
https://doi.org/10.1177/1179069519827300

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Journal of Experimental Neuroscience
Volume 13: 1–8
© The Author(s) 2019
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1179069519827300

Introduction
Cerebrovascular disease is a spectrum of disorders that include 
defined entities like stroke and cerebrovascular anomalies/mal-
formations.1 In the last half decade or more, stroke has contin-
ued to be named as the second and the third most common 
cause of mortality and morbidity, respectively.2,3 Despite the 
fact that the age-standardized incidence of stroke-related mor-
tality is decreasing, the rise in stroke burden continues globally4; 
also becoming significant are racial and geographic differences 
in stroke burden.5 Although generally less common, stroke in 
the pediatric age groups may be particularly associated with 
high morbidity and mortality.6 Several studies7-9 suggest a grad-
ual rise in the incidence of cerebrovascular disease in young 
adults, especially in low- and middle-income economies. This 
suggests an increase in research into the causative factors and 
better modalities to prevent stroke among young adults.

Modulations of the established stroke risk factors or the 
presence of under-recognized risks such as sleep deprivation 
have been reported to be directly associated with an increasing 
incidence of stroke in young adults.10 Observational and experi-
mental studies11-13 demonstrate the possible roles of sleep and 
sleep disorders in stroke irrespective of age categories. A recent 
study also reported evidence of racial and sex disparities in the 
association between sleep duration and stroke incidence among 
persons aged 45 years and above.14 Sleep disorders are also 
known to affect treatment outcomes, rehabilitation, and stroke 
recovery.15 The influence of sleep on long-term recovery from 
stroke is associated with the effect of stroke in disrupting pineal 

melatonin secretion to alter melatonin/circadian rhythms.16 
Even when melatonin rhythm was maintained post stroke, a 
delay in the phase of melatonin secretion was noticeable.17 In 
this context, how the sleep-wake cycle influences stroke onset 
especially during shift work and how melatonin, a key modula-
tor of the circadian rhythms, fits into this puzzle, especially in 
young adults, are important issues of this review.

In general, melatonin is a very important antioxidant and 
free radical scavenger.18 Its neuroprotective functions19 and 
role in stem cell therapy have also been reported.20 Findings 
indicate the importance of melatonin in stroke management 
and the prevention of stroke recurrence. However, current 
knowledge on the link between the circadian rhythm, sleep dis-
orders, and melatonin on stroke in young adults is still frag-
mentary. This review examines the possible roles played by 
melatonin in neuroprotection against ischemic injury in young 
adults and future translation in the treatment and prevention of 
stroke. However, it is important to emphasize that the views 
advanced here are from some of the initial and current attempts 
to conceptualize how understanding the impact of the circa-
dian rhythm and melatonin can be translated to prevention and 
management of stroke in young adults.

Stroke in young adults

Stroke is usually not associated with young age; a period of life 
supposedly “filled” with health and vibrancy. Commonly, epi-
demiology would associate the development of stroke with 
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aging, and as such younger individuals with stroke had previ-
ously been described as “invisible.”21-23 Although the percep-
tion of stroke as a disease of aging still persists within the larger 
population, research has continued to show a gradual rise in 
stroke incidence in persons younger than 55 years.7 However, 
there is no specific definition of the term “Stroke in the young 
adult”, neither is there a unified age limit for the classification 
of stroke in young individuals. Although different studies used 
varying age cut-offs, the upper age limit for most studies 
through the years rarely exceeds 55 years.7,24,25 Table 1 sum-
marizes the evidence of stroke in younger individuals, subtypes 
of stroke, cut-off age range, and identified risk factors.

