
cards showing valuable objects or worthless items on their faces
(Figure 1A). The participant was instructed to turn over all of the
cards in order to reveal the colors on their backs (Figures 1B,C).
The person was to remember the colors associated with diamonds
and stones, which would help them to acquire a diamond in the
next step. Yellow and green colors were used for the back of
the cards because these colors have relatively neutral emotional
connotations (Karp and Karp, 1988).

In probability terms, a participant could learn:

• Prior occurrences of diamonds [b/(b + c)] and stones
[c/(b + c)];

• Likelihood ratios for the backs of diamonds: green
[d/(d + e)], yellow [e/(d + e)];

• Likelihood ratios for the backs of stones: green [f /(f + g)],
yellow [g/(f + g)];

• Bayesian estimates of revealing a diamond for backs: green
[d/(d + f )], yellow [e/(e + g)].

In the second stage of the adventure, participants chose
between two differently colored cards (Figure 2). They received
the following instructions: “Now you have a chance to find a
diamond. There are two fields shown below, green, and yellow.
One of them contains a desired diamond. Given what you have

just learned, which color would you choose? Please select one
card.”

Choices satisfy Bayes’ rule, when they are consistent with
comparisons of the two Bayesian estimates shown above. We
considered four strategies: Bayesian, pre-Bayesian, evidence-only
and representativeness (Zhu and Gigerenzer, 2006). One binary
choice would not allow us to discern between all the four
strategies, as it has two alternatives only: two or more strategies
could result in the same choice. Hence, strategies were inferred
from pairs of adjacent adventures. To detect strategy use, we
looked at eight pairs of adjacent adventures: 1 and 2, 3 and 4, 5
and 6, etc., up to 15 and 16. The second (even-numbered) task in
a pair was determined by the first choice so as to allow distinct
identification of the strategies used. For example, let us consider
the first adventure, specified as (d, e, f, g)= (2, 1, 3, 1). This means
that we have the following cards: green-diamond (2), yellow-
diamond (1), green-stone (3), yellow-stone (1). If a person used
representative or evidence-only strategies they would select a
green card. If they took a Bayesian or pre-Bayesian approach they
would choose yellow. Suppose that a participant selected a yellow
card in the first task. The second task in the pair was then specially
matched to distinguish between use of a Bayesian or pre-Bayesian
strategy. For example, it could take the form of a task specified as
(d, e, f, g) = (1, 2, 2, 2). If the participant chose a yellow card here,
it was concluded that they used a Bayesian strategy. Similarly,
other strategies were identified through matching the second task
to the choice that was made in the first task in a pair. We used
the following patterns of frequencies (d, e, f, g): P1 = (2,1,3,1),
P2 = (1,2,1,3), P3 = (2,1,2,2), P4 = (2,1,1,3), P5 = (1,2,3,1),
and P6 = (3,1,2,1). These served to construct the eight pairs of
adventures as follows: pair I (P1 and: P3 when a yellow card was
chosen in adventure P1 or P4 when a green card was chosen in
P1), pair II (P1 and: P3 or P5), pair III (P1 and: P6 or P4), pair
IV (P1 and: P6 or P5), pair V (P2 and: P3 or P4), pair VI (P2
and: P3 or P5), pair VII (P2 and: P6 or P4), and pair VIII (P2
and: P6 or P5). The program randomized the pairs and the on
screen allocation of precious and invaluable items on different
backgrounds. The content of adventures was also randomized
and these consisted of one of the following two stimulus sets: (1)
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FIGURE 2 | The computer task: the color choice stage.

diamonds vs. stones in adventures 1–4 and 9–12, and ambers vs.
pieces of glass in adventures 5-8 and 13–16, or (2) diamonds vs.
stones in adventures 5–8 and 13–16, and ambers vs. pieces of glass
in adventures 1–4 and 9–12.

