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Abstract: In recent years, there has been major interest in the exposure to physical therapy
during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical
and human machine interface (HMI) applications. An automated system will guide the user to
perform the training during rehabilitation independently. Advances in engineering have extended
electromyography (EMG) beyond the traditional diagnostic applications to also include applications
in diverse areas such as movement analysis. This paper gives an overview of the numerous
methods available to recognize motion patterns of EMG signals for both isotonic and isometric
contractions. Various signal analysis methods are compared by illustrating their applicability
in real-time settings. This paper will be of interest to researchers who would like to select the
most appropriate methodology in classifying motion patterns, especially during different types of
contractions. For feature extraction, the probability density function (PDF) of EMG signals will
be the main interest of this study. Following that, a brief explanation of the different methods for
pre-processing, feature extraction and classifying EMG signals will be compared in terms of their
performance. The crux of this paper is to review the most recent developments and research studies
related to the issues mentioned above.

Keywords: EMG signals; isotonic contractions; isometric contractions; feature extractions;
classifications; probability density functions

1. Introduction

The World Health Organization defines rehabilitation or rehab as the combined and coordinated
use of medical, social, educational and vocational measures for training and retraining an individual
to the highest level of functional ability. Physical therapy in rehabilitation assists individuals to
recover as much independence as possible from neuromuscular diseases, amputation, and disability.
Rehabilitation centres provide physical treatment and therapy that can help patients cope with deficits
and reverse many disabling conditions that cannot be done by medical care under the supervision of
therapists. Due to physical disability, assistance through an automated technical system may potentially
enhance the physical activities of a patient during rehabilitation, as discovered by Mosher in the 1960s.
He introduced the Human Machine Interface (HMI) as a control system and effectively demonstrated
the system’s use in the mechanism of lower-limb orthoses.
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Since then, advancements of HMI have extensively been developed with different types of
mechanical actuators, structures and interfaces. Essentially, HMI enables humans to interact with
or control the system of a machine/dynamic technical system. The term machine can also refer to a
specific device, a computer program or other physical tools. In the last two decades, researchers have
been developing ankle foot orthoses (AFO) to help impaired individuals walk in a more natural way.
In developing AFO, special considerations were given to the algorithms with a supervisory role as
those dedicated to the adaptation of different gait conditions and human motion intention recognition
as discussed by Jiménez-Fabidn and Verlinden [1].

For a control system based on the periodic motion of gait, ankle behavior may be adjusted based
on information about the current kinetic/kinematic state and the processes can be simplified as shown
in Figure 1. Later in 2013, Dzahir et al. derived a mathematical equation of contraction model based
on hip and knee joint angles to control the antagonistic mono- and bi-articular actuators of the Body
Weight Support Gait Training System (AIRGAIT) [2]. Satisfactory performance was obtained when
tested on a healthy subject in a robot-assisted walk test. After this study, four coordination patterns
were proposed by Needham et al. to assess gait kinematics, namely, in phase with proximal dominancy,
in-phase with distal dominancy, anti-phase with distal dominancy and anti-phase with proximal
dominancy, which interprets the coupling angle. In clinical research, the angle movement of the pelvis,
thorax, and arm kinematic are tracked by a VICON motion to deviate hemiplegic cerebral palsy
patients to improve the AFO [3]. The tracking approach has also been used to determine the gait
pattern of the pixel-wise binary extracted [4].
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Figure 1. Block diagram in a control system using a gait pattern generator and EMG signals adopted from [1].

EMG signal-based control system research is ongoing for HMI applications especially in
rehabilitation [5]. Generally, EMG is an experiment-based method for evaluating and recording a series
of electrical signals that emanate from body muscles. The EMG signals are formed by physiological
variations in the state of muscle fiber membranes. A major factor in muscle physiology is influenced
by the excitability of muscle fibers through neural control [6]. In addition, the EMG signals are based
upon action potentials at the muscle fiber membrane resulting from depolarization and repolarization.
Konrad states that this phenomenon can be illustrated by a model of semi-permeable membrane
describing the electrical properties of the sarcolemna (the cell membrane of skeletal muscle) as shown
in Figure 2.

From the figure, an ionic equilibrium between the inner and outer spaces of a muscle cell forms a
resting potential at the muscle fiber membrane, which is approximately in the range of -80 to <90 mV
when not contracted. Similarly, Daud et al. reports that the amplitude of surface EMG signals are
in the range from microvolts, uV to millivolts, mV depending on the muscle types and conditions
during the observation process [7]. This difference in potential that is maintained by physiological
processes (ion pump) results in a negative intracellular charge compared to the external surface. The
activation of an alpha-motor anterior horn cell (induced by the central nervous system or reflex) results
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in the conduction of excitation along the motor nerve. After the release of transmitter substances at the
motor endplates, an endplate potential is formed at the muscle fiber innervated by this motor unit.
The diffusion characteristics of the muscle fiber membrane are briefly modified and Na+ ions flow in.
This causes a membrane depolarization, which is immediately restored by a backward exchange of
ions within the active ion pump mechanism, also known as repolarization.
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Figure 2. Schematic illustration of repolarization/depolarization cycle within excitable membranes.

According to Reaz et al., the combination of muscle fiber action potentials from all the muscle
fibers of a single motor unit is called as motor unit action potential (MUAP) [8]. This MUAP can
be detected by non-invasive or invasive techniques. A non-invasive technique is applied by placing
electrodes or sensors directly on the skin while an invasive approach is penetrating the needle/wire
electrode into the muscle tissue to detect and record EMG signals. Notably, the non-invasive technique
is preferred to measure EMG signals as this approach is free of discomfort and gives minimal risk of
infection to amputees [9-12]. For surface EMG signals, the amplitude is in a range between 0 to 10 mV
and the frequency range is restricted from 10 to 500 Hz.

In detecting and recording EMG signals, there are two main issues of concern that influence the
fidelity of the signals;

e signal-to-noise ratio
e noise signal

The first issue examines the ratio of energy in EMG signals to energy in noise signals. In general,
noise is defined as electrical signals that are not part of the desired EMG signal [8]. The second issue
will be discussed extensively in the next section.

Noises in EMG Signals

Whenever an EMG signal is being recorded from a muscle, various types of noise will contaminate
it. Therefore, analyzing and classifying EMG signals is very difficult because of the complicated
patterns of EMG which is influenced by the anatomical and physiological properties of muscles. The
electrical noise which would affect EMG signals can be categorized into the following types:

Inherent Noise in Electronics Equipment

Inherent noise is electrical noise generated by all types of electronic equipment which have
frequency components that range from 0 Hz to several thousand Hz [8,9]. When recording EMG
signals, electrodes made of silver/silver chloride (10 mm x 1 mm) have been found to give an adequate
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signal-to-noise ratio (SNR) and are electrically very steady. The impedance decreases when the
electrode size enlarges. Researchers are allowed to use high electrode impedances for experiments in
which the statistical power is high or in which large numbers of electrodes are necessary, but are advised
to switch to low electrode impedances for experiments in which statistical power would otherwise be
too low. This noise can be eliminated using intelligent circuit design and high quality instruments.