In the last few years, there have been suggestions of a rising 
incidence of acute stroke events in adolescents and young 
adults,9 with an increase in the incidence of acute ischemic 
strokes in both male and female young adults.32 Although pre-
vious epidemiological reports had generally linked higher 
occurrences of hemorrhagic strokes in young adults,33 more 

recent reports are attributing the rise in strokes in this age 
group to an increased incidence of ischemic strokes, rather than 
hemorrhagic stroke.7,9 The risk factor patterns of stroke in the 
young adults have also been reported to differ, when compared 
with older persons.9,34,35 Although the incidence of traditional 
stroke risk factors like cigarette smoking continues to decline 
in the overall adult population, obesity, metabolic syndrome, 
diabetes, dysmetabolism, and hypertension have shown little 
difference or worsened in the young adult population.36 The 
rise in the incidence of ischemic stroke in young adults has 
been attributed to the increasing trends of multiple traditional 
risk factors including obesity, dyslipidemia, diabetes, and 
hypertension in young adults.7,37,38

In young adults between the ages of 15 and 44, approxi-
mately 50% of stroke events have been reported to be ischemic, 
20% arise from an intracerebral hemorrhage, whereas 30% are 
subarachnoid hemorrhage.31 Irrespective of the subtype or 
severity, the functional outcomes and recovery of younger 

Table 1. Evidence of stroke in younger individuals, subtypes of stroke, cut-off age range, and identified risk factors.

AUThORS REgION STROkE SUBTYPE CUT-Off AgE RANgE IN 
ThE YOUNgER (YEARS)

IDENTIfIED RISk fACTOR(S)

Schneider et al26 Estonia Ischemic 18-54 hypertension (53%), dyslipidemia (46%), 
and smoking (35%)

Smajlovic et al22 Bosnia and 
herzegovinia

Subarachnoid 
hemorrhage, 
intracerebral 
hemorrhage, 
ischemic stroke

18-45 Smoking (56%) and hypertension (45%)

Chatzikonstantinou 
et al25

USA Acute Ischemic 19-45 Smoking (55.2%), hypertension (31.4%), 
and hyperlipidemia (27.6%)

Putaala et al24 Europe Ischemic 15-49 Smoking (48.7%), dyslipidemia (45.8%), 
and hypertension (35.9%)

Wu et al27 New Zealand Ischemic 14-45 hyperlipidemia (45.8%), hypertension 
(42.7%), smoking (42.7%), and obesity 
(36.6%)

guan et al28 China Ischemic 18-45 hypertension (36%), smoking (33%), and 
hypertriglyceridemia (31%)

george et al7 USA Acute ischemic 
stroke, 
subarachnoid 
hemorrhage

5-14, 15-34, and 35-44 hypertension, diabetes, obesity, lipid 
disorders, and tobacco use

Spengos and 
Vemmos23

greece Ischemic 15-45 Smoking (59.3%), dyslipidemia (41.1%), 
small vessel disease (17.4%), and 
cardioembolism (13.4%)

Jovanovic et al29 Serbia Ischemic 15-45 Smoking (37%), hypertension (35%), and 
hyperlipidemia (35%)

Rasura et al40 Rome Ischemic 14-47 Smoking (56%), hypertension (23%), 
dyslipidemia (15%), migraine (26%), and 
diabetes mellitus (2%)

Cerrato et al41 Italy Ischemic 16-49 hypertension (34%), smoking (39%), and 
hypertriglyceridemia (17%)

hoffman et al36 South Africa Ischemic, 
hemorrhagic

15-49 Black race and endemic disease like hIV 
infection
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patients with stroke are known to be better when compared 
with the elderly.28,39 However, despite the evidence of a better 
physical recovery in younger stroke victims, the impact of 
stroke on social, emotional, and economic well-being of 
younger patients is significant.40,41 The increasing incidence of 
stroke among young adults calls for more innovative research 
to reduce this problem. Most especially, the development of a 
standardized methodology that focuses on multicenter design 
and clarification of the term “young adults” with specific diag-
nostic and classification criteria will strengthen the existing 
epidemiologic data. The resulting data will allow comparison 
of the incidence of stroke and trends among young adults 
across different countries.

