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SUMMARY
Building a comprehensive topicmodel has become an important research tool in single-cell genomics.With a
topic model, we can decompose and ascertain distinctive cell topics shared across multiple cells, and the
gene programs implicated by each topic can later serve as a predictive model in translational studies.
Here, we present a Bayesian topic model that can uncover short-term RNA velocity patterns from a plethora
of spliced and unspliced single-cell RNA-sequencing (RNA-seq) counts. We showed that modeling both
types of RNA counts can improve robustness in statistical estimation and can reveal new aspects of dynamic
changes that can be missed in static analysis. We showcase that our modeling framework can be used to
identify statistically significant dynamic gene programs in pancreatic cancer data. Our results discovered
that seven dynamic gene programs (topics) are highly correlated with cancer prognosis and generally enrich
immune cell types and pathways.
INTRODUCTION

Single-cell RNA-sequencing (RNA-seq) technology has been

successfully applied to profile regulatory genomic changes in

studying many human disease mechanisms. Our capability to

measure single-cell-level mRNA molecules has dramatically

changed our research paradigm in genomics and translational

medicine. A typical single-cell study implicitly assumes observed

transcript levels as a static value, considering that every cell is

fixed at a particular state. Recently, researchers have developed

a complementary method to measure gene expression dy-

namics (the speed of splicing) by measuring the divergence of

the spliced counts from the unspliced in single-cell RNA-seq

(scRNA-seq) profiles.1 More precisely, having the two types of

mRNA counts, we can solve for ordinary differential equations

of transcriptional dynamics and estimate the splicing and

mRNA decay rate parameters. Several methods have extended

the original method pioneered by La Manno and co-workers.

Notably, the scVelomethod generalizes to recover gene-level or-

dinary differential equation (ODE) models, allowing each gene to

take independent timescales.2
Why is it difficult to estimate full-scale dynamics in
datasets with limited snapshots?
However, probabilistic inference of full-scale dynamics often

poses a substantial challenge, and the inferred rate parameters
Cell
This is an open access article under the CC BY-N
may greatly vary depending on the normalization and embed-

ding methods.3 Although a newly developed machine-learning

method based on amixture of ODEmodels improved the robust-

ness and accuracy in single-cell data profiled in developmental

processes,4 existing velocity analysis methods rely on a critical

assumption unmet bymost single-cell datasets at a study design

level. Most single-cell datasets, especially those collected from

patient-derived cancer samples, only span several snapshots

of full developmental, evolutionary, or disease progression pro-

cesses. In human case-control studies, cells may not have

reached steady states in the disease progression process and

are likely to fail to provide enough information for most genes

and pathways. Such discontinuity and sparsity in data collection

somewhat force statistical inference algorithms to rely on an un-

realistic steady-state assumption and on interpolated data

points with high uncertainty.3,5
Why do we need a topic model for transcription
dynamics?
Nevertheless, gene expression dynamics implicated by the tran-

script-level difference between the spliced and unspliced counts

provide a valuable perspective in single-cell data analysis, mak-

ing single-cell analysis more valuable beyond conventional static

analysis. To overcome the limitations posed by incomplete tem-

poral trajectories and poor quality of single-cell sequencing as-

says in scRNA velocity analysis, we propose a new modeling
Genomics 3, 100388, September 13, 2023 ª 2023 The Author(s). 1
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framework, DeltaTopic, short for dynamically encoded latent

transcriptomic pattern analysis by topic modeling. DeltaTopic

combines two ideas: (1) latent topic analysis that will guide unsu-

pervised machine learning for discovering new dynamic cell

states and (2) application of first-order approximation to learn

robust relationships between the spliced and unspliced counts

instead of estimating a full trajectory of ODEmodels. For a latent

topic model, we view each cell as a document and each gene as

a word to make model parameters directly interpretable while

keeping the Bayesian model’s capability to impute missing infor-

mation. The simplified dynamic model also permits an intuitive

interpretation of spliced-unspliced differences as multiplicative

‘‘delta’’ parameters in the model.

We developed and applied our DeltaTopic approach to single-

cell datasets on pancreatic ductal adenocarcinoma (PDAC), one

of the most challenging cancer types with a poor prognosis. In

the latent space, our model identified cancer-survival-specific

topics marked by a unique set of gene expression dynamics.

We also found that DeltaTopic further dissected subtopics

clumped together in traditional clustering methods, implicating

novel gene modules and cell states that are dynamically

controlled along with the cancer progressions. With synthetic

datasets, we demonstrate the effectiveness of DeltaTopic and

Bayesian latent topic analysis with sparse association matrix

(BALSAM) in cell label prediction and gene activity identification.

Bothmethods significantly outperformed conventional principal-

component analysis (PCA), with DeltaTopic showing particular

strength in recovering both static and dynamic gene activities.

RESULTS

Single-cell transcriptomic dynamics in PDAC studies
We preprocessed single-cell expression datasets available in

two large-scale, multi-individual studies.6,7 We extracted both

spliced and unspliced count vectors from the original short-

read sequencing files for each cell using Kallisto8 and UMI-

BUS9 tools. We consolidated all the samples/batches into

one file set using our customized utility functions rcpp_mmutil_

merge_file_sets, available in the mmutilR library (https://

causalpathlab.github.io/mmutilR). Applying cell-level quality

control steps, which filtered out cells with too few counts and

with high mitochondrial gene expression activities, we retained

227,331 cells (91.13%), discarding 22,126 cells (8.87%) out of

249,457 cells by applying these quality control steps. The quan-

tification algorithm results in two types of gene expression vec-

tors for each cell—one for the spliced and the other for the un-

spliced counts. We measured 22,836 features (the spliced and

unspliced genes) on a total of 227,331 cells, and only

329,824,833 elements were non-zero (6.35%).