Ambient Noise

Electromagnetic radiation is the source of this kind of noise [8]. Its amplitude is sometimes one to
three times greater than the EMG signals of interest. The human body’s surface continuously emits
electromagnetic radiation and exposure. To avoid this noise on the surface of the Earth is impracticable.
Power-Line Interference (PLI) is ambient noise arising from the 60 Hz (or 50 Hz) radiation of power
sources. A high pass filter can remove the interference if the frequency of this interference is high.
However, if the frequency content of PLI is within the EMG signal, then it is essential to recognize the
nature of the EMG signal.

Motion Artifact

The length of a muscle decreases when the muscle is activated. Furthermore, muscle, skin and
electrodes move with respect to one another. During this time, electrodes will show some movement
artifacts [8,9]. Motion artifacts cause irregularities in the data. There are two main sources of motion
artifacts: (1) electrode interface and (2) electrode cable. Motion artifacts can be reduced by proper
design of the electronic circuitry and set-up. The frequency range of motion noise is usually from 1 to
10 Hz and has a voltage comparable to the amplitude of the EMG. Recessed electrodes can remove the
movement artifact significantly, in which a conductive gel layer is used between the skin surface and
the electrode-electrolyte interface.

Inherent Instability of Signal

The amplitude of EMG signals is quasi-random in nature. Frequency components between 0 and
20 Hz are mostly unstable because they are affected by the firing rate of the motor units [8,9]. Because
of the unstable nature of these signal components, it is considered as unwanted noise. The number of
active motor units, motor firing rate and mechanical interaction between muscle fibers can change the
behavior of information in EMG signals.

Electrocardiographic (ECG) Artifacts

Electrical activity of the heart is the foremost interfering component for EMG in the shoulder
girdle, which is called an ECG artifact. This artifact often contaminates EMG signals, especially in trunk
muscle electromyography [8,9]. The placement of EMG electrodes which is conducted by a selection of
pathological muscle group often decides the level of ECG contamination in EMG. Due to an overlap of
frequency spectra by ECG and EMG signals and their relative characteristics such as non-stationarity
and varied temporal shape, it is very difficult to remove ECG artifacts from EMG signals.

Cross Talk

An undesired EMG signal from a muscle group that is not commonly monitored is called
“crosstalk” [9]. Crosstalk contaminates the signal and can cause an incorrect interpretation of the signal
information. Crosstalk depends on many physiological parameters and can be minimized by choosing
the electrode size and inter-electrode distances (typically 1-2 cm or the radius of the electrode) carefully.
Electrodes with a smaller surface area may reduce bipolar spacing and mathematical differentiation.
Thus, the combination of these three methods decreases potential crosstalk effectively.

As various type of noises contaminate EMG signals, the process of analyzing and classifying EMG
signals becomes very difficult, especially during isotonic and isometric contractions [9]. Many studies
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have proposed various techniques in detecting muscle activity to allow for a more standardized and
precise evaluation of rehabitational, neurophysiological and assistive technological findings. Therefore,
this paper will discuss techniques for features extraction and classification of surface EMG signals
along with their respective advantages and disadvantages. On the other hand, probability density
function (PDF) of surface EMG signals is also suggested to be applied as features in motion patterns
and the potential PDF used to illustrate EMG signals will be identified. Finally, various methodologies
that are used to analyze surface EMG signals will be discussed in terms of classification accuracy.

2. Motivation

EMG is a type of pathology, location, and etiology which can be investigated using characteristics
of EMG waveforms. These techniques assist medical doctors in their diagnosis. For complicated
cases, invasive methods such as muscle biopsies or more sophisticated imaging techniques such as
ultrasound are preferred. Muscle contraction is the activation of tension-generating sites within the
muscle fibers. A muscle fiber is excited via a motor nerve which generates an action potential that
spreads along the surface membrane (sarcolemma) and the transverse tubular system into the deeper
parts of the muscle fiber.

The human skeletal muscular system is primarily responsible for providing the forces required
to perform various actions [13]. In the past, mechanical engineers and physicists used simulation
procedures to create a model to replicate the human muscles. Hill [14] created a model that simulates
human muscles which came to be known as the Hill-type model in early 1938. This model applied three
mechanical elements to represent muscle behavior. They are contractile (CE), a parallel element (PE)
and a series element (SE). The SE and CE are used to represent the force generated by the mechanical
response and the muscle fibers to the muscle’s length changes, respectively. After this study, the
Hill-type model has been widely used to estimate the muscular force generated by humans. In 2001,
Rosen and his colleagues presented a method to control a powered exoskeleton arm system using the
model [15]. The motion of flexion and extension muscles of the elbow joint was estimated based on
the Hill-type model and was used to control the robot arm system. To apply the Hill based model,
Fleischer et al. [16] proposed a direct force control (DFC) and dynamic human body model (DHBM) to
achieve exoskeleton robot control in both the lower extremities and hands.

Unfortunately, the Hill-type model is a complex one as many parameters such as muscle fiber
length or muscle contraction velocity. This internal information varies according to each subject and
a calibration procedure is necessary to obtain the information in a way to control the prostheses or
robots. In addition to building a muscle model, machine learning algorithms can be employed to
recognize a user’s intention based on the motion patterns of EMG signals. As a result, the user can
possibly control the assistant device upon recognition of the results intuitively. In 2014, Naeem had
compared his proposed method based on the Fuzzy Logic theorem with the Hill-type model [17].
The general model extracted muscle force features from EMG signals and the model is almost similar
with the Hill-type model.

In classical neurological EMG, an artificial muscle response due to external electrical stimulation
is analyzed in static conditions. Unlike the classical neurological EMG, the focus of kinesiological EMG
can be described as the study of neuromuscular activation of muscles within postural tasks, work
conditions, functional movements and training/treatment regimes. The fundamentals behind most
of the common resistance-training exercises can be categorized into two classes, namely isotonic and
isometric contractions as shown in Figure 3. These two types of resistance contractions are performed
very differently and have different purposes. Analysis during isotonic contractions is most common
for strength and athletic goals, meanwhile isometric contractions are most often used for physical
rehabilitation. The details of both contractions will be discussed in the following sections.
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Figure 3. Different types of muscle contractions based on muscle force and length.

2.1. Isotonic

Isotonic contractions involve muscular contractions against resistance in which the length of
the muscle changes. In other words, this type of contraction generates force by changing the length
of the muscle and it can be either concentric contractions or eccentric contractions. By pairing both
contractions, the movements will create a dynamic contraction produced during dynamic exercise.
Dynamic exercise is any exercise that involves joint movement, such as a dumbbell bicep curl exercise.

2.1.1. Concentric Contractions

Contractions that permit the muscle to shorten are referred to as concentric contractions [18].
More specifically, concentric contractions occur when the tension stays the same while the length
is getting shorter and the energy is fluctuating. In particular, the muscle begins to shorten when a
muscle is activated and required to lift a load, which is less than the maximum tetanic tension it can
generate [19]. This can be seen through the raising of a weight during a bicep curl. By performing a
series of constant velocity shortening contractions, a force-velocity relationship can be determined.