Shift work, the circadian rhythm, and stroke in 
young adults

The circadian rhythm has a periodicity of 24 hours and 
involves daily cycles of behavior and physiology that are syn-
chronized by non-photic and photic stimuli.42 The rhythm 
regulates biological processes such as the cell cycle, sleep-
wake cycle, energy homeostasis, hormone secretion, body 
temperature, and blood pressure.43 Studies in young adults30,44 
indicate that alterations in sleep architecture, quality, and 
rhythm that occur in obstructive sleep apnea increase the risk 
of stroke independent of the other factors. This is directly 
associated with shift work which is common in young 
adults.45,46 More than 15 million Americans fall within this 
middle-aged or young adult populations of 18-55 years. Most 
individuals in this population group do not work the typical 
9-to-5 working hours and are referred to as shift workers.47 
Their rotating shifts make them susceptible to different 
health hazards that include cardiovascular problems, obesity, 
and stroke. The rotating shift work schedules also alter their 
internal body clocks such that they present with irregular 
sleep-wake patterns.48 Irregularities in their timing of sleep-
ing or waking deregulate the body clocks, making it difficult 
to maintain the normal 24-hour cycle. This shift work sched-
ules can lead to severe ischemic strokes in the young adult 
working population.49 Of interest to the current review is that 
there are sex differences among young adult men and women 
in the extent to which stroke was aggravated by the disrup-
tion of the circadian rhythm.50 Precisely, the effect was worse 
in young men when compared with women. These differ-
ences might be associated with differences in sexual repro-
ductive hormones.50 For example, young men are more likely 
to suffer strokes when compared with women of the same age, 
and the stroke outcomes are likely to be more severe.51 In 
women, estrogen is associated with more neuroprotection, as 
estrogen protects the brain in response to stroke.52 However, 
older women when compared with older men of the same age 
present with an increased incidence of ischemic stroke and 
poor prognosis, especially when approaching menopause. 

Several attempts have been made to determine how modula-
tion of the internal body clocks and inflammatory responses 
can affect cerebral blood supply.53-55 The circadian rhythm is 
chemically regulated,56 and a disruption of its regulation may 
result in inflammatory responses which alter the circadian 
rhythm, and can lead to stroke or increased stroke severity. 
This area of research could identify the therapeutic targets 
that could be translated to reduce damage after a stroke in 
young shift workers. Also, this type of research focus will have 
clear implications for the young adult shift workers with odd 
schedules and could even be extended to older shift workers.

Melatonin and Stroke
In humans and other mammals, the tryptophan-derived neu-
rohormone, melatonin, is secreted by the pineal gland to reg-
ulate the circadian rhythms as a part of its wide physiological 
functions. Although the nighttime increase in sleep propen-
sity coincides with nighttime endogenous melatonin produc-
tion, the duration of sleep has also been linked to the 
suprachiasmatic nucleus activity via the duration of nocturnal 
melatonin.57 Other functions of melatonin include neuropro-
tection,58 neurogenesis, and maintenance of oxidant/antioxi-
dant balance.18 Melatonin secretion undergoes 24-hour 
rhythmicity as shown by changes in its plasma and urinary 
levels, which depends on the time of the day,57 and its produc-
tion is reduced by light exposure and increased during the 
nighttime. Apart from the 24-hour variations in plasma and 
urinary melatonin levels, its secretion is also known to 
decrease with advancing age.59

Melatonin is also found in extra-pineal tissues including 
astrocytes, glial cells, and retinal cells which are also capable of 
biosynthesizing indoleamines.60 Moreover, extra-pineal mela-
tonin synthesis has been reported in the brain.56 In the central 
nervous system (CNS), melatonin is associated with the regu-
lation of the circadian rhythm, modulation of the blood pres-
sure, and promotion of sleep.56 Melatonin’s roles in age-related 
neurodegenerative disorders have also been demonstrated by 
in vivo and in vitro studies.61 However, no direct associations 
have been reported in young adults. A step-wise reduction in 
the circadian rhythm of salivary melatonin beginning around 
the age of 40 years has been reported,62 with a prolonged dura-
tion of the melatonin peak levels and the lowest daytime levels 
also observed in young adults.62,63 These studies provide 
important clues on potential neuroprotective functions of 
melatonin. Table 2 summarizes some existing studies on mela-
tonin in stroke therapy studies.

The circadian rhythm of pineal melatonin in stroke patients 
has been investigated.17,65,78 Findings from these studies indi-
cate that the melatonin rhythm is extensively preserved in cor-
tical strokes. It then implies that in extensive cortical lesions, 
there could be a delay in melatonin secretion during the first 
post-stroke days, and this could subsequently revert to a nor-
mal pattern.17 This is because melatonin synthesis is regulated 
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by the ambient light/dark cycle,77 and in extensive cortical 
ischemic stroke without notable edema, the melatonin surge 
may still be delayed. In this context, a change in the phase of 
the melatonin peak would suggest improper entrainment with 
the ambient light/dark cycle in the first post-stroke days. The 
mechanisms involved and the production rhythm of melatonin 
in stroke patients need further investigation.