Overall, we have two types of high-dimensional sparse

matrices as input data on total G = 11,418 genes across N =

227,311 cells: (1) X
ðUÞ
N3G for the unspliced counts and (2) X

ðSÞ
N3G

for the spliced transcript counts. Our goal is to identify latent fac-

tors/topics and the corresponding topic-specific gene expres-

sion frequency parameters—one for the unspliced and the other

for the spliced components. No additional preprocessing steps,

such as gene selection, batch adjustment, selection of principal

components, or data transformation, were necessary for topic
2 Cell Genomics 3, 100388, September 13, 2023
modeling since the underlying multinomial likelihood is less

affected by potential effects of unwanted stochasticity than

other probability models.10,11

Overview of our approach
A Bayesian approach to identify sparse cell topics in

scRNA-seq data (BALSAM)

We developed a Bayesian topic modeling approach, extending

the embedded topic model framework12 with elementwise

spike-and-slab prior probability.13 Our BALSAM approach views

cells as an admixture of gene topics to summarize static tran-

scriptome patterns from raw gene expression count data (Fig-

ure 1A). BALSAM relies on variational autoencoders (VAEs) to

learn cell topics and infer the cell-topic relationship. The encoder

transforms the expression space into a latent topic space

through a stack of non-linear layers (NN1), outputting a vector

of relative topic proportions for each cell. The decoder generates

a dictionary matrix b from a sparse-inducing prior called spike-

slab to ensure that only a small number of genes are selected

for each topic. The resulting dictionary matrix b is passed to a

generalized linear model (GLM) along with topic proportion q to

estimate normalized gene frequency l. Using l as the parameter,

we compute the likelihood of the expected gene count from a

multinomial distribution. We provide detailed descriptions of

the BALSAM, sparse priors, and variational inference algorithms

in the STAR Methods.

DeltaTopic
In designing our DeltaTopic approach, we were inspired by com-

mon patterns that we repeatedly observed in gene-level data

(Figure 1B).

d Sparsity due to technology and intrinsic difference: in early

Drop-seq technology, dropout events may assign a sub-

stantial fraction of gene expression counts to a zero value,

obfuscating our delineation between the undetectable and

unexpressed genes. A small number of mRNA molecules

per cell often result in gene expression profiles, including

a large fraction of zero values and a high-dimensional vec-

tor with only a small number of non-zero elements, and

also substantially deviate from conventional deep

sequencing results. In the context of transcription dy-

namics, we need to handle zero values on both sides—

the spliced and unspliced—further necessitating a model

that can handle sparsity patterns without overfitting. For

instance, the spliced counts of the LDLRAD4 gene are

essentially zero in many cells, even while the unspliced

counts are positive (Figure 1B, left). Similarly, an excess

of zero values in the unspliced were observed in B2M (Fig-

ure 1B, middle); for the TC2N case, both sides contain

many zero values (Figure 1B, right). Although we believe

that a substantial fraction of zero values reflect the under-

lying dynamics, it is impossible to completely rule out all

the possibility of statistical biases due to technical factors.

d Sampling bias in a temporal axis: in contrast to what an

analytical ODE solution predicts, we tend to have only a

limited portion of the whole phase diagram of RNA veloc-

ity.1 Parametric inference for an ODE model would remain

https://causalpathlab.github.io/mmutilR
https://causalpathlab.github.io/mmutilR
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Figure 1. Modeling single-cell transcription

dynamics with sparse probabilistic topic

models

(A) BALSAM: given a raw gene expression count

matrix, BALSAM learns cell topics to represent cell

types or cell states using neural networks. The

encoder transforms the expression space into a

latent topic space through a stack of non-linear

layers (NN1). The decoder (data-generative com-

ponents) models single-cell data vectors as a

probabilistic topic model (Dirichlet-multinomial).

The Dirichlet parameters are modeled as a

generalized linear model (with log link functions) as

a linear combination of cell-topic-specific sparse

factors r weighted by topic proportions q.

(B) Here, representative examples of gene

expression dynamics in the PDAC data are

shown as a scatterplot of the spliced and un-

spliced counts. The x axis: the spliced gene

count (log1p transformed); the y axis: the un-

spliced gene counts (log1p transformed). The red

dashed line indicates where the spliced and un-

spliced genes are of the same amount (not a

steady state).

(C) DeltaTopic: given the spliced and unspliced

gene expression count matrices, DeltaTopic’s

encoder layers embed a pair of the spliced and

unspliced count vectors to latent space (NN1,

NN2) and combine the information to form a

shared latent space through a fusion layer (NN3).

The decoder generates sparse gene factors—

one for the static and the other for the

dynamic ones—and constructs two gene-by-

topic matrices, each corresponding to the spliced

and the unspliced counts. The static topic matrix

r sets a background level for the spliced and

unspliced gene expressions. As for the spliced

expression counts, the dynamic topic loading

matrix is added to the static loading matrix to

account for the divergence between the spliced

and unspliced counts.

(D) Model evaluation on held-out data likelihood

(spliced and unspliced). The y axis: the average

held-out data likelihood and 95% confidence in-

terval; the x axis: sparsity probability prior.
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unidentifiable, suggesting multiple similarly likely solutions

without a strong steady-state assumption. Again, as can

be seen in the exemplary genes (Figure 1B), genes were

differentially regulated in the same dataset, potentially sug-

gesting the existence ofmultiplemodes in transcription dy-

namics.

At least in our cancer study, it was difficult to identify charac-

teristic phase diagrams1 in all genes; hence, no cells in the given

data have reached a steady state. Therefore, we focused on

modeling short-term directional information implicated by RNA

velocity in an intuitive model, regressing the spliced on the un-

spliced count data gene by gene and topic by topic. The

DeltaTopicmodel extends the BALSAMmodel to ascertain com-

mon cellular topic space and topic-specific relationships be-

tween the unspliced and spliced data (Figure 1C). Since a GLM
framework provides a flexible way to capture relationships

across many data modalities, our approach can be easily

extended to other similar tasks.

Given a pair of spliced and unspliced gene expression count

matrices as input, DeltaTopic transforms each into a latent

space through two independent BALSAM encoders (NN1 and

NN2). The latent variables with encoded information from the

two encoders were combined by taking their average14,15 to

obtain a shared topic vector as a mixture of experts from the

spliced and unspliced latent space (Figure 1C, fusion layer).

The decoder then generates two dictionary matrices from spar-

sity-inducing spike-slab priors to decompose spliced and un-

spliced transcription patterns into static and dynamic topics.

The static topic dictionary matrix r sets a background level

for both spliced and unspliced genes. The dynamic topic
Cell Genomics 3, 100388, September 13, 2023 3
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dictionary matrix d for spliced genes determines the direction-

ality—activated vs. inhibited—compared with the background

dictionary matrix r at a topic level. The decoder model gener-

ates the normalized frequency for the spliced and unspliced

counts as a linear combination of multiple dynamic/static topics

weighted by cell-level topic proportions. We implemented the

model in PyTorch and performed posterior inference using an

NVIDIA RTX 3080 GPU.