2.1.2. Eccentric Contractions

Contrary to concentric contractions, the length of eccentric contractions are longer, affecting the
muscles to elongate in response to a greater opposing force. As the load on the muscle increases,
it finally reaches a point where the external force on the muscle is greater than the force that the muscle
can generate. Thus, even though the muscle may be fully activated, it is forced to lengthen due to the
high external load. There are two main features to note regarding eccentric contractions:

e Absolute tensions achieved are very high relative to the muscle’s maximum tetanic tension
generating capacity.
e Absolute tension is relatively independent of lengthening velocity.

This suggests that skeletal muscles are very resistant to lengthening. The basic mechanics of
eccentric contractions is still a source of debate since the cross-bridge theory that conveniently describes
concentric contractions is not as successful in describing eccentric contractions.

Eccentric contractions are currently a very popular area of study for three main reasons: First,
much of a muscle’s normal activity occurs while it is actively lengthening, so eccentric contractions
are physiologically common, for instance by walking [20,21]. Second, muscle injury and soreness
are selectively associated with eccentric contraction. Finally, muscle strengthening may be best
using exercises that involve eccentric contractions. Therefore, there are some very fundamental
structure-function questions that can be addressed using the eccentric contraction model. Eccentric
contractions have very important applications that can therapeutically be used to strengthen muscles.
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2.2. Isometric

Contrary to isotonic contractions, isometric contractions create no change in muscle length but
tension and energy are fluctuating. This action causes muscles to produce force. The force generated
during an isometric contraction is wholly dependent on the length of the muscle while contracting as
can been seen in Figure 4. In other words, isometric contractions are done in static positions where the
joint angle and muscle length do not change during contraction. An isometric contraction is typically
performed against an immovable object. This can be seen through side planks or wall-sits.

The EMG signals recorded in isotonic conditions are widely used in clinical applications to
classify neuromuscular diseases [22] and muscles fatigue [23]. Meanwhile, a large and growing
body of literature analyzes EMG signals in isometric and isotonic contractions to control assistive
robots, lower-limb orthoses and exoskeletons as reviewed in [24,25]. Several studies conducted
had segmented EMG signals obtained during isotonic contractions using adjacent or overlapped
windowing techniques for further analysis [26-28]. Nevertheless, Tsai et al. reported that EMG signals
collected from the same type of muscle contraction is preferable, whether isotonic or isometric based
on its experimental results for the purpose of controlling the exoskeleton robot [29]. Therefore, the
comparable results in features extraction corresponding to isotonic and isometric contractions of EMG
signals via skin surface is investigated in this study. In addition, to use EMG signals in controlling
HM]I, advanced mathematical and statistical methods such as probability density function (PDF) is
necessary to describe the amplitude of EMG signals as discussed in [30,31]. Thus, an overview of
techniques in EMG signal analysis and potential PDF proposed in literature during isotonic and
isometrics conditions will inspire researchers in both clinical and engineering areas.
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Figure 4. A series of isometric contractions performed at different muscle lengths.

3. Research Methodology

Generally, the process of developing assistive devices based on EMG signals is presented in
Figure 5. Three main cascaded modules should be carefully considered, consisting of pre-processing,
feature extraction and classification. Numerous approaches have been proposed to achieve better
performance of classification. In order to obtain higher classification accuracy, the selected features are
the main kernel used in analyzing EMG signals [28]. The main purpose of this paper is to examine the
accuracy of the classification system conducted by previous researchers. Firstly, the methods applied
in pre-processing, feature extraction and classification for automated EMG analysis will be reviewed.
Then, the EMG dataset used in the literature will be identified. A comparison of techniques and
muscle contractions will be discussed, followed by future trends. Lastly, we summarize the methods
to analysis EMG signals and conclude the outcome of previous research.
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Figure 5. An overview in developing EMG control systems.

4. Automated EMG Analysis

4.1. EMG Signal Preprocessing

Various techniques for handling data of EMG signals before the feature extraction and
pre-processing stages (e.g., data segmentation, filtering and rectification) will be used to improve
the accuracy and response time of the data controller. Initially, data will be segmented from the raw
EMG signals. For each divided segment which has been filtered and rectified, a feature set (Section 5)
will be computed and then be fed to the classifier (Section 6), and these processes are continuous.
For data segmentation, the windowing technique and data length are two main points that need to
be considered.

Englehart and Hudgins pointed out that the different lengths of EMG data effect its classification
error [32]. This statement was proven by Farina and Merletti as the performance of classifier is degraded
using a segment length that is less by 128 ms, leading to high bias and variance of features [33]. Similar
with a study conducted in 2013, the accuracy of classification increases when the segment length
increases from 125 to 500 ms [27,34]. This is because a larger segment provides additional information
and yields small bias and variance in the estimation of the feature. This segment condition provides
high accuracy and can be operated in real-time applications for the upper limb [35]. In [28], the sample
length of EMG data is set to 256 ms during the beginning of the movement as this span contains the
information of movement data. For prosthetic limb control, the response time should be less than
300 ms in order to reach the real-time constraints [36].

There are two main methods used for data windowing, namely adjacent and overlapping.
Adjacent windowing is where adjacent disjointed segments with predefined length uses feature
extraction and classification after a certain processing delay, T. The 7 is the time required to calculate
the feature and classify the data. The drawback of this technique is that the T will cause the processor to
stay in an idle condition during the remaining time of the segment length [35]. This matter is overcome
with the overlapped windowing technique, where the new segment slides over the current segment
and the increment time is less than the segment length. However, the performance of the overlapped
segmentation has no improvement in classification accuracy, but it is significant to be employed for
large segments (greater than 200 ms) in order to avoid delays in time [27].

To overcome various noises mentioned in the previous section, EMG signals need to be filtered
to reduce the artifacts. Balbinot and Favieiro used a band pass filter of 500 Hz cutoff frequency for
high pass filter and a low pass filter of 20 Hz cutoff frequency to reduce motion artifacts [13]. For the
elimination of ECG artifact from surface EMG signals, Yeom and Yoon [37] compared the performance
of an adaptive filter which is a reliable and efficient tool for mixed and varied patterns of transient,
short and long lasting dystonic contractions as proven by Luca et al. [38], bandpass filtering methods,
and mathematical morphology operator (MMO) methods. Even though the adaptive filter produces
higher sensitivity which is associated with leaving EMG signals in ECG signals, adaptive subtraction
method is somewhat effective to remove ECG artifact from contaminated electromyogram signals and
has an acceptable result [39]. In detecting muscle activation patterns for the upper limb, raw EMG
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signals were filtered using an adaptive whitening filter [40] and high-pass finite impulse response
filtered with 100 taps at a cutoff frequency of 20 Hz [11].

For lower limbs, most studies filtered EMG signals using a Butterworth filter with different
orders and cutoff frequencies. Nadzri et al. [10] applied a low-pass filter with a cutoff frequency 6 Hz,
Kendell et al. [41] used a 6th order low pass with a cutoff frequency of 5 Hz and Al-Angari et al. [42]
used a band pass with a cutoff frequency from 5 Hz to 500 Hz. Other studies reduced the noise in EMG
signals using a high-pass filter with a 500 Hz cutoff frequency to reduce motion artifacts and a low
pass filter of 20 Hz cut-off frequency [13]. Nevertheless, it remains very difficult for the noise to be
removed clearly [9].