Because we were looking for consistent application of the four
strategies in eight pairs, scores for making choices conforming
to Bayes’ rule or other strategies ranged from 0 to 8, summing
to 8. We assumed that participants used a strategy consistently
and that any deviations from this strategy were accidental.
However, it was possible that people might have applied different
methods when solving different tasks (because of different task
contents, practice, cognitive load, etc.). To provoke use of
the same way of thinking in all of the tasks, we provided
no feedback during testing so that participants would not
learn from practice. Thus, we did not suggest to participants
which data they should take into consideration. All tasks were
homogeneous in terms of content, format, and difficulty. To
minimize cognitive load we limited the learning phase to clicking
on seven pictures only and required every adventure to be
solved separately. We asked participants to complete all of the

tasks at once to prevent any change in skills. We attributed all
inconsistencies in responses and strategies applied to random
noise and errors.

The Studies 1 and 2 experiments were approved by Scientific
Research Ethics Committee at the Faculty of Psychology,
University of Warsaw, and informed consent was obtained from
all subjects.

Participants and Procedure
A stratified sample of N = 60 students aged 20–35 (M = 24.58
years, SD = 3.16) volunteered for the study. Participants were
equally distributed with regard to gender and type of education
(humanities and pure sciences). Individual interviews took
place at the University of Warsaw and Warsaw University of
Technology. The study was presented as a computer game
involving gathering precious items. Completing all of the tasks
took about 15 min. Participation was anonymous and not
rewarded. At the end, participants were informed about their
scores.We then acquainted participants with the actual objectives
of the study.
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Results and Interpretation
Table 1 shows how often each strategy was applied.

Choices conforming to Bayes’ rule were more common than
they would be at random [M = 4.58, SD= 2.42, test value:μ = 2,
t(59) = 8.27, p < 0.001, d = 1.067; Scaled JZS Bayes Factor
B = 5.15 × 108, supporting μ > 2]. Therefore, the weak version
of the hypothesis (Hb) was supported. The Bayesian strategy was
dominant and was used in slightly more than half of the cases,
however, test statistics were non-significant [test value: μ = 4,
t(59) = 1.87, p = 0.067, d = 0.241, with a non-decisive Scaled
JZS B = 1.283]. Thus, the strong version of the hypothesis (Ha)
was not supported.

Participants’ choices conformed to Bayes’ rule in a majority
of cases (57%, M = 4.58 out of 8), showing that the strategy
was used more often than by chance. Furthermore, it was more
popular than all the other strategies taken together. The weak
hypothesis was supported, but the results involving the strong
hypothesis were marginally non-significant. However, the natural
sampling procedure demanded that participants computed and
compared natural frequencies. This makes natural sampling tasks
involving choices potentially more intellectually demanding than
pure natural frequency problems. One would therefore expect a
greater percentage of fallacious answers when natural sampling is
used.

While the adopted methodology resembled natural
sampling, it obscured the process of inference underlying
choices. A decision based on experience has four phases: (1)
gathering information (counting objects); (2) building a mental
representation (such as classes of objects and their proportions);
(3) processing of information using a choice mechanism
(comparison of estimates); (4) making a final selection. Only
information gathering and the final decision are external,

TABLE 1 | Strategies applied for Bayesian problems in Study 1.

Strategies Descriptive Statistics (N = 60)

Min Max M SD

Bayesian 0 8 4.58 2.42

Pre-Bayesian 0 4 0.82 1.13

Representativeness 0 7 2.15 2.07

Evidence-only 0 5 0.45 1.06

observable events (Camilleri and Newell, 2009). Therefore, as
our results might have appeared to be rather optimistic, we
decided to replicate Study 1 but asking participants how they
solved the problems in more detail.

Study 2: Replication of Study 1 with
Verbal Protocols

The goal of Study 2 was to replicate Study 1 so as to identify
strategies applied in Bayesian tasks more directly. We utilized a
process tracing method (Baron, 1994, pp. 19–24). The classical
process tracing approach specifies that participants should not
be requested to justify their decisions (Nisbett and Wilson, 1977;
Ericsson and Simon, 1980). However, participants should easily
explain their choices, since the contents of tasks included simple
notions, numbers, and computations.