Training deep-learning models and generalization
performance
To evaluate each model’s generalization performance, we tested

the likelihood of data that were held out during training for

BALSAM and DeltaTopic. We randomly split the cells by a 9:1 ra-

tio to form training and test sets. For BALSAM, we trained two in-

dependent models, one with the spliced gene count as input and

the other with the unspliced gene count. We validated the held-

out log data likelihood in their corresponding domain (e.g., spliced

or unspliced). For DeltaTopic, we trained a unified model with the

pairs of spliced and unspliced counts as input and validated the

held-out log likelihood in both domains. To study the effects of

the latent dimension and the sparsity probability prior on the

model generalizability, we trained BALSAM and DeltaTopic with

different numbers of latent topics (4, 32, 128) and set sparsity

probability priors to p = 0:001; 0:01; 0:1; and 1. Each training

was repeated five times with different random seeds.

We found that DeltaTopic with 32 topics and sparsity probabil-

ity prior p = 0:1 is overall the best-performing model compared

with the other choices of latent dimension and sparsity level (Fig-

ure 1D), while for BALSAM, the best-performing model is the one

with 32 topics and sparsity probability priorp = 0:01 in the spliced

domain and p = 1 in the unspliced domain.With this choice of hy-

perparameters, DeltaTopic yields better hold-out log likelihood

scores than BALSAM in both types—the spliced and unspliced

data—suggesting that modeling the relationships between two

related data types can improve robustness. For both models,

finding the right model complexity (the number of topics) was

necessary. Although amore fine-grained hyperparameter search,

empowered by a Bayesian optimization method, is desired, our

results suggest that underfitting with four topics and overfitting

with 128 topics tend to yield inferior generalization performance.

A wider error bar is observed in the underfitting model (with four

topics), suggesting that the model is more sensitive to the choice

of initialization. In general, Bayesian sparsity priors avoid overfit-

ting issues, as we observed that a model with either 32 or 128

topics performs similarly regarding the hold-out log likelihood

scores in both data types. Indeed, using a high number of topics

and with stringent sparsity hyperparameters enforced, our
Figure 2. DeltaTopic approach identifies disease-relevant cell topics,

(A) DeltaTopic model estimates topic proportions across 227,331 cells in the PD

(B) Kaplan-Meier survival curves for 234 donors in ICGC data differentially corr

DeltaTopic gene factors. The p values are computed by log-rank test comparing

(C) A volcano plot summarizes the hazard ratios and p values testing the associatio

observed survival times across donors in three different cancer cohorts (ICGC

represents an aggregated hazard ratio measure and a p value in the meta-analysis

the y axis: p values in negative log10 scale. Survival-relevant cell topics are color

time. The two vertical dashed lines correspond hazard ratio cutoff at ±1.5 3 10�
Bayesian framework can automatically determine the right bal-

ance between bias and variance, shutting off unnecessary topics

and leading to a slightly improved generalization performance.

DeltaTopic provides novel insights into pancreatic
cancer etiology
Having an optimal configuration of hyperparameters estab-

lished, we trained our topic models on the full dataset and

resolved D (dynamic) and r (static) topics with the topic propor-

tions for each cell q (Figure 2A). We then asked whether the

genes/features discovered by DeltaTopic are novel and different

from the genes found by the topic models that were trained on

either the spliced or unspliced counts alone. In order to answer

the question, we linked the delta topics to the counterparts found

by BALSAM. Using the cell-level topic proportion estimates,

namely qi, per each model, almost all the topics found in the Del-

taTopic were connected to the ones found in BALSAM (Fig-

ure S1). For instance, delta topic 4 and BALSAM topic 4, delta

topic 10 and BALSAM topic 8, and delta topic 11 and BALSAM

topic 21 are highly overlapping in their membership. However,

topics with less than 2% of the total population cells were not

included for further investigation for brevity. DeltaTopic margin-

ally improves the resolution in cell clustering, providing a finer

view of transcriptome dynamics. Some topics found by

BALSAM can be portioned into two or more delta topics. For

instance, BALSAM 32 can be dissected into two delta topics, 3

and 7; likewise, BALSAM 27 can be divided into three delta

topics: 6, 14, and 30 (Figure S1).

To better understand how the directional information found by

the parameter works differently from the static ones, such as rt
(the static component of DTM) and bt (the parameters of

BALSAM), we investigate therapeutic impacts of the three

different gene sets. We estimated the topic-specific risk scores

for pancreatic cancer samples available in the ICGC Data Portal

and correlated the estimated risk scores with the survival out-

comes of each individual. Bulk gene expression datasets for three

independent pancreatic cancer studies are publicly available with

donor-level information in the ICGC Data Portal (https://dcc.icgc.

org/releases/current/Projects), including pancreatic cancer sam-

ples in the Canadian cohort (N = 234 donors on unique 53,800

transcripts), the Australian cohort (N = 91 donors on unique

42,346 transcripts), and the US cohort (N = 142 donors on unique

20,009 genes). We computed donor-level scores by taking

average gene expression values weighted by topic-specific

gene frequency vectors (vectors in the dictionary matrices):

Dit =
PG

g = 1YigE½dtg�. Similarly, we can estimate the other two

types of topic-specific scores by Pit =
PG

g = 1YigE½rtg� and

Bit =
PG

g = 1YigE½btg�.
implicating putative causative regulatory programs

AC data.

elated with the positive and negative topic-specific risk scores implicated by

positive and negative risk groups in survival probability.

ns between topic-specific risk scores (derived from different topicmodels) and

-PDAC-US, ICGC-PDAC-CA, and ICGC-PDAC-AU; see the text). Each point

. The x axis: the hazard ratio estimate from the Cox proportional hazard model;

ed red and blue for up- and down-regulation with respect to the PDAC survival
3. The horizontal line marks the p value cutoff at 0:05.
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We correlated these topic- and model-specific estimated risk

scores with survival outcomes (time to event) using a regularized

Cox proportional hazard regression model (Figure 2B). To ac-

count for cohort-specific bias in the survival data, we conducted

meta-analysis, aggregating the hazard ratio statistics indepen-

dently estimated in each cohort by an inverse variance-weighted

(IVW) average approach. The IVW approach prioritizes

topics found significant consistently across three cohorts while

penalizing statistically significant topics only in one or two co-

horts, denoting ji
t be the hazard ratio estimate for topic t

and cohort i and seðbj iÞ to be the standard error. For each

topic t, we can obtain a summary hazard ratio estimate jIVW
t

by aggregating cohort-specific hazard ratio ji
t: jIVW

t =P
iW

i
t
bj i

t=
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

iW
i
t

q
, where Wi

t = seðbj i

tÞ
� 2

, and we computed

the p value by pIVW
t = 2Fð� ��4IVW

t

��Þ.
We plotted each topic’s hazard ratio estimates and p values.