Thus, there is little attention in the literature for the filtering stage. The selection methods for the
pre-processing stage are determined according to its applications. Yet, most of the studies highlighted
the classification accuracy in the analysis of EMG signals for motion patterns. In addition to successfully
recognizing the motion patterns, a proper machine learning method is critical. Current classification
algorithms mostly tested with EMG signals on transient or stationary scenarios separately were
reported. The relationship between both states is thoroughly examined. The next section will discuss
the types of muscle contractions for EMG signals.

4.2. EMG Feature Extraction and Selection

In signal processing analysis, feature extraction plays a critical role to achieve a better performance
of classification for motion pattern recognition. This process involves the transformation of raw EMG
signals into a feature vector. Generally, features in the analysis of EMG signals can be divided into three
categories, including time domain (ITD) features, frequency domain (FD) features and time-frequency
domain (TFD) features [29,43,44]. For TD features, the features are evaluated based on signal amplitude
that varies with time. The amplitude of the signal depends on muscle conditions and types during the
observation process. To keep the computational complexity low, most previous studies had focused
on TD features. In addition, these features do not require additional signal transformation. Unlike
TD features, FD features contain the power spectrum density (PSD) of the signals and are computed
by parametric methods or a periodogram. On the other hand, a combination information of time and
frequency are defined as TFD features. TFD features can characterize varying frequency information at
different time locations, providing plentiful non-stationary information of the analyzed signals. Oskei
and Hu had illustrated the key parameters in each domain of signal analysis [45].

In 1993, five TD features were proposed by Hudgins et al. [46]: mean absolute value (MAV),
mean absolute value slope, slope sign changes (SSC), zero crossing (ZC) and waveform length (WL).
According to Tsai et al., the time taken to extract the features set is approximately 10 ms for 200 ms
of sampled data collected for normal and amputee subjects during dynamic and static contractions
of the arm [29]. The ZC and SSC features in TD represent rough FD information but do not involve
converting EMG signals to FD. In the detection of hand motions, Ahsan et al. extracted EMG signals
using MAYV, ZC, SSC, root mean square (RMS), variance (VAR) and standard deviation (SD) [47].
Extended work was conducted in 2013 by adding one more feature, WL, and the feature is fed as
an input to the classifier. In the same year, another TD feature, namely maximum amplitude (MAX)
is used along with SD and RMS to interpret EMG signals within hand-lifting three different loads.
SD had the best overall performance compared to MAX and RMS [7]. Furthermore, RMS and MAX
features are the better ones that can be used with SD for a useful feature vector.

In 2014 [48], the complexity of EMG signals of patients after stroke during 20 sessions of
robot-aided rehabilitation training was investigated using two indexes: Fuzzy approximate entropy
(fApEn) features and maximum voluntary contraction (MVC). Other TD features such as skewness
(Skew) [45], Kurtosis (Kurt) and moving approximate entropy (moving ApEn) were initially employed
by Ahmad and Chappel in 2009 for prosthetic hand applications. Moving ApEn effectively recognizes
the stages of contraction (e.g., start, middle, end) based on surface EMG signals of flexor carpi ulnaris
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and extensor carpi radials muscles [35]. The research clarified that using moving ApEn to extract
features in clinical processes is promising.

Work done by Balbinot and Favieiro showed that features in TD, specifically RMS is possible to
obtain for each of the eight channels and these values can be used as inputs to the classifier for the
windowing signal to occur at the instant when a movement occurs [13]. Similarly, RMS appears to be
the best parameter compared to MAV, MAX, SSC, ZC and WL as it provides a quantitative measure for
electrode selection [41], thus delivering the best performance for facial gestures of EMG signals [49].
On the other hand, Integrated EMG (IEMG) features used to determine an increase in signal period,
power and amplitude reflects a higher muscle fiber recruitment for a fixed external force [19]. Several
studies have explored potential TD features that can be calculated based on raw EMG time series as
shown in Table 1.

Table 1. Time domain features.

Features Abbreviation References
Integrated EMG IEMG [28]
Mean Absolute Value MAV [7,28,42,47,50]
Modified mean absolute value 1 MAV1 [28,51]
Modified mean absolute value 2 MAV2 [28,51]
Root Mean Square RMS [7,13,28,47]
Variance VAR [28,47]
Waveform length WL [28,42,50]
Zero crossing ZC [28,42,50]
Slope sign change SSC [28,42,47]
Willison amplitude or Wilson amplitude WAMP [28,47]
Kurtosis KURT [31]
Skewness SKEW [52]
Moving Approximate Entropy moving ApEn [35]
Fuzzy approximate entropy fApEn [48]
Simple square integral SSI [28]
v-Order A% [28,50]
Log detector LOG [28]
Average amplitude change AAC [28]
Difference absolute standard deviation value DASDV [28]
Mean absolute value slope MAVSLP [28]
Multiple hamming windows MHW [28]
Multiple trapezoidal windows MTW [28]
Histogram of EMG HIST [50]
Auto-regressive coefficients AR [50]
Cepstral coefficients [28]
Standard deviation SD [7,42,47]
Cepstral coefficients CC [28]
Sample entropy SampEn [53]
Integral absolute value 1AV [50]
Variance VAR [50]
Maximum amplitude MAX [7]

Only a couple of studies had used FD as features in the motion pattern recognition. Spectral
or frequency domain features are mostly used in the assessment of muscle fatigue and motor unit
recruitment analysis as discussed by Al-Mulla et al. [19]. Changes in EMG signals in the FD relate to the
median power frequency (MPF), which varies due to a shift towards lower frequencies such as a relative
decrease in high-frequency signal power, a small increase in low-frequency signal power, an increase
in high-frequency spectrum slope or a decrease in low-frequency spectrum slope. In clinical practice,
power spectral analysis such as mean power frequency (MPF) of EMG signals provides information
regarding the complex changes in muscular and neural signals induced by stroke survivors [54]. The
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study showed that a majority of stroke subjects have lower MPF in their paretic muscles than in their
contralateral muscles at matched isometric contraction force.

On the other hand, PSD, mean frequency (MNF) and median power frequency (MNP) of the
power spectrum are usually applied as indices to characterize EMG signals, especially for muscle
contractions [55]. The conventional features had been modified by Phinyomark et al. in a way that
robust features can be extracted to track the progression of fatigue over time [56]. They modified the
mean and median frequency by calculating the mean and median of amplitude spectrum instead
of power spectrum, which are defined as modified mean frequency (MMNF) and modified median
frequency (MMDF). The MNF, median frequency (MDF), bandwidth (BW) and Normalized spectral
moments (NSM) are extracted to detect muscle fatigue for upper limbs [23]. Farina and Merletti defines
the PSD of a wide sense stationary stochastic process as a Fourier transform of the autocorrelation
function of the EMG signal [33]. All the possible FD features to be extracted are shown in Table 2.

Table 2. Frequency domain features.