It has been shown that chronic exogenous treatment with 
melatonin76,79 and pineal gland transplant in experimental mod-
els of stroke facilitate neuroprotection.67,80 In addition, melatonin 
receptor type 1A is involved in the neuroprotection of stem cells 
in in vivo models of stroke.64 This ability is linked with mela-
tonin’s direct free radical scavenging effect on neurons,20,64,73 as it 
directly protects neural tissue from free radical toxicity.27 
However, protection from free radical toxicity is not melatonin’s 

only tool against stroke, because melatonin renders the effect of 
harmful low-density lipoprotein (LDL) cholesterol and normal-
izes elevated blood pressure.81 Animal studies27,75,82,83 have shown 
that melatonin improves the recovery of brain tissues affected by 
stroke.66 Although melatonin’s roles are not yet fully defined 
when it comes to promoting rapid recovery post stroke, its role in 
increasing neuron plasticity has been proposed.69,84,85 This implies 
that melatonin not only helps prevent strokes, but it also induces 
cellular activities that reduce damage associated with strokes. In 
acute ischemic stroke, the common pathway of neuronal injury is 
also a target for anticoagulants or thrombolytics to dissolve blood 
clots.86 However, many of the experimentally identified neuro-
protective agents have failed in clinical trials. This is because 
many of the agents have a very narrow therapeutic window to 
induce protection during stroke. Thus, the urgency to develop 

Table 2. Melatonin in stroke therapy studies.

AUThORS STROkE TYPE ANIMAL MODEL OUTCOME

Borlongan et al64 Ischemic Rat/MCAO/
reperfusion injury

Pre- and post-perfusion melatonin administration enhanced glial cell 
survival

Borlongan et al65 Ischemic Rats/MCAO Intrastriatal transplantation of the pineal gland from 2-month-old rats 
attenuated the middle-cerebral-artery-induced behavioral and 
morphological changes

kondoh et al66 Ischemic Rats/MCAO Melatonin reduced ischemia-induced edema

Lin et al67 Ischemic Rats/TfCI Melatonin attenuates endoplasmic reticulum stress

Lee et al68 Ischemic Rat/TfCI Melatonin ensures preservation of the blood-brain barrier and 
neurovascular unit

Lee et al69 Ischemic Rat/TfCI Melatonin inhibits cellular inflammatory response

Alonso-Alconada 
et al58

Ischemic Rat/hypoxic ischemic 
injury

Neuroprotection (reduction in cell death, reactive astrogliosis, and white 
matter demyelination)

Yu et al71 Ischemic Mice/MCAO Melatonin reduces oxidative/inflammatory stress

Reiter et al88 Ischemic Mice/MCAO Melatonin reverses tissue-plasminogen-activator-induced brain injury

Letechipía-Vallejo 
et al97

Ischemic Rats/global cerebral 
ischemia

Melatonin preserves neural substrate, spatial learning, and memory

Wang et al73 Ischemic Rat/OgD Melatonin decreases oxidative stress and protects against glutamate-
induced toxicity

Ramos et al72 Ischemic Rat/OgD Melatonin decreases OgD-induced oxidative stress

Cuzzocrea et al63 Ischemic gerbils/MCAO Melatonin improved survival and decreased neurodegeneration-
induced hyperactivity

Sun et al74 Ischemic Rat/MCAO Melatonin decreased infarct size and breaks in both DNA double and 
single strands

Pei et al78 Ischemic Rat/MCAO Melatonin time-dependently decreased infarct volume and improved 
antioxidant status

Tan et al80 Ischemic Rat/MCAO Melatonin pretreatment modulates stem cell survival and function

Yang et al77 Ischemic Mice/MCAO Melatonin upregulates silent information regulator 1, increase 
antiapoptotic factor, and decreases pro-apoptotic factor activity

Wang et al76 Ischemic Mice/MCAO and OgD Melatonin decreases oxidative stress and inhibits mitochondrial 
cytochrome C release

MCAO, middle cerebral artery occlusion; TfCI, transient focal cerebral ischemia; OgD, oxygen glucose deprivation.
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novel neuroprotectants with a wide therapeutic window may give 
melatonin a chance as a novel neuroprotective agent in stroke. 
Because most of the existing studies do not provide clues about 
the general physiological effects of different doses of melatonin in 
the associated protection, future studies are necessary to address 
this issue. Moreover, improved protection of the brain after stroke 
may be better achieved when melatonin is combined with cellular 
molecules that regulate brain energy supply and demand to 
achieve homeostatic therapy in the treatment of stroke.