Materials and Methods
Study 2 was intended to generate results comparable to those
from Study 1. The study used the same set of computer tasks as
Study 1. After completing the tasks, participants were asked to
solve an additional Bayesian exercise. This exercise reproduced
a computer task, but was conducted using paper cards. The
experimenter presented seven cards with diamonds and stones
on and then asked a participant to turn over the cards. After they
were all turned over, the cards were taken away and two cards
were presented: one yellow and one green. Before uncovering
one of them, the participant was asked about the method they
used to solve the exercise. The experimenter refrained from
providing any suggestions or clues as to how to perform the
task or make any computations. Thus, the method applied here
differed from the “write aloud” protocols used by Gigerenzer and
Hoffrage (1995). At the end of the procedure, the experimenter
classified the participant’s answer using the coding list presented
in Table 2. For example, where a participant compared the
natural frequencies of differently colored cards to their total
number the experimenter registered this as an evidence-only
strategy.

Participants and Procedure
A sample of N = 76 students aged 18–31 (M = 23.82 years,
SD = 2.17) volunteered for the study. Participants were equally
distributed into four cells (n = 19 each) with regard to gender

TABLE 2 | Coding strategies identified in verbal protocols on the paper task.

Verbal explanation Interpreted as using the strategy

Comparing relative or absolute frequencies of yellow and green diamonds: d/b vs. e/b or d vs. e Representativeness

Comparing relative or absolute frequencies of yellow and green cards: d + f vs. e + g or (d + f )/a
vs. (e + g)/a

Evidence-only

Comparing the relationship of the number of cards with diamonds to the number of cards with
defined colors: (d + e)/(d + f ) vs. (d + e)/(e + g)

Pre-Bayesian

Comparing empirical probabilities of cards with diamonds among yellow cards with empirical
probabilities of cards with diamonds among green cards: d/(d + f ) vs. e/(e + g)

Bayesian

Comparing numbers of cards with diamonds and stones: b vs. c Conservatism

Other explanations (mixed strategies, guessing, intuition, etc.) Mixed/guessing/other
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and type of education. We applied the same procedure as in
Study 1 but added the paper task. The experimenter presented the
computer-based tasks from Study 1, followed by the additional
exercise, individually to each participant.

Results
Bayesian and Other Strategies
The Bayesian strategy was applied significantly more often than
would occur randomly [test value:μ = 2, t(75) = 7.41, p < 0.001,
d = 0.850; Scaled JZS B = 6.33 × 107, supporting μ > 2 – see
Table 3]. This strategy again dominated, being utilized in more
than half of the cases. Nevertheless, the extent to which use of the
strategy exceeded half of the cases was non-significant [test value:
μ = 4, t(75) = 0.745, p > 0.10, d = 0.850, Scaled JZS B = 1.465
was not decisive]. Thus, again there was support for the weak
criterion (Hb), but the strong criterion (Ha) went unsupported.
Hence, Study 2 replicated the results of Study 1.

Verbal Protocol vs. Computer-Based Tasks
Participants’ verbal explanations revealed a new, quite frequently
used strategy (32% participants in the whole sample: 18 out of 33
who used the Bayesian strategy in computer tasks, and 8 out of 11
who used heuristics).

The new strategy is different from the strategies listed in
Table 2. This new strategy included comparing the number of
yellow (green) cards among diamonds with the yellow (green)
cards among stones. Using the notation we adopted, for yellow
this would be: d/(d + e) vs. f /(f + g), and for green: e/(d + e) vs.
g/(f + g). Using this strategy does not require inverse thinking
about conditions and computing P(H|D) when P(D|H) is given.
Intriguingly, this new strategy produces choices that are always
the same as choices based on using Bayes’ rule. Comparing
d/(d + e) with f /(f + g) is equivalent mathematically with
comparing d × (f + g) with f × (d + e), and subsequently:
(d × g + d × f ) with (e × f + d × f ); d × g with e × f ;
(d × g + d × e) with (e × f + d × e); d × (e + g) with
e × (d + f ), and finally d/(d + f ) with e/(e + g). This last
comparison represents the Bayesian strategy.

Most participants (57 out of 76, i.e., 75%) used consistently
algorithmic (Bayesian or the new strategy) or fallacious strategies
in both the computer and paper card tasks (Table 4).

Thirty-three out of 41 participants (80%), whose dominant
strategy was the Bayesian strategy in computer tasks, used the
Bayesian strategy or the non-inverse strategy in the paper tasks.
Twenty-four out of 35 (69%) used other strategies in both types of

TABLE 3 | Strategies applied for Bayesian problems in Study 2.