Features Abbreviation References

Mean frequency MNF [28,41]

Median frequency MDF [28,41]
Mean power frequency MNP [51]
Peak frequency PKF [28]
Total power TTP [28]
Frequency ratio FR [28]
Power spectrum ratio PSR [28]
The power spectrum deformation Q [41]
Variance of central frequency VCF [28]
Signal-to-motion artifact ratio SMR [41]
Signal-to-noise ratio SNR [41]
Spectral moment SM [28]
Energy EN [42]
Wavelet decomposition WDC [42]
Wavelet decomposition difference WDCDIF [42]
Modified mean frequency MMNEF [56]
Modified median frequencies MMDEF [56]
Short Time Fourier transform STFT [57]

Several studies have investigated the performance of TD and FD features. Phinyomark et al. had
carried out a comparison between the performance of twenty-seven TD features and eleven FD features
to discriminate hand movements. EMG signals were obtained at a constant force and static contraction.
As a result, TD features were superfluid and redundant based on the scatter plot of features, statistical
analysis and classifier [28]. Even though the time consumption and dimension for TD features were
faster and smaller than other features, recognition performance was not satisfactory as claimed by
Tsai et al. [29].

Previous studies have indicated that neural control strategies of isometric and isotonic contractions
differ. For instance, during isotonic contractions, numerous motor units (MUs) showed lower
recruitment thresholds [58,59], which implies that forces generated by muscles during various types
of contractions must be considered differently. In motion recognition applications, normalization
is a crucial step and changes in EMG amplitude can influence the normalization result, affecting
recognition performance. Conversely, the behavior of MUs during dynamic contraction also differs
from their behavior during isometric contraction. Thus, the spectrum of EMG signals and muscle
activation pattern of these two types of contraction might be dissimilar [29]. In TD, the magnitude of
EMG signals during isotonic contraction can differ from and be greater than those during isometric
contraction [26].

The work of Kendell et al. [41] represents a study of electrode-pair selection based on the
characteristics of EMG signals using six TD features and five FD features. In the study, TD provides
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a more consistent method than FD features for electrode selection. Similar to a study conducted in
2013 by Phinyomark et al., TD features yield a better performance than FD features for long term.
Nonetheless, TD features assume data as a stationary signal, which is inappropriate to be employed for
EMG signals as these signals are non-stationary [23]. Ramirez and Hu mentioned that these features
give a measure of frequency, waveform amplitude, and duration within some limited parameters [24].

A multiple feature performance had been investigated. In 2006, Oskoei et al. combined both
TD and FD features into a feature vector. The result implies that using TD features alone cannot
provide satisfactory accuracy for recognizing the four motion patterns [60]. Statistical analysis shows
that the four motion patterns represented by AR, RMS, and STFT-ranking feature ( = 5) exhibit
statistically significant differences during both isotonic and isometric contractions, implying that
applying multiple features can obtain more satisfactory recognition performance [29]. However,
features based on MNF, MDEF, PKE, MNP, TTP, Spectral Moments, FR, PSR and VCF are not good in
EMG signal classification [28].

In the quest to improve classification accuracy, an ensemble of TFD features are proposed in [44]
to overcome the limitation of TD features, which is applicable for stationary signals [35]. Investigation
on the performance of TFD (e.g., Wavelet and Wavelet Packet Transform) and TD features for the upper
limb was conducted by Englehart et al. Based on classification error, a wavelet packet transforms
features, thus yielding a lower percentage of classification error at 6.25% compared to TD features at
9.25% [44]. While the tiling of the STFT and the WT is fixed, the tiling of the WPT may be adapted to
suit a particular application. TFD features have localized the energy in time and frequency, allowing
for an accurate description of the physical phenomenon. This statement is supported by Basu et al. as
they demonstrate the ability of TFD features like wavelet transform and STFT to track time-varying
frequencies and mode shapes [61].

In 2016, Guo and Karem proposed a new output-only non-stationary system identification
(SI) framework based on instantaneous or marginal spectra derived from TFD features to identify
time-varying system properties [62]. Surprisingly, the major problem of TFD features is high
dimensionality and high-resolution of feature vectors [9]. To encounter the complexity of TFD features,
dimensionality reduction is implemented to reduce the dimensionality of the data while maintaining
its discrimination capability [24,35]. According to Englehart [63], there are two main strategies for
dimensionality reduction:

e Feature projection
e Feature selection

Feature projection methods attempt to determine the best combination of the original features to
form a new feature set which is generally smaller than the original one [45]. The other strategy chooses
the best subset of the original feature vector according to specific criteria for judging whether one subset
is better than another [24]. Moreover, the selection of a feature vector ought to be carefully considered.
Although [28] explores the quantitative comparisons of feature vectors for numerous specific EMG
signal classifications, from a redundancy point of view, TFD features need more computing time to
extract the features. Table 3 summarizes an example of TFD features based on literature.

Table 3. Time Frequency domain features.

Features Abbreviation References
Discrete Wavelet Transform DWT [44]
Continous Wavelet Transform CWT [9]
Empirical Mode Decomposition EMD [9]

Wavelet Packet Transform WPT [44]
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4.3. Probability Density Function

Special attention is paid to probability density function of EMG signals in this paper. Statistical
modeling is among the most important factors for many engineering problems as stated by
Carrillo et al. [64]. Mathematical modeling of interesting signals is the ordinary approach to improving
our understanding of intrinsic biological phenomenon [65]. Furthermore, the mathematical parameters
of surface EMG signals are influenced by many factors such as level of effort, fatigue, muscle
length, muscle fiber architecture and electrode positioning. Due to these aspects, Rassol et al. have
characterized surface EMG signals of lower extremity muscles by means of statistical properties [66],
which are relevant in signal modeling.

Investigation concerning the best PDF to be used to describe the distribution of sampled surface
EMG signals becomes relevant because it can help improve algorithms of onset detection applied in
neuroprosthesis [67], biofeedback [68], image processing [69-71] and extreme climates [72-74]. For a
given dataset, the estimation of underlying PDF for pattern recognition and machine learning has been
used for many years by statisticians and engineers. They used density estimators as a tool to draw
inferences from physical data in social and computer sciences [75]. This approach is not only from the
desire to accurately characterize stochastic events like surface EMG signals, but also from the fact that
distributions are the central models utilized to derive sample processing theories and methods.

A probability distribution is defined as a table or an equation that links each outcome of a
statistical experiment with its probability of occurrence. The probability of a random variable falling
within a particular range of random values is given by the integral of the variable’s density over
that range. The PDF is a function that describes the relative likelihood of the random variable as a
given value. In other words, the PDF is nonnegative and its integral over the entire space is equal to
one. Most studies conducted have focused on isometric contractions. To our knowledge, there is no
consensus in the literature about the appropriate PDF to describe the behavior of the characteristics of
EMG signals.

The EMG signals are stochastic [23,76,77] as the signals are non-deterministic and there are distinct
patterns at three states of contraction [12]. In other words, it can be modeled as a random process where
its density /amplitude is typically assumed to be Gaussian/Normal based on the relationship between
muscle contraction and myoelectric activity as defined by Hogan and Mann in the 1980s [43]. This set
of assumptions represents a combination of frequency content of subcutaneous myoelectric activity
and the filtering effect of transmission through a non-invasive approach subsequently multiplied by
a static, nonlinear function of muscle force. A physical situation corresponding to this model is a
non-fatiguing condition where the muscle contracts isometrically.