Topics with p values smaller than 0.05 and absolute hazard ratio

estimates greater than 1.5 3 10�3 are interpreted as ‘‘survival

relevant,’’ colored in red and blue for up-regulated and down-

regulated topics, respectively (Figure 2B). 7 survival-relevant

topics were identified using dt, whereas none and only one topic

were identified using rt and bt, respectively. Among seven sur-

vival-relevant delta topics, topics 11, 4, 29, and 7 were up-regu-

lated survival topics correlated inversely with hazard ratio esti-

mates. Topics 26, 6, and 19 were down-regulated survival

topics.

Not all topics are directly comparable across different models.

For some of them, we were able to compare those topics across

different models if they are paired (Figure S1). Of those matched,

we found many cases where the scores derived from DeltaTopic

are significantly associated with the survival outcome, whereas

the scores derived from the unimodal topicmodel are not strongly

associated (Figures 2B and 2C). For instance, topic 4 in

DeltaTopic and topic 4 in BALSAM predict the disease prognosis

quite differently. Two patient groups stratified by DeltaTopic (D) 4

follow significantly different disease prognoses (p = 0.016). Simi-

larly, the patient group with high topic-specific scores for delta

topic 11 (greater than the median) tends to show shorter survival

times than the other group with the low scores (p = 0.0018).

For the seven delta topics significantly associatedwith the sur-

vival outcome, topics 11, 4, 29, 26, 10, 7, and 6 (Figure 1C), we

further investigated their top genes/features that define the char-

acteristics of their topics, meaning strong dtgn values. Interest-

ingly, these anchor genes show highly topic-specific activities

(Figure 2D, left). However, the same set of genes showedweaker

topic-specific patterns (Figure 2D, middle) and in the BALSAM

model (Figure 2D, right). Our results suggest that our

DeltaTopic approach can distinguish genes that are differentially

regulated in transcriptomic dynamics from those differentially

expressed at the static level and that they can play a pivotal

role in cancer progression and metastasis.

Interestingly, the top genes in survival-relevant delta topics

were related to PDAC and other cancer-related processes.

B2M, among the top genes in the down-survival topic (delta

26), was associated with poor prognosis in PDAC.16 DPYD,
6 Cell Genomics 3, 100388, September 13, 2023
among the top genes in another down-survival topic (delta 10),

was found to be overexpressed in the PDAC sample with a

poor prognosis in the immunohistochemical analysis.17 Further-

more, NEDD9, selected for delta 4 and 11, is a prognostic maker

in pancreatic cancer progression.18 ERBB4 in topic 29 is known

to accelerate PDAC development and progression.19 These top

genes were also related to other cancer cell processes.BCL11B,

in up-survival delta topic 11, is a well-established tumor-sup-

pressor gene in lymphoma and leukemia.20 Another oncogene

TC2N was also found in the same delta topic, 11, suggesting

its role in helping tumor cells survive by suppressing the p53

signaling pathway.21 BTN3A in topic 7 can be regulated by

several signals induced by cancer cell or its microenvironment.22

DeltaTopic model identifies disease-relevant cell types
and pathways
We next evaluated the extent to which the cell topics inferred by

DeltaTopic reflect static and dynamic transcriptome patterns. In

general, we found that the rho topic has high correspondence to

cell-type differentiation (Figure 3A), while the delta topic loadings

are more relevant to gene activities (Figures 3B1–3B3). Our re-

sults suggest that the r topics are suitable to capture cell-

type-specific marker genes and recapitulated known immune

cells, such as B cells, T cells, and macrophages, endocrine

and endothelial cells, and multiple subtypes of ductal cells.

Topics 15, 18, 25, and 28 correspond to one subtype of the

ductal cells, and the other topics 14, 9, 27, 30, 26, and 6 are spe-

cifically matched with the second ductal cells found in the orig-

inal study.6 Topics 4 and 11 are likely associated with immune

activities, as they mostly constitute immune cells’ activities.

Gene set enrichment analysis of the Molecular Signatures

Database23–25 using the fgsea package26 provided another line

of evidence.We observed the top genes in topics 4 and 11 signif-

icantly overlap with the gene set ‘‘CD4 TCELL VS BCELL DN,’’

which comprises genes differentially regulated between T and

B cells. Unlike the static dictionary matrix r, the dynamic one,

d, is more likely to capture the gene expression changes more

pertinent to immune mechanisms. For instance, topic 4 enriches

two immune gene sets—‘‘UNTREATED VS. IFNA STIM CD8

TCELL 90MIN UP’’ and ‘‘SIG BCR SIGNALING PATHWAY.’’

Both were characterized to control tumor growthmechanisms.27

Other topics 6 and 26 also bear many cancer-regulatory

genes, constituting ‘‘ESTROGEN RESPONSE EARLY’’ and

‘‘ESTROGEN RESPONSE LATE’’ pathways, also well aligned

with the previous study,28 reporting high expression of estrogen

receptor beta genes in pancreatic adenocarcinoma samples re-

sected from a group with poor prognosis.

Vector fields reconstructed from DeltaTopic dictionary
visualize distinctive disease trajectories
We projected the estimated transcriptome dynamics (velocities)

onto a 2D space constructed by its eigenvectors (Figure 4A).

Each headed arrow represents the estimated velocities for a

cell, with the starting point for unspliced genes and the ending

point for its spliced counterpart. We simply carried out the pro-

jection as follows: (1) performed singular value decomposition

(SVD) on r dictionary matrix (with rank 2) r = UDVT to get its
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Figure 3. DeltaTopic approach uncover both static and dynamic transcriptome patterns

(A) The top heatmap: the static topic-by-gene parameters r; the bars on the left scale proportional to the size of each topic (log10 scale). As a comparison, the

bottom heatmap indicates marker genes for the ten cell types assigned by the original PDAC study.6.