Strategies Descriptive statistics (N = 76)

Min Max M SD

Bayesian 0 8 4.22 2.62

Pre-Bayesian 0 4 0.96 1.08

Representativeness 0 8 2.34 2.24

Evidence-only 0 4 0.47 0.92

TABLE 4 | Dominant strategies in computer tasks vs. strategies used in
the paper task in Study 2.

Dominant strategies
in computer tasks

Verbal reports in the paper tasks Total

Bayesian or
the new strategy

Other
strategies

Bayesian strategy 33 (80%) 8 (20%) 41 (100%)

Other strategies 11 (31%) 24 (69%) 35 (100%)

Total 44 (58%) 32 (42%) 76 (100%)

tasks. Consistency in using dominant strategies in the computer-
based tasks and analogous strategies in paper excercises was
moderate [χ2(1, N = 76) = 18.64, p < 0.001, ϕ = 0.495].
Summing up, Study 2 confirmed the results of Study 1, showing
that most choices were consistent with Bayes’ rule. However, they
were the result of using of not only Bayes’ strategy, but also the
new, non-inverse strategy.

Study 3 (An Analytical Study)

The Bayesian strategy and the new non-inverse strategy identified
in Study 2 provide answers that are always correct in terms
of Bayes’ rule. However, people may compromise between the
effort and time needed to make consistently correct choices and
the practical convenience of making fast and frugal choices. In
this section, we investigate how often using fallacious strategies
(representativeness, evidence-only and pre-Bayesian strategies)
leads to the same choices as does using Bayes’ rule. We analyze
strategies with regard to (1) different frequencies expressing
decision-makers’ natural sampling experiences and (2) different
base rates, arbitrarily defined as rare [P(H) ≤ 0.25], frequent
[P(H) ≥ 0.75], and medium [0.25 < P(H) < 0.75].

Method
Let us start with an example. Consider an elementary situation
(d, e, f, g) = (4, 1, 1, 1), where d denotes number of cards with
a diamond on its face and a green back, e – diamond-yellow,
f – stone-green, and g – stone-yellow, respectively. Using the
Bayesian strategy, a person should choose a green card to reveal a
diamond, because: d/(d + f ) = 4/(4 + 1) > e/(e + g) = 1/(1 + 1).
The same answer would result from using the representativeness
strategy [d/b = 4/5 > e/b = 1/5], or the evidence-only strategy:
(d + f )/a = (4 + 1)/7 > (e + g)/a = (1 + 1)/7. The pre-Bayesian
strategy would render solutions greater than one for yellow cards,
(d + e)/(e + g) = (4 + 1)/(1 + 1) = 5/2. In such cases, when
the probability estimates exceed one, we consider the strategy
inapplicable.

We wanted to understand how often non-Bayesian strategies
return results as good as the correct, Bayesian strategy. We
generated all combinations of (d, e, f, g) for sampling volumes
d + e + f + g = a ranging from 5 to 50, for d, e, f, g > 0
(every combination of data and hypotheses was experienced
at least once). For example, Table 5 shows prescriptions for
a choice in all twenty possible elementary situations when
a = 7. Here, D1 means reversing a green card and D2 means
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TABLE 5 | Conformity of the heuristic strategies to Bayes’ strategy in choice prescription.