In 1987, Hunter et al. [78] examined the sampled distribution of surface EMG signals collected
from the biceps brachii muscle during isometric and non-fatiguing contractions at 30% of the maximum
voluntary contraction (MVC). After performing a graphical comparison, the authors reported that
the shape of the experimental sample distribution was considerably different from a Gaussian
one, being more peaked than a normal PDF around zero means. A similar result was obtained
by Bilodeau et al. [79], even though the percentage of MVC were varied at 20%, 40% 60% and 80%
along with non-fatiguing and isometric contractions. The signal presents a non-Gaussian sample
distribution in general which is more peaked around the zero mean based on the Shapiro-Wilk test. In
addition, they observed that the peaking of sample distribution was less pronounced at higher levels
of muscle contraction.

In the same context of detecting EMG signals, an assumption by Hogan and Mann had been
re-examined theoretically and experimentally by Clancy and Hogan in 1999 [77]. In this study,
experimental data from constant-force, constant-angle, non-fatiguing contractions falls between the
Gaussian and Laplace distributions. However, on average, Gaussian density showed a better fit with
surface EMG signals based on the differences between histograms obtained from the experimental
data and theoretical PDF. Based on the figure, dotted line indicates the Laplacian density and dashed
line indicates the Gaussian density. Meanwhile, the experimental density (solid line) represent the
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average of 660 recordings and the shaded region indicates one standard deviation for above and below
the average.

In particular, Carrillo et al. discussed that the Gaussian distribution is too light-tailed to model
signals and contains noise that exhibits impulsive and non-symmetric characteristics [64]. Therefore,
they developed a generalized Cauchy distribution theory-based approach that was guaranteed to
solve challenging problems formulated in a robust fashion. Similarly in 2015, the observation noise
of EEG, EOG, and EMG signals were modeled using Cauchy distribution [80] as the noise has a
heavy-tailed distribution.

Due to controversy in the literature, Rose et al. investigated the suitable PDF in modeling sample
distribution of surface EMG signals during isometric contractions. They argued that such metrics
used in [77] is not supported in probability theory because it is supposed that the area below any PDF
should be unitary [65]. Moreover, the shape of surface EMG signals exhibit more peaks than a PDF of
Gaussian around zero means. This finding suggests that PDF of Logistic is preferred as the distribution
as it produces the minimum mean absolute error (MAE) between the histogram obtained from the
experimental data and the PDF compared to Normal, Laplace, Logistic and Cauchy distributions as
shown in Table 4. Within the same year, work done by Thongpanja et al. indicated that the PDF of
surface EMG signals tend to be Gaussian at high-level of muscle contraction and tend to be Laplacian
at the low-level contraction of biceps brachii [76].

Table 4. The mean of the MAE features of each theoretical PDF for each percentile load level condition.

Maximum Voluntary Contraction
20% 40% 60% 80% 100%

Normal 0.0036 0.0025 0.0024 0.0022 0.0028
Laplace 0.0081 0.0075 0.0076 0.0077 0.0071
Cauchy 0.0129 0.0123 0.0123 0.0124 0.0122
Logistic 0.0027 0.0012 0.0009 0.0011 0.0015

PDF

In 2015, a research conducted by Nazmi et al. [81] revealed potential to implement Extreme Value
Theory (EVT) as biosignals exist at abnormally low or high values of data, categorized as extreme events
according to Markose and Alernton [82]. A Generalized Extreme Value (GEV) distribution is found to
be the most appropriate distribution for describing the raw data of EMG and EEG signals. This is based
on a minimum error produced by two Goodness-of-Fit (GOF) tests, namely, Kolmogorov-Smirnov
statistic and Anderson-Darling statistic compared to the Generalized Pareto (GP) and Exponential
(EXP) distributions. Nevertheless, this approach is applicable to determine the maximum value only
which is mostly conducted in image processing [69-71] and climate extremes [72-74]. For invasive
methods, the structurally developed model developed by De Luca [83] is more adequate to describe
EMG signals.

Some authors have investigated the suitability of Normal distribution in describing the sample
distribution of intramuscular EMG signals and concluded that it might be fitted by some other peaked
PDF. In the mid-1970s, Milner-Brown and Stein [84] found that the sample distribution of intramuscular
EMG signals recorded on first dorsal interosseous muscle in a condition of constant force (isometric
contraction) and angled contraction presented a pattern that is sharper and peaked around the zero
mean than the one predicted by PDF of Gaussian. Indeed, this peak in the sampled distribution
seemed to be less pronounced at higher muscle force levels. In contrary, Parker et al. [85] observed
that intramuscular EMG signals collected from the biceps brachii muscle during two different low
levels of muscle contraction are reasonable to be modeled using a Gaussian distribution based on
a comparison performed graphically. Table 5 summarizes the possible PDF of EMG signals during
isometric contractions.
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Table 5. Comparison PDF of EMG signals.

PDF Authors
Gaussian  [43,76-78,85]
Cauchy [65]
Laplace [76,77]
Logistic [65]
GEV [81]

Basically, the PDF of Cauchy, Gaussian, Laplace and Logistic are categorized as unbounded
distributions [86] and continuous probability distribution. Figure 6 shows the basic shape of different
types of distribution. The PDF of distributions consist of two or three parameters, namely location,
scale and shape, which depends on the type of distribution. The details of each PDF will be explained.

A

Cauchy Error Error Function Gumbel Max Gumbel Min Hypersecant

Johnson SU Laplace Logistic MNormal Student's t

Figure 6. Basic shapes of each distribution.

The Cauchy distribution is often used in statistics as the canonical example of a "pathological’
distribution since both its mean and its variance are undefined. The Cauchy distribution has the
probability density function given by [86]:

1
— R 1
T i ) v
where ¢ is a location parameter, specifying the location of the peak of the distribution and « is the
scale parameter which represent the half-width at half-maximum with parameter space —cc < ¢ < oo,
o > 0, —oo < k < co. The amplitude (or height) of the Cauchy function us given by

. 1
Amplitude = p— )

The Gaussian (or Normal) distribution is remarkably useful because of the central limit theorem.
The normal distribution is sometimes informally called the bell curve. However, many other
distributions are bell-shaped (such as Cauchy’s, Student’s, and logistic). The terms Gaussian function
and Gaussian bell curve are also ambiguous because they sometimes refer to multiples of the normal
distribution that cannot be directly interpreted in terms of probabilities. The probability density of the

normal distribution is [86]:
2

£ = SR
o/ 21
where ¢ and « are the location and scale parameter respectively.
The Laplace distribution is also sometimes called the double exponential distribution because
it can be thought of as two exponential distributions (with an additional location parameter) spliced

®)

together back-to-back, although the term ‘double exponential distribution’ is also sometimes used to
refer to the Gumbel distribution. The difference between the two independent identically distributed
exponential random variables is governed by a Laplace distribution, as in a Brownian motion evaluated
at an exponentially distributed random time. Increments of a Laplace motion or a variance gamma
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process evaluated over a time scale also has a Laplace distribution. The probability density of the
Laplace distribution is [86]:

Fy) = 5 exp(—y e @

where A and ¢ are continuous inverse scale and location parameter respectively with parameter space
A>0and —oo <y < oo.