(B) Gene set enrichment analysis of dynamic loading matrix. B1, ImmuneSig gene sets; B2, KEGG gene sets; B3, Hallmark gene sets. All three gene sets are from

the MsigDB database.23,24 For brevity, only significant gene sets and their corresponding cell topics are displayed.
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2D representation V, (2) projected r+ d onto the same eigen-

space for spliced genes by Vspliced = ðr + dÞUD� 1, and (3) con-

nected V to Vspliced for each cell to visualize velocities.
Disease topics generally constitute two distinct flow patterns,

consistent with our previous survival analysis results. Cell topics

4 and 11, which play the up-regulation role in PDAC survival,
Cell Genomics 3, 100388, September 13, 2023 7
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converge to the left of the figure. On the other hand, the two

down-regulating cell topics, 6 and 26, mostly flow in a downward

direction (Figure 4A). Three immune cell types (T cell, B cell, and

macrophage) align well with this disease-specific direction (Fig-

ure 4B). However, acinar cells and fibroblasts are relatively stag-

nant, not showing any salient flows in our visualization

(Figure 4B).

Simulation studies confirm the topic-model-based
approach can estimate dynamic and static cell topics
In order to gain confidence in our model’s ability to identify

dynamic and cell-type-specific gene programs, we conducted

an extensive set of simulation-based benchmark studies. Not

having a de facto simulation scheme suitable for generating

matrices of both spliced and unspliced counts over all the

genes, we simply generated synthetic datasets using the

multinomial-Dirichlet hierarchical model as described previ-

ously. We possess limited knowledge of true transcriptomic

dynamics in pancreatic cancer progression. Designing a real-

istic simulation method is also an active research area of sin-

gle-cell genomics.

Treating the br (static) and bd (dynamic) parameters as the

ground truth for static and dynamic topic-specific gene pro-

grams, respectively, and assuming an equal distribution of cells

across all topics, we randomly assigned each cell i to a topic t

according to the Dirichlet distribution, namely topic proportion

qi � DirichletðaiÞ with ai = , with
P

tat = 1. For a simpler inter-

pretation, we randomly designated a major topic t˛ ½T � for

each cell so that the selected topic can most contribute to the

transcriptomic variation for the cell, namely at = 0:9, and the

rest of variation can be explained by the other topics, namely

at0 = ð1 � 0:9Þ=ðT � 1Þ for all the other t0st. We created distinct

cell clusters for each topic. For simplicity, we simulated 1,000

cells per topic of a total of 32,000 cells and normalized the

sequencing depth to the observed total number of genes,

namely G. We repeated simulation experiments ten times with

different random seeds.

For each simulation, we generated two single-cell expression

matrices—the spliced and unspliced counts—and estimated our

topic models and ran other relevant methods to compare perfor-

mance in two prediction tasks: (1) how closely can we recover

cell groups in the latent topic space, and (2) how robustly can

we recover the dynamic and static gene programs in the model

parameter matrices?

First we investigated the cell clustering problem, running the

following methods.

d DeltaTopic (this work): DeltaTopic model trained on the

spliced and unspliced data.

d BALSAM (this work): Bayesian sparse topic model trained

on the spliced data only.
Figure 4. Velocities derived from the DeltaTopic identify distinct cell tr

(A) Each segment corresponds to each cell uniformly sampled in each topic at a 0

and gray) scales proportionally to the estimated velocity projected onto two princ

topics identified by the previous survival analysis. We colored the cells red and

topics, respectively.

(B) The same velocity plot colored by different cell types.
d PCA: PCA29–31 on the spliced data only.

d PCA-concat: PCA run on the spliced and unspliced data

concatenated with each other.

d NMF: non-negative matrix factorization32 (vanilla version)

on the splice data.

d LIGER: a variant of NMF33,34 that can learn a unified latent

space from two or more input datasets and identifies

shared and dataset-specific latent factors.

For the results of topic models, we directly computed normal-

izedmutual information scores with the true cell-type labels used

in each simulation. For PCA and NMF, we had to resolve cell

clusters by applying the Louvain algorithm35 on the cell-cell

network data based on similarity scores in the latent space.

Since LIGER has can combine data across different data modal-

ities, we performed the joint analysis implemented in the recent

version of the pyLiger library: https://github.com/welch-lab/

pyliger/blob/master/integrating_multi_scRNA_data.ipynb For

all the methods, we computed normalized mutual information

(NMI) scores by normalized_mutual_info_score, implemented

in the scikit-learn library (v.1.2.2), which measured similarity be-

tween the predicted and true groupmembership.Wewould have

the values 1 for an exact clustering result and 0 for completely

random/independent clustering patterns between the predicted

and true labels.

Since dynamic gene programs best determine some cell

topics/clusters, our DeltaTopic method clearly outperformed

other static methods, as well as the joint analysis conducted

by the LIGERmethod (Figure 5A). Interestingly, among the unim-

odality methods trained on the spliced data only, BALSAM

clearly outperformed other methods, such as PCA and NMF,

demonstrating that the sparse Bayesian prior model generally

improves clustering performance. Notably, DeltaTopic outper-

formed LIGER and PCA-concat, yielding substantially higher

NMI scores, confirming that our strategy to build a GLMbetween

the spliced and unspliced counts is more effective than the un-

paired concatenation approaches. We also noted that LIGER

performed additional pre- and post-processing quantized

normalization steps to retain a subset of genes (8,248), which

might have affected clustering results. At least in this benchmark

analysis, if the data were generated from a sparse topic model,

where only a small fraction of features define cell topics, we

believe that probabilistic modeling, including Bayesian sparsity

in themodel, will be found to be beneficial not only inmodel inter-

pretation but also in generalization performance.

For the second prediction problem, we assessed the quality of

top-scoring genes/features. For the top K genes ranked by each

method, we measured the precision by score as a fraction of the

top K genes interacting with the top genes according to the true

parameters, namely precision at K recall. We varied the K values

from 10 to 1,000 and measured each precision value at each top
ajectories for disease development and cell-type differentiation

.5% rate to avoid visual clutter. The length of each segment (colored red, blue,

ipal-component axes. We highlight cells constituting several disease-relevant

blue according to their membership in the up-regulated and down-regulated
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Figure 5. Benchmark results confirm that DeltaTopic and BALSAM can accurately predict cell-type labels and recapitulate true dynamic and

static gene programs

(A) Normalized mutual information (NMI) scores between the predicted labels and true labels. The mean NMI scores and 95% confidence intervals are plotted for

each method.