a d e f g Bayesian Representativeness Evidence-only Pre-Bayesian

Choice Choice Conformity Choice Conformity Choice Conformity

7 1 1 1 4 D1 Any No D2 No D1 Yes

7 1 1 2 3 D1 Any No D2 No D1 Yes

7 1 1 3 2 D2 Any No D1 No D2 Yes

7 1 1 4 1 D2 Any No D1 No D2 Yes

7 1 2 1 3 D1 D2 No D2 No n/a

7 1 2 2 2 D2 D2 Yes D2 Yes D1 No

7 1 2 3 1 D2 D2 Yes D1 No D2 Yes

7 1 3 1 2 D2 D2 Yes D2 Yes n/a

7 1 3 2 1 D2 D2 Yes D2 Yes n/a

7 1 4 1 1 D2 D2 Yes D2 Yes n/a

7 2 1 1 3 D1 D1 Yes D2 No D1 Yes

7 2 1 2 2 D1 D1 Yes D1 Yes D2 No

7 2 1 3 1 D2 D1 No D1 No n/a

7 2 2 1 2 D1 Any No D2 no n/a

7 2 2 2 1 D2 Any No D1 no n/a

7 2 3 1 1 D2 D2 Yes D2 Yes n/a

7 3 1 1 2 D1 D1 Yes D1 Yes n/a

7 3 1 2 1 D1 D1 Yes D1 Yes n/a

7 3 2 1 1 D1 D1 Yes D1 Yes n/a

7 4 1 1 1 D1 D1 Yes D1 Yes n/a

Conformity: 12/20 = 60% 10/20 = 50% 6/8 = 75%

reversing a yellow card. It turned out that if a was 7, then:
(1) the representativeness strategy conforms to Bayes’ rule
in 60% of situations; (2) evidence-only – in 50%; (3) pre-
Bayesian – in 75% (out of situations where the strategy is
applicable).

Results and Interpretation
The analysis showed that the higher the volume of sampling
a, the more stable is the percentage of elementary situations
in which using a given strategy leads to choices conforming
to Bayes rule (see Figure 3). The average number of Bayesian
solutions returned by a strategy is: (a) representativeness – 73%,
(b) evidence-only – 50%, (c) pre-Bayesian – 63%.

The representativeness strategy is effective for high base rates
and small natural sampling sizes (Figure 4). Specifically, when
a ≤ 11 and the base rate is b/a = (d + e)/(d + e + f + g) ≥ 0.75,
the representativeness strategy always produces choices
conforming to Bayes’ rule. If the base rate exceeds 0.75, the
representativeness strategy returns correct choices in no less
than 77.9% of cases. However, if the base rate is low (b/a ≤ 0.25),
even if the size is high (a > 11), choices conforming to Bayes’
rule are generated at a rate between 42.9% and 67.6%. In
contrast, at a low volume of sampling (a ≤ 11) and low base rate
(b/a ≤ 0.25) it produces optimal selections in only 20% or fewer
situations.

The evidence-only strategy returns choices conforming to
Bayes’ rule in 50% of cases at moderate base rates (Figure 5). If
the base rate (b/a) exceeds 0.75, the strategy produces correct
answers in 72.6% or more of cases. However, when the base

rate is lower than 0.25, it produces choices conforming to Bayes’
rule with a probability of 26.5% or less. We also noticed that if
a ≤ 11 and b/a ≥ 0.75 the evidence-only strategy is always right.
Conversely, for b/a ≤ 0.25 it renders correct answers in 20% or
fewer situations.

By definition, the pre-Bayesian strategy always gives opposite
answers to the evidence-only strategy (Figure 6) and, indeed,
we observed its diametrically opposite behavior for all size –
base rate combinations. A decision maker should understand that
probabilities do not exceed one, i.e., (d + e)/(d + f ) ≤ 1 and
(d + e)/(e + g) ≤ 1. This implies 2(d + e) ≤ (d + f + e + g),
2b ≤ a and b/a ≤ 0.5, and means that the strategy is not
applicable for base rates exceeding 1/2. With these assumptions,
the strategy renders choices conforming to Bayes’ rule with a
probability of 56.0% for medium base rates, and 72.6% for low
base rates.

Summing up, the representativeness and evidence-only
strategies return choices conforming to Bayes’ rule with very
high probabilities if base rates are high and the natural sampling
size is low. The pre-Bayesian strategy turned out to be far less
efficient.

Discussion

The first goal of our studies was to find out how often choices
in elementary situations satisfy Bayes’ rule, if probabilistic
information is acquired through natural sampling. Many studies
on Bayesian reasoning have expected that solitary probability
estimation should follow the rule. We extended this expectation
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FIGURE 3 | Natural sampling volume and percentage of elementary situations in which the strategies conform to Bayes’ rule in producing choices.

FIGURE 4 | Percentage of elementary situations in which the representativeness strategy produces choices consistent with Bayes’ rule at low,
medium and high base rates.

to choices, however, we did not require participants to evaluate
chances, we only asked them make choices.