Melatonin and stroke in the young adult

A rising trend in the incidence of ischemic stroke in young 
adults has been reported, and this rise has been associated with 
certain identifiable risk factors. In a study of more than 1000 
young stroke patients in Finland, dyslipidemia, smoking, and 
hypertension were the most common vascular risk factors.24 
However, the results of a more recent study in Estonia, Eastern 
Europe, revealed that the most frequently associated risk fac-
tors were hypertension, dyslipidemia, and smoking, in that 
order.26 Existing studies indicate that a relatively constant set 
of modifiable risk factors play a large role in the pathogenesis 
of ischemic stroke in young adults. Moreover, these risk factors 
have been reported to be generally associated with ischemic or 
hemorrhagic stroke in the young adult.29,87 Also, they appear 
highly prevalent in young adult stroke patients and do not 
appear to be significantly affected by differences in geography, 
climate, or genetic diversity.

Oxidative stress is a major cause of neuronal damage in 
ischemic stroke, and melatonin may play a role in the antioxi-
dant response. The decreased melatonin levels seen in acute 
ischemic stroke and in the experimental models indicate the 
potential therapeutic importance of this neurohormone.88 
Moreover, melatonin supplementation to restore the antioxi-
dant capacity has been proposed for clinical assessment.74 In the 
context of young or old stroke, there is growing evidence that 
connects oxidative stress and inflammation with an increase in 
age. This indicates that chronic treatment with melatonin is 
able to regulate oxidative stress and inflammation in aged brain 
reminiscent to a younger brain.74 It then appears that melatonin 
may have a unique capability of regulating many mechanisms in 
the inflammatory cascades68,71 to initiate neuroprotection 
against ischemic insults. Indeed, existing studies have been able 
to advance the concept of melatonin’s neuroprotective capability 
that includes oxidative stress, differentiation, and secretion of 
specific growth factors in the brains of young stroke patients.20,65 
Therefore, a potential hypothesis to test is how melatonin 
catabolism is linked with the overproduction of free radicals 
during acute ischemic stroke. From such a study, one can now 
envision a melatonin receptor metabolism technology in trans-
lational and clinical research. Because the levels of endogenous 
melatonin are associated with age, it is possible that dietary sup-
plementation with melatonin may reverse the adverse effects in 

an aged cerebral ischemic brain. In this context, a melatonin 
supplementation to restore the antioxidant capability may 
deserve clinical assessment in young stroke. In support of this 
idea, melatonin treatment of aged mice regulated the gene 
expression profile of immune-related mRNAs in a pattern simi-
lar to younger animals.89 The mechanisms involved require 
more investigation in future studies. Findings may reveal how 
melatonin regulates senescent brain into a response profile that 
resembles that of the younger brain, especially in regulating the 
immune system.

The possible protective roles and/or mechanisms of action 
of melatonin in ischemic stroke have also been examined 
extensively.72,90,91 In addition to its antioxidant properties, there 
are suggestions that melatonin is able to reduce or modulate 
the impact of the different levels of stroke pathophysiology, 
including Ca2+ dyshomeostasis, excitotoxicity, inflammation, 
and apoptosis. In separate studies, Borlongan et al65 and Kilic 
et al92 reported improved motor skills and a reduction in infarct 
size in a rat model of acute ischemia following pineal gland 
transplantation65 and exogenous melatonin administration.92 
The possible mechanisms that are responsible for melatonin’s 
effects in acute ischemia include melatonin’s ability to maintain 
Ca2+ homeostasis by preventing acid-induced or glutamate-
dependent alteration in Ca2+ levels.93,94 Melatonin also regu-
lates the levels of extracellular glutamate by inhibiting 
glutamate release following ischemic injury.95