(B) Mean precision scores for static and dynamic gene activity identification. The mean and 95% confidence intervals are plotted for each method.
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K cutoff (Figure 5B). In our simulation scheme, we specified that

the static gene factors rgt are manifested in both the spliced and

unspliced expressions, whereas the dynamic factors dgt only

exert actions in the spliced counts. For the static genes (Fig-

ure 5B, left panel), BALSAM and DeltaTopic generally achieve

high precision values, followed by the NMF, PCA, and PCA-con-

cat methods. For the dynamic gene prediction (Figure 5B, right

panel), leveraging both types of counts, DeltaTopic clearly out-

performed the other methods that were trained only on the

spliced expression data.

However, it is interesting to note that the LIGER method led to

more accurate prediction results for the dynamic genes—specif-

ically those up-regulated in the spliced data—than DeltaTopic’s

results. A new version of the LIGER method, termed UNINMF,

can differentiate common and data-type-specific components

in a joint non-negative factorization setting.34 We confirmed

that the gene factors specific to the spliced count data

(LIGER-V) are accurately captured by LIGER, especially for a

few top genes (K < 500). For more than the top 500 genes, we

found that DeltaTopic and LIGER perform equally well. Still,

our simulation results show that DeltaTopic better recapitulated

gene topics shared between two data modalities than

LIGER (DeltaTopic vs. LIGER-W on the left of Figure 5B)

without requiring additional post-processing steps. Moreover,

DeltaTopic substantially outperformed LIGER in the cell-clus-

tering predictions (Figure 5A).

Computing time and memory usage
The training of all models was accomplished utilizing an NVIDIA

GeForce RTX 3080 GPU with a single-core configuration. Due to

the implementation of spike and slab priors, bothmodels are less

prone to overfitting. We observed that 2,000 epochs were

adequate for all models to reach convergence. For each simu-

lated data, encompassing 32,000 cells, DeltaTopic (with 32
10 Cell Genomics 3, 100388, September 13, 2023
topics) finished in 6 h and 3 min, while BALSAM (32 topics)

completed in 5 h and 12 min. The RAM usage for both models

stood at 16.5 GB. For the full PDAC data, which comprises

227,311 cells and 11,418 genes, DeltaTopic took 16 h and

11 min, and BALSAM took 9 h and 43 min.

DISCUSSION

In this study, we propose a novel Bayesian topic model built on a

deep-learning-based framework, firstly incorporating well-estab-

lished sparsity prior distribution to model parameters (BALSAM)

and secondly incorporating short-term dynamics implicated by

the difference between the spliced and unspliced reads in

scRNA-seq data (DeltaTopic). Considering technical limitations

posed by the limited range of transcriptomic profiling, we believe

that our Bayesian approach can provide a practical and statistical

approach toestimating transcriptomicdynamicswithout requiring

unattainable steady-state observations. In our case studies, we

have demonstrated that DeltaTopic models built on two types of

datamodalities (thesplicedandunsplicedcounts) achievedbetter

generalization performance in terms of hold-out data reconstruc-

tion performance. In a broader sense, our approach can be

considered a special case of a mixture of GLMs36 that augments

GLMs into traditional mixture components to express conditional

probabilities between two different data types.

In benchmark analysis, we demonstrated that our GLM-based

data integration framework is effective and often produces high-

quality cell-clustering and gene prediction results. We can iden-

tify and differentiate dynamic and static gene programs in the

DeltaTopic model parameters. However, a comparison with

other joint analysis methods, especially a comparison with the

recent version of LIGER,34 also suggested that there is room

for improvement in modeling. The next version of DeltaTopic

can include additional factors on the side of the unspliced data
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so that the model can better accommodate down-regulated

gene programs than the current model.

By incorporating epigenomic and proteomic measurements,

our approach can be straightforwardly extended to capture full

information flows in regulatory genomics problems. Perhaps a

harder challenge still lies in linking regulatory elements to target

genes and selecting isoforms to target proteins and protein com-

plexes. Nonetheless, we argue that employing multiple layers of

GLMs to link data modalities can provide a principled way to

address more complex multiomics data integration problems.

As long as multiple stages of first-order approximation can

constitute full-phase diagrams of a system of differential equa-

tions, we expect that such piecewise, layer-by-layer approaches

will be used effectively in future research.

Interestingly, in our pancreatic cancer analysis, looking at

short-term dynamics improved our understanding of disease pro-

gression. Our DeltaTopic model can pick up cancer-progression-

specific latent factors, and the significance of our findings was

validated in larger cohorts. Since we know relevant cell types

where these disease-specific factors are selectively activated/

repressed, we expect further in vitro or ex vivo validation experi-

ments will further elucidate novel aspects of disease mecha-

nisms. Although many existing latent variable models focus on

clustering and subtype identification, our model especially high-

lighted that short-term dynamics (merely directional information)

can provide an important clue in translation studies. Tracking

full trajectories of disease progression may be intractable in cur-

rent technology, but predicting immediate next steps at each

cell-type/-state level appears possible. Conversely, dynamics

analysis can complement a current way of investigating cellular

heterogeneity, suggesting that there are other amiss axes in dis-

ease mechanisms besides cell-type composition changes.

As suggested by the previous embedded topic modeling

approach,37 prior knowledge can play an important role in

dealing with stochastic, noisy datasets. In our case, eventually,

we will need to understand transcription factors that drive

topic-specific dynamics and disease mechanisms. Again, incor-

porating histone and DNA accessibility data will greatly benefit

multimodal single-cell analysis.

Limitations of the study
Our topic model-based approach to single-cell data analysis

carries several technical limitations, one of which is that

we used a machine-learning library (torch) for most of our

computation, which often requires specialized hardware re-

sources, such as GPUs with sufficiently large memory, in order

to achieve optimal performance. Here, we did not find a compel-

ling reason for incorporating batch-specific or domain-specific

technical bias terms in our modeling. However, batch effects

are prevalent in single-cell genomics analysis; hence, one may

need to consider a causal inference approach to delineate

batch-specific effects from other biologically relevant signals,

such as cell types and disease effects, in practice.

We also emphasize that DeltaTopic was specifically designed

to capture immediate short-term dynamics between the spliced

and unspliced counts for the same genes. Two types of exten-

sions will greatly benefit: firstly, a model incorporating measure-

ments from multiple time points will lead to statistically more
robust inference results, provided that single-cell data were

measured along a dense temporal axis. Moreover, we can

generalize one-to-one correspondence between the spliced

and unspliced variables because several regulatory regions are

involved in a target gene’s transcription, post-transcription,

and translation processes.
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com/causalpathlab/DeltaTopic. We also share all the codes used to generate the results in this article here (https://doi.org/10.5281/

zenodo.8173028) https://zenodo.org/record/8173028.