Our studies confirmed that most choices satisfied Bayes’
rule. Overall, the results were consistent with studies in which
the application of natural frequency formats has improved the
proportion of Bayesian responses, varying in the range from 31

to 72% (as compared by Barbey and Sloman, 2007), or as high as
77% (in the group of adults investigated by Zhu and Gigerenzer,
2006). One could then conclude that natural sampling facilitates
Bayesian inference in elementary situations. Participants were
allowed to uncover cards at their own pace and using their own
sequences. They discovered connections between objects and
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FIGURE 5 | Percentage of elementary situations in which the evidence-only strategy produces choices consistent with Bayes’ rule at low, medium
and high base rates.

FIGURE 6 | Percentage of elementary situations in which the pre-Bayesian strategy produces choices consistent with Bayes’ rule at low and medium
base rates.

colors on their own terms. As we gave no suggestions about
how to solve the problems, participants could utilize their own
estimates or impressions. Moreover, participants operated on
cards at both stages of the task. This compatibility between
presented data and answer format could also have enhanced
performance (as concluded by Ayal and Beyth-Marom, 2014).

Because these results seemed rather optimistic with regard to
tasks’ complexity, so we decided to replicate the study adding
verbal protocols, which revealed the strategies usedmore directly.

Although Study 2 replicated the results of Study 1, it turned
out that a considerable number of correct choices resulted not
from using Bayes’ rule but from a new non-inverse strategy. This

Frontiers in Psychology | www.frontiersin.org 11 August 2015 | Volume 6 | Article 1194

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/
http://www.frontiersin.org/Psychology/archive


Domurat et al. Bayes’ rule and making choices

method always renders the same answers as the Bayesian strategy
in elementary situations and was therefore indistinguishable if
only choices were examined. The non-inverse strategy involves
computing likelihood ratios, P(D|H) and P(D|not-H), instead of
Bayesian posterior probabilities, P(H|D1) and P(H|D2). In other
words, the strategy focuses on a given datum (e.g., the green
back of a card) and determines whether it is more characteristic
for the hypothesis, H (e.g., a diamond), or for the alternative
hypothesis, not-H (a stone). Usually, sticking to likelihood
ratios or confusing them with posterior probabilities in Bayesian
problems is considered fallacious and is called “an inverse fallacy”
(Villejoubert and Mandel, 2002; Mandel, 2014). The confusion
of conditions is indeed erroneous, e.g., believing that if most
amber is found on yellow beaches then you can find amber
on a majority of yellow beaches. However, replacement of both
P(H|D1) and P(H|D2), with both P(D1|H) and P(D1|not-H), or
both P(D2|H) and P(D2|not-H) is not fallacious. Here, resulting
choices are always consistent with Bayes’ rule. The non-inverse
strategy is mathematically equivalent to the calculation of the
difference P(D|H)–P(D|not-H). This computation was observed
in studies by Gigerenzer and Hoffrage (1995), who named it
a likelihood subtraction method. These authors concluded that
users of this strategy neglect base rate information. However, this
might be true only when likelihood ratios are input data, as is the
case in typical Bayesian tasks. When natural sampling is applied,
as in our studies, people must consider base frequencies for
estimating likelihood ratios on their own. This finding supports
the proposition that learning from direct experience reduces
base-rate neglect (Koehler, 1996; Hertwig and Ortmann, 2001).

Study 3 showed that non-Bayesian, heuristic strategies
handled tasks quite well in elementary situations under certain
specific circumstances. At low base rates, the pre-Bayesian
strategy suggested choices that satisfy Bayes’ rule in most cases
at a low volume of natural sampling. The representativeness and
evidence-only strategies turned out to be successful under the
specific conditions of high base-rates of the distinct hypothesis
and low natural sampling sizes (few cards). These findings may
explain some difficulties and fallacious propensities in solving
Bayesian tasks described in the literature. What would happen,
for instance, in the taxi cab problem if, instead of asking
participants to give a probability that the taxi cab was blue, we
asked them for the probability that the taxi cab was green, given
that the witness claimed this to be the case? The findings of such
a study would not be very impressive. Fallacious strategies would
provide the same interpretation as Bayes’ rule, which would give
a 95.8% probability. A conservative strategy would return an
estimate of 85%, representativeness – 80%, evidence-only – 71%,
and pre-Bayesian – 83.5%. Any strategy would indicate that it was
most probably a green cab if a witness claimed it to be so. Thus,
it is not necessary to use Bayes’ rule to make a correct decision or
judgment based on probability magnitude.