In a young adult’s central nervous system, melatonin is well 
distributed in the brain and spinal fluid; however, levels decline 
progressively with an increase in age such that adults aged 
more than 80 years have only half the melatonin levels in their 
spinal fluid as young people.80 This review supports the notion 
that melatonin secretion is generally adequate in the young 
adult population; hence, our central theme is that activities of 
endogenous melatonin could be enhanced to modulate some 
of the risk factors and prevent stroke in the young adult. If 
stroke occurs in the young adult brain, a melatonin-based 
therapy may also regulate the pathogenesis and its manage-
ment. However, whereas melatonin secretion is generally 
believed to be adequate in the young adult population, signifi-
cant individual variations in its secretion or activities are 
known to exist.96,97 The onset of step-wise reduction in mela-
tonin rhythm has been reported to commence in the young 
adult age.62 In general, melatonin appears to have a large role 
to play in the pathogenesis, and probably management of 
stroke in the younger age groups.

Management of Stroke in Young Adults and Potential 
Roles of Melatonin
Several concerns have been raised about the increasing rate of 
vascular risk factors in young adults and their roles in increas-
ing the risk of ischemic stroke and its recurrence. To date, few 
research attempts have been made to address stroke problems 
in the young adult. Early diagnosis could be very challenging 
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due the lack of awareness and the relative irregularity of stroke 
when compared with stroke mimics. Indeed, the causes of 
ischemic stroke in the young adult are diverse and can be com-
paratively uncommon, resulting in doubts about diagnostic 
assessment and raising concerns about specific management. 
There is no doubt that the incidence of ischemic stroke is rap-
idly increasing in the young adult population, whereas modali-
ties for its management remain limited. Therefore, newer and 
better agents are constantly being investigated. Currently, the 
use of recombinant tissue plasminogen activator (r-tPA) is a 
Food and Drug Administration (FDA)-approved therapy for 
acute ischemic stroke. However, its use is not devoid of limita-
tions, such as its narrow window of possible therapeutic benefit 
and eligibility of few patients for the therapy.70,98 The implica-
tion of this is that, to date, we are yet to develop anything close 
to an “ideal” drug for the management of ischemic stroke. As 
highlighted earlier, results of studies conducted with experi-
mental animals may point in the direction of possible use of 
melatonin for stroke management in humans. There is a gen-
eral belief that melatonin may be able to prevent more brain 
damage by protecting neurons occupying the ischemic penum-
bra, which is adjacent to the infarcted core.72 A thorough 
review of stroke prevention with a general focus on specific 
causes and the general use of melatonin in stroke is outside the 
scope of this article. That said, the hope for the development of 
effective melatonin-based therapy for stroke has endured and 
in the last few years has been encouraged by the neuroprotec-
tive functions of melatonin for reducing the brain’s intrinsic 
susceptibility to ischemic insults. Thus, the ability to protect 
the brain from free radicals and its possible prophylactic effects 
may give melatonin a chance as a homeostatic therapy in the 
treatment of stroke. Also, the individual benefits derivable 
from melatonin may be cumulative in reducing the risk of 
developing stroke in young adults.

Conclusion
Although melatonin has been found to be beneficial in several 
animal models of stroke, its possible benefits in humans with 
stroke are still being investigated. In young adult stroke patients, 
little is known about the clinical benefits of melatonin use, 
despite its link to some of the associated risk factors. Melatonin’s 
antiapoptotic, antioxidative, and neuroprotective effects might 
make it uniquely applicable in this context. However, although 
there is a dearth of human studies evaluating the safety of mel-
atonin in stroke, cautious application will allow an understand-
ing of the interactions between exogenous melatonin and its 
endogenous rhythm, and how these interactions may affect 
outcomes in young adult stroke patients. Also, the different 
mechanisms that may be responsible for melatonin’s neuropro-
tection in humans will be better understood, and the influence 
of age on them will be better studied. Therefore, as the world 
experiences changes in the demographics of stroke, attention 
should be paid to design and conduct of clinical trials that 

explore the safety and potential applications of melatonin in 
young stroke patients.
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