METHOD DETAILS

Single-cell RNA-seq data preparation
Weobtained the original FASTQ files for pancreatic ductal adenocarcinoma (PDAC) from the public repository (https://ngdc.cncb.ac.

cn/gsa/browse/CRA001160) provided by two PDAC studies.6,7 The spliced and unspliced count matrices were quantified by a scal-

able approach, namely kb-python (https://www.kallistobus.tools/), which coordinates the inputs and outputs of Kallisto8 and UMI-

BUS9 tools:

$ kb count -i index.idx -g t2g.txt -x 10xv2 -o ${output} \ -c1 spliced_t2c.txt -c2 unspliced_t2c.txt \ –workflow lamanno –filter bus-

tools \ ${fastq1} ${fastq2}

Notations
We measured G genes on a total of N cells. We denote the spliced one by Xng for a gene g in a cell n, capturing only the

reads mapped on exonic regions, gene data used in most single-cell expression analyses. We use X
ðUÞ
ng to denote an unspliced

expression activity for a gene g and a cell n, concerning reads mapped on, or involving intronic regions. For brevity, we will use a

row vector xn = ðXn1;.;XnGÞ for expression data (spliced count) on each cell n. Similarly, we will use x
ðUÞ
n to denote an ‘‘unspliced’’

expression count, x
ðUÞ
n = ðXðUÞ

n1 ;.;X
ðUÞ
nG Þ.
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Following the mapping protocol proposed by La Manno and coworkers,1 we can separately quantify X
ðUÞ
ng , the count of unspliced

transcripts of a gene g in a cell n, and X
ðSÞ
ng , the count of the spliced of the gene g in the same cell n.

Model descriptions
Review of topic modeling

Embedded Topic Model12 built on a Variational Auto-Encoder (VAE) framework39 provides a scalable approach for discovering latent

topics from a large corpus of documents. We applied a similar topic model approach to single-cell data, treating each cell as a docu-

ment, 20k genes as a total set of vocabularies, and short reads mapped on the genes as words. We model gene expression counts

generated by independent multinomial probabilities (a bag of words assumption) sincemultinomial likelihood better preserves scale-

invariant properties across different batches than other deep learning methods based on Poisson, Negative Binomial, and Gaussian

distributions. Letting Xng be a gene expression count of a gene g in a cell n, the data likelihood of a total expression count matrix can

be defined by the corresponding multinomial probabilities rng:YN
n

pðxnnrnÞf
YN
n

YG
g = 1

r
Xng
ng

where we have
P

grng = 1 for all n˛ ½N� and rng > 0 for all cells n and genes g˛ ½G�.
The multinomial probability parameter, gtg, can be expressed as a linear combination of topic-specific vocabulary (gene) matrices

weighted by topic portions in a document, qnt: rng =
PT

t = 1qntgtg. The latent topic proportion vectors are assumed to follow Logistic

Normal distribution a priori, which can enable reparameterized variational inference by taking stochastic gradient steps.We generate

qn in two steps: zn � Nð0; IÞ and qnt = expðzntÞ =
P

t0expðznt0 Þ. Since we restrict both q and g in a T- and G-dimensional simplex,

namely,
P

tqnt = 1 and
P

ggtg = 1, we can confirm that the resulting rn vectors also result in valid probabilities across vocabulary

(genes) within cells, i.e., 0%
P

grng %1.

A bayesian extension for topic modeling in single-cell RNA-seq analysis
We extended the embedded topic model (ETM) in two ways:

(1) We introduced a Bayesian hierarchical prior on the model parameters, rn � DirðlnÞwhile formulating the Dirichlet parameters as

a generalized linear model,

log lng =
XT
t = 1

qntbtg +bg;

(2) We sought to improve the interpretability of the model parameters by introducing Bayesian sparsity on the linear models, btg,

assuming a majority of the btg values are statistically zero with some prior probability p,

btg �pNð0; tÞ+ ð1 � pÞd0
�
btg

�
:

The other effects not captured by spike-and-slab b parameters are simply represented by a gene-specific bias parameter bg in-

variantly present across all the topics. We did not enforce any specific prior distribution on the bias parameters.

Exploiting the conjugate relationship between themultinomial and Dirichlet distributions, we can analytically integrate out the com-

posite variable r and derive the following data likelihood:

p
�
xnnqn;

�
btg

�
;bg

�
=

Z
drnpðxnnrnÞp

�
rnnqn;

�
btg

�
;
�
bg

��
f

Q
g

G
�
Xng+lng

�
G

 P
g

Xng+lng

! G

 P
g

Xng

!
Q
g

G
�
Xng

� ;

where lng = expðPT
t = 1qntbtg +bgÞ, and Gð $Þ is the Euler’s gamma function.

Amortized variational inference
As the dimensionality increases, the exact inference of posterior probability of the latent cell-specific topics pðqnnxnÞ quickly turns

into a computationally-intractable inference problem. Stochastic variational inference confers a scalable approach to finding approx-

imating distributions, which often leads to surprisingly accurate posterior inference results.40 A reparametrization technique popu-

larized by the VAE framework39 cast an intractable inference problem of a latent variable model into an optimization problem in a

deep belief network model, which can be solved by taking back-propagation steps with respect to the model parameters.41 Here,

we use two types of variational distributions, namely one for the local, latent variables, qðqnÞ and the other for global topic-specific

gene activity parameters qðbtgÞ, and minimized the Kullbeck-Leibler (KL) divergence between these approximates and the actual

data likelihood probability models.
e2 Cell Genomics 3, 100388, September 13, 2023
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Equivalently we can maximize the following evidence lower bound (ELBO) for total data likelihood (denoted by L):

log
Y
n

Z
q;b

pðxn; qn; bÞqðqnn4; xnÞqðbnxÞ
qðqnn4; xnÞqðbnxÞ R Eq

"X
n

logpðxnnqn;bÞ
#
+Eq

�
log

pðqnÞpðbnp; tÞ
qðqnn4ÞqðbnxÞ

	
D = L;

where we used 4 and x to denote all the parameters of the latent state/parameter distributions. Amortized variational inference al-

gorithm finds approximate posterior distributions by optimizing the ELBO objective, taking stochastic gradient steps with respect

to the variational parameters, namely 4 and xi. We adaptively scheduled the learning rates and step sizes by Adam optimizer.42

For gradient calculation, we used PyTorch library.