We would like to emphasize that our findings are limited
to elementary situations only. Such a limited, local application
of strategies and heuristics is consistent with an ecological
view. Gigerenzer (1991) pointed out that it is crucial to take
into account the environment when one wants to evaluate
the approach applied. It is also in line with probabilistic

functionalism, which suggests that not using bookish methods
for their own sake, but using any methods for achieving goals in
the environment, drives human behavior (Pleskac and Hertwig,
2014). The tasks required the selection of green or yellow cards in
order to maximize the probability of receiving a diamond instead
of a stone.

A natural extension of our studies would be to investigate
larger natural sampling sizes and exercises involving more data
andmore hypotheses. In such a situation the non-inverse strategy
does not generalize and would be misleading. Also, heuristic
strategies would be likely to be far less efficient in such complex,
non-elementary situations.

We are quite pessimistic about humans’ ability to solve
such complex problems in a Bayesian way. First, people reveal
little interest in gathering complete information on probabilities
in naturalistic risky tasks (Huber et al., 1997; Tyszka and
Zaleśkiewicz, 2006). Second, if the sample size were increased,
working memory boundaries would be exceeded (Anderson,
2000). Longer sampling sequences would probably increase
computational complexity, decrease participants’ performance,
and provoke them to make more use of various heuristics. The
assumption that people use a given strategy consistently within a
set of tasks (or at least within pairs of tasks) is challenging and
difficult to maintain. This assumption was the main limitation of
our studies, but it was necessary to infer strategies from choices
indirectly. We tried to minimize the risk of participants using
various strategies by presenting only seven cards in a task with
homogeneous contents, and giving no feedback. On the one
hand, if the assumption is rejected, the problem remains as to how
to reveal thinking underlying choices directly, and – at the same
time – not to tell participants which chances should be evaluated
and how. On the other hand, the assumption is problematic
because factors such as skills, cognitive load, learning effects,
more differentiated contents, etc. would likely entail applying
different heuristics, particularly in more complex tasks.

In analyzing choices in elementary situations we adopted
a narrow definition of Bayesian inference as choices or
probability evaluations conforming to Bayes’ rule (similarly to
other psychological studies investigating Bayesian reasoning).
However, Bayesian inference might be understood as the general
process of using new information to revise evaluations of
likelihoods of events with known prior base rates (Brase and Hill,
2015). In particular, this describes Bayesian analysis of decision
problems incorporated in subjective expected utility theory
(SEUT, Savage, 1954; Giocoli, 2013; Karni, 2013). According to
this perspective, a Bayesian decision-maker’s subjective beliefs are
expressed with probabilities which are updated in line with Bayes
rule as new information is gathered. Hypothesized outcomes
(e.g., diamonds and stones in our studies) are characterized
by their utilities [e.g., U(H1), U(H2), U(H1) > U(H2)]. The
decision maker maximizes the subjective expected utility (SEU)
of choice options, combining the subjective probabilities and
utilities of outcomes. If the choices are made in elementary
situations, as in our studies, maximizing SEU reduces to
choosing the option characterized by the higher posterior chance
[SEU(D1) > SEU(D2) when P(H1|D1) × U(H1)+P(H2|D1) ×
U(H2) > P(H1|D2) × U(H1) + P(H2|D2) × U(H2)], and
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[P(H1|D1) – P(H1|D2)] × [U(H1) – U(H2)] > 0, and
subsequently [P(H1|D1) – P(H1|D2) > 0]. However, extending
the analysis of choice to more complex situations with
more than two hypothesized outcomes (e.g., diamonds,
stones, and graphite) entails incorporation of their utilities
into the analysis. Here, choice does not reduce to
comparing probabilities, and differences among utilities
influence the final choice, which is made by maximizing
SEU.

Summing up, people performed well in the Bayesian exercises
involving natural sampling in elementary situations in our
studies. However, correct Bayesian choices can result from
using non-Bayesian methods, such as the non-inverse strategy

identified in our studies. What is more, even fallacious
heuristics produce satisficing choices reasonably often under
specific circumstances. Hence, Bayesian inference turns out to
be unnecessary in making choices satisfying Bayes’ rule in
elementary situations.
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