The cumulative distribution function of logistic function appears in logistic regression and
feedforward neural networks. It resembles the normal distribution in terms of shape but has heavier
tails (higher kurtosis). The PDF of the logistic distribution is given by [86]:

fy) = 22— C) 5)

where ¢ and « are the location and scale parameter respectively.

The GEV distribution is a family of continuous probability distributions. This distribution was
introduced by Jenkinson in 1955 [87]. GEV is developed within the EVT to combine the Gumbel,
Fréchet and Weibull families. Let y4,...,1, denoted the independent sampled distribution EMG
signals, the probability density function of GEV is [74];

1 y—ey-1t _ 1 y—engt
flke,0)(y) = —[1+k(=—=)] 7' exp =1+ k(_[1+k(=—)]F)] ©6)

where ¢ is the location, « is the scale and k is the shape parameters with parameter space
—00 < g <00, >0, —0c0 < k < oo respectively.

The PDF of distribution consists of two or three parameters, namely, location, scale and shape,
which depend on the types of distribution. The location parameter represent the peak of the sampled
data of EMG signals and scale parameter illustrate the position of the peak in the domains. A model
of univariate data set with a probability distribution can be developed by estimating the parameters
of the distributions. The method of Moments (MOM) and Maximum Likelihood Estimation (MLE)
are examples of approach methods for parameter estimation. In hydrology applications, parameter
estimations via MLE method is the best method due to its all-around utility and adaptability to model
change for rainfall [88], while is incapable to obtain the parameter estimation for a small sample in a
flood frequency analysis [89]. MLE was proved to be very effective in de-noising magnetic resonance
images [71] and efficiently transform quantized observations into multiple noise environments [90].
Morever, Xu and Lee suggested that MLE is consistent and asymptotically and normally distributed
for a Tobit model [91]. Despite that, in [77], the MAV processor is the MLE of EMG amplitude for the
Laplace model.

In a probability theory, the term parameter estimation refers to the process of using sample data
to estimate the parameters of distribution. To estimate parameters using the MLE technique, a random
variable, y and the PDF conditioned on a set of parameters, 0, denoted as f(y|0) are used. The joint
density of n independent and identically distributed observations from this process is the product of
individual densities given by [74]:

f1y2, - ykl8) = T f(y116)
= L(6ly)
This joint density is the likelihood function, defined as a function of the unknown parameter

vector, 6, where Y is used to indicate the collection of sample data. It is usually simpler to work with
the log of the likehood function:

@)

InL(6]y) = éznﬂyiw) ®)
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The value of parameters will be obtained by differentiating the (9) with respect to each parameters
of distribution and equating the resulting to zero. However, this step does not stop here, since the
iterative procedure needed to solve the numerically. Newton’s method will be used in this procedure
as in equation below;

Ap+1 = an — FF,((LZ;)) 9)

As a result, the estimated value of parameters will be used to represent the shape distribution of
the EMG signals.

4.4. EMG Classification

The information extracted from the EMG signals will be then fed into classifier to map different
patterns and match them appropriately. Classifiers should be deployed to distinguish different
categories of the features extracted. Then, the obtained categories are going to be applied in the
next stage as control commands for the controller. Several techniques are deployed to classify EMG
data such as artificial neural networks (ANN), Bayesian classifier (BC), fuzzy logic (FL), multilayer
perceptron (MLP), support vector machines (SVM), linear discriminant analysis (LDA), hidden Markov
models (HMM) and K-nearest neighbor (KNN). Recently, many researchers have shown interest in
effective means of classifying the pattern of EMG signals.

In 1999, Englehart et al. [44] stated that the performance of feature extraction and dimensionality
reduction is dependent upon the capabilities of a classifier. Statistical classifiers, also known as LDA and
MLP had been used in the study to classify hand motions. The best performance is exhibited using LDA
with a classification accuracy 93.75% when using a PCA reduced feature set. They also discovered that
the MLP enjoys an advantage over the LDA for being capable of prescribing nonlinear class boundaries
so as to encompass the capabilities of the LDA. Two years later, a LDA classifier performs well than a
MLP classifier for the TFD based features sets [36] as mentioned in [44]. The LDA does not require
heuristic specifications of its architecture or training algorithm, yet it consistently performs very well.
This, presumably, is due to the fact that the PCA dimensionality reduction has an effect of linearizing
the discrimination task of the classifier. In 2013, Phinyomark et al. compared the performance of LDA,
random forests (RFS), decision tree (DT), k-nearest neighbor (KNN), support vector machine (SVM),
and multi-layer perceptron neural networks (MLP-NN) quadratic discriminant analysis (QDA) [27] to
classify ten upper limb motions. As a result, LDA gained 98.87% of classification accuracy based on
TD features. However, works done by Khushaba and Al-Jumaily produced about 99% classification
accuracy by using MLP to classify human forearm motions based on TFD features [92].

On the other hand, an ANN approach is suitable for modeling nonlinear data due to its ability to
cover the distinctions among different conditions like hand motions (left, right, up and down). The
overall performance for a single trial has been found at 89.2% with an average success rate of 88.4%
based on TD features as conducted by Ahsan et al. [47]. Yet, the precision of ANN outputs is always
limited to the least square errors as discussed in [93]. Xie et al. claimed that the training time of ANN
is quite long and the training data have to be chosen over an entire range where variables are expected
to change. In addition, it is difficult to determine the proper size and structure of an ANN to solve a
given problem.

Another technique that has been applied in the classification of EMG signals is the FL system.
FL provides a simple way to achieve a definite conclusion just upon using imprecise input information
which mimics a user’s intent to make a decision according to biosignal characteristics which is not
always repeatable. FL has the advantage for control techniques in biosignal processing [35]. Essentially,
the FL system consists of three stages which are input, processing and output, as shown in Figure 7.
In the input stage, also called as the fuzzification module, the signal features used will be converted
into a state (for instance, up and down hand motions) that is called membership function (MF) and
truth values. In the processing stage, also known as the inference rule base stage base, all information
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will be processed based on the rules generated in IF-THEN form. An appropriate rule will be invoked
at this stage, generating the result for each rule, which then combines the result of the rules. The output
stage, which also has its own membership function will then convert the combined results obtained at
the previous stage into a final output value. This procedure is called defuzzification. Even though
the correct set of fuzzy rules and membership functions are difficult to be determined to describe
system behaviour in FL algorithms, a study conducted by Ahmad and Chappel with the aim to detect
the stages of contraction on wrist muscle gained a classification accuracy of 97% when using FL as a
classifier [35]. In 2015, Xie et al. [93] mentioned that although studies within the FL systems utilizes
the IF-THEN rules which are capable to emulate human decision making more closely than the other
classifiers, there are critiques concerning FL algorithms. They clarify that FL approaches require more
system memory and processing time as the use of FL limits system knowledge more in the rule base
than in the membership function base of fixed geometric-shaped membership functions.

. . Fuzzy . .
Input(s)— Fuzzification > Inference > Defuzzification % Output
module . module
Engine
r 3 -~
Fuzzy Rule
Base

Figure 7. General block diagram for FL systems [35].