Sampling from the latent variable model qðqn4Þ
Since the exact evaluation the first expectation term is generally intractable, we approximate it by summing over the data log likeli-

hood using the sampled instances of qðsÞ � qðqn4; xnÞ and bðsÞ for each minibatch sample s˛ ½S�:

Eq

"X
n

logpðxnnqn;bÞ
#
z

1

S

X
s

logp


xsnqðsÞ;bðsÞ

�
:

We parameterized the mean m and variance s functions for the latent variable inference in a deep encoder model taking inputs of

the original high-dimensional data x. Using the reparamterized trick of Logistic Normal distribution, we sample the posterior sample of

qðsÞ as follows:

d Sample ,Iεs � Nð0Þ
d Reparamterize εszs)mðxsÞ+ sðxsÞ+
d Transform q

ðsÞ
t )expðZstÞ =

P
k

expðZskÞ.

Using the corresponding variational parameters 4hðm;sÞ, assuming zs � Nð0; IÞ a priori for all s, we can derive KL divergence be-

tween the prior and variational distributions of latent states:

Eq

�
log

qðZstn4Þ
pðZstÞ

	
= DKLðq k pÞ =

X
t

1

2

�
m2
st + s2

st � log s2
st � 1



:

Global spike-and-slab parameters qðbÞ
We analytically derived the second term (the negative KL loss) involving the global parameters b by using fully-factored spike-and-

slab distributions13 as variational distributions for btg parameters. When btg is active/on, more precisely, a latent indicator variable

htg = 1 with probability atg, we parameterize it by a Gaussian distribution:

q
�
btgnhtg = 1

�
= N



mb
tg; n

b
tg

�
with probability atg =

D
pðhtg = 1Þ; otherwise, we simply set btg to zero:

q
�
btgnhtg = 0

�
= d0

�
btg

�
with probability 1 � atg.

Given the variational parameters, xhða; m; nÞ, we can characterize the mean, Eq½bnx� = am and variance, Vq½bnx� = an+

að1 � aÞm2.

Letting htg = 1 with probability p and bnh = 1 � Nð0; tÞ a priori, we get the KL loss for the global parameters:

DKLðqðbÞnpðbÞÞ =

�
a log

a

p
+ ð1 � aÞlog 1 � a

1 � p

	
� a

2

�
1 + log

n

t
� 1

t

�
m2 + n

�	
:

Dynamically-encoded latent transcriptomic analysis by topic modeling (deltaTopic)
DeltaTopic is a hierarchical Bayesian model designed to capture transcription dynamics in topic space manifested in spliced and

unspliced single-cell count matrices. Built on the Bayesian extension previously discussed, the goal of DeltaTopic is to characterize

topic-specific relationships between spliced (S) and unspliced (U) gene expressions as a generalized linear model, delineating the

static/shared and dynamic/directional topic-specific gene components.

We used the same Multinomial-Dirichlet hierarchical model that the unspliced and spliced vectors are parameterized by the rates

of the unspliced and the unspliced, respectively:

L =
YN
n

p


xðUÞn nlðUÞn

�
p


xðSÞn nlðSÞn

�
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where

p


xðUÞn nlðUÞn

�
f

Q
g

G


X

ðUÞ
ng +lðUÞng

�
G

 P
g

X
ðUÞ
ng +lðUÞng

! G

 P
g

lðUÞng

!
Q
g

G


lðUÞng

�

and

p


xðSÞn nlðSÞn

�
f

Q
g

G


X

ðSÞ
ng +l

ðSÞ
ng

�
G

 P
g

X
ðSÞ
ng +l

ðSÞ
ng

! G

 P
g

lðSÞng

!
Q
g

G


lðSÞng

� :

We can reasonably assume that each latent cell topic proportion vector qn is the property of a cell n. In the shared topic space, the

unspliced and spliced counts are differently expressed by different topic-specific rate parameters.We represent shared transcription

rates (before splicing) by rtg of a gene g for a topic t; we explicitly capture splicing rates by dtg of a gene g for a topic t along with a

gene-specific baseline activity bg. Putting them altogether, we have the log-rates for the unspliced:

log lðUÞng =
X
t

qntrtg +bg;

and the log-rates for the spliced:

log lðSÞng =
X
t

qnt
�
rtg + dtg

�
+bg:

We pose spike-and-slab priors on the r and d parameters13:

rtg; dtg �pNð0; tÞ+ ð1 � pÞd0
�
rtg
�
:

The latent vector qn is sampled from Logistic-Normal distribution. We used two independent encoder networks and combined sto-

chastic latent vectors as a mixture of experts, equally weighting.14,15 Each encoder network generates the mean m and standard de-

viation s.

d Sample ε
ðSÞ
n ;ε

ðUÞ
n � Nð0; IÞ

d Reparameterize for the unspliced, z
ðUÞ
n )mðUÞðxðUÞn Þ+ sðUÞðxðUÞn Þ+εðUÞn

d Reparameterize for the spliced, z
ðSÞ
n )mðSÞðxðSÞn Þ+ sðSÞðxðSÞn Þ+εðSÞn

d Combine and transform: qnt)expðZðUÞ
nt +Z

ðSÞ
nt Þ =

P
k

expðZðUÞ
nk +Z

ðSÞ
nk Þ.

With the above sampling scheme, we optimized the following ELBO and estimated posterior distributions of the latent states and

model parameters:

LDelta z
XB
b = 1

logp


x
ðUÞ
b ; x

ðSÞ
b nqb; r; d

�
� K

where b denotes an index for a mini batch sample with the batch size B and K the KL loss.

K =
XB
b

Eq

�
log

q
�
qbn4ðSÞ;4ðUÞ�

pðqbÞ
	
+
B

N
Eq

"
log

q


rnxðrÞ

�
pðrnp; tÞ

#
+
B

N
Eq

"
log

q


dnxðdÞ

�
pðdnp; tÞ

#
:

Kaplan-Meier survival analysis
Weobtained topic-specific gene loading scores, such as d, rho, and bparameters, after fully training topicmodels.We then estimated

individual-level scores by multiplying them to individual-level gene expression profiles available in larger ICGC cohorts. Followed by

standardization of these individual-level scores, we can stratify these individuals into the positive (Dit > 0) and negative activity (Dit < 0)

sets for each topic t. Using the same procedure, we can also partition individuals into positively and negatively correlated groups

based on the other two types of scores (Pit and Bit). We estimated Kapler-Miere(KM) survival curve for each topic and tested the

two-group difference in survival probabilities by log rank test.
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