Despite that, neuro-fuzzy systems computing enables us to build a more powerful intelligent
decision-making system by combining the advantages of an artificial neural network with the
fuzzy modeling of imprecise and qualitative knowledge [94]. Hussein and Malcolm [95] applied a
neuro-fuzzy classifier to classify the intention of a paraplegic person to stand up or sit down according
to single-site EMG signals obtained from the triceps and biceps brachii muscles for electrical stimulation
orthosis purposes. This neuro-fuzzy hybridisation was functionally based on the Surgeno-type fuzzy
rule base along with a radial basis function (RBF) neural network under some constraints to allow
for the system to learn from the training data. As a result, this classifier is capable of identifying 28
sitting and 29 standing EMG signals out of 60 EMG signals by using seven bell-shape membership
functions and 30 rules. ANFIS is a type of neural network structure based on the Takagi-Sugeno fuzzy
inference system. It has the potential to capture the benefits of both techniques in a single framework by
integrating both neural networks and fuzzy logic principles. The Sugeno fuzzy model-based Adaptive
Neuro-fuzzy system had been used to classify seven distinct movements in a longer test duration
lasting for about three hours, achieving an average accuracy of 86% based on TD features [13]. In 2011,
a study on real-time intelligent pattern recognition algorithms for surface EMG signals provided 97%
average accuracy on the discrimination of six classes of hand movements using the ANFIS approach
based on TFD features [94].

The SVM is a kernel-based approach and has become an increasingly popular tool for machine
learning tasks involving classification and regression. SVM which is a promising data classification
technique proposed by Vapnik [96] is generated from the training process using the training data.
Later on, classification is implemented based on the trained model. The main problems encountered in
setting up the SVM model are how to decide on the kernel function and its parameter values. In aiming
for multiple users to perform multiple motions, the bilinear model is proposed by composing two
linear factors that are user dependent and motion dependent to classify five hand gestures using
SVM [34]. This method resulted in 73% accuracy, meanwhile, 96.75% [22] were gained by hybridizing
the particle swarm optimization (PSO) and SVM in detecting neuromuscular disorders. These findings
reported that the kernel parameter setting of SVMs in EMG signal classification based on TFD features
(DWT) affects classification performance.
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4.5. EMG Evaluation Metrics

In this section, an approach to determine the classification accuracy of proposed systems by
previous researchers will be identified. Different approaches have been used to evaluate the systems.
Moreover, the purpose of each study and feature extracted will also be explained.

In order to develop a system that characterizes certain movements of the human arm, Balbinot
and Favieiro [13] extracted the TD features (RMS) of surface EMG signals recorded in a long duration
at approximately three hours. The pattern of arm movements were classified using ANFIS. As a result,
their system obtained an average accuracy of 86% based on the desired output, animations of the
virtual model which appear on the LCD screen with real output, while the hand movements of the
subject were compared.

After this study, Phinyomark et al. [27] compared the stability of a single feature and multiple
feature sets within 21 days by observing the behavior of fifty TD and FD features to classify ten
upper limb motions. Based on training and testing the EMG data, multiple features gained higher
classification accuracy at 98.87% compared to the single feature using LDA as a classifier. All
experiments used the EMG trials (i = 2-121) as the testing set, whereas the training set trials are
different in each experiment: (1) training on the initial data (only the first day); (2) training on the most
recent data (five recent preceding trials); and (3) all preceding data.

Similarly, motion recognition of one subject is assigned as a testing data and the remaining data are
assigned as training data to construct the bilinear model (TD features) in designing an EMG interface
that can be used by multiple users to perform multiple motions [34]. In their study, the average
classification accuracy were defined as E = Neorrect /N, where Neoyreer is the number of correctly
classified samples and N is the size of the test samples which is 11. As their method resulted in 73%
accuracy, it can be conclude that it was difficult to perform multiple motions based on multichannel of
EMG signals.

Using the same theory of accuracy, Ahmad considered the accuracy in percentage as shown
in Equation (11) [35]. The FL system had successfully classified the stages of contraction (e.g., start,
middle and end) on wrist muscles with 97% accuracy.

number of correct classification

Accuracy = o
Y= Tumber of total classifications

100 (10)

In an assessment of muscle fatigue, tracking of muscle activity in isotonic and isometric
contractions was investigated by Rogers et al. [23]. However, they considered isotonic contractions at
instances when the angle during elbow flexion and extension is between 50 and 130. This technique
is inappropriate as isotonic contractions occur when the length of muscle changes as mentioned
in Section 2. Instead of extracting the features of EMG signals in isotonic conditions, Subasi [22]
diagnosed neuromuscular disorders such as normal, neurogenic or myopathic using hybridized
PSO-SVM classification based on TFD features in isometric conditions. In their work, the number
of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN) are used
in evaluating the performance of a classifier. Different terms are used in different domains. The
sensitivity and specificity refers to the proportion of people with disease who has a positive test result
to the proportion of people without disease who has a negative test result, which is 1-FP respectively.
The sensitivity and specififcity are defined as belows:

Sensitivity = TP]—;—iPFN x 100 (11)
TN

Specificity =
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To calculate the accuracy, an overall measure are implemented, which is:

Sensitivity + Specificity 10

> 0 (13)

Accuracy =

Even though the study obtained 96.75% accuracy, as noted by Li et al. [54] the power spectral
analysis can serve as a useful tool to detect neural and muscular changes. The neural change
in normal gaits during isotonic conditions were explored on by Ogawa et al. [97] to enhance
passive locomotor-like movements when accompanied by arm swing movements. Despite that,
Ahsan et al. [47] and Ibrahimy et al. [98] considered the number of input features, hidden neurons,
learning algorithms, correlation between network outputs and targets, and mean square error to
analyze the ANN performances of different architectures of neural network as shown in Table 6.
Ahsan et al. and Ibrahimy et al. discovered that features extracted using TD features achieved 89.2%
and 88.4% of accuracy, respectively.

Table 6. The classification accuracy based on training functions [98].

Training Stop Regression Time Classification Rate Hidden
Function Epochs Elapsed Training Validation Test Overall Neurons

15 0.8597 1.047 88.6 83.3 90 88 10

18 0.87251 0.921 94.3 66.7 80 88

16 0.87401 0.8721 88.7 90.3 90.3 89.2

Average 0.86874 0.947 90.533 80.1 86.767 88.4

33 0.85706 2.797 91.4 70 83.3 87 20
Levenberg 14 0.85508 1.218 90 80 86.7 88
marquardt 12 0.84772 1.094 92.9 76.7 83.3 89

Average 0.853287 1.703 91.433 75.567 84.433 88

16 0.86112 2.36 92.1 80 76.7 88 30

11 0.85018 1.703 914 90 73.3 88.5

14 0.85192 2.125 89.3 76.7 83.3 86.5

Average 0.854107 2.0627 90.933 82.233 77.767  87.667

37 0.7819 0.703 80.7 83.3 83.3 82.43 10

27 0.7632 0.685 78.2 86 74.5 79.57

32 0.7904 0.823 82.4 71.9 794 77.9

Average 0.77917 0.737 80.433 80.4 79.067 799
Scaled 31 0.802 0.797 78.6 90 82.7 83.77 20
Conjugate 35 0.8153 1.252 79 87.3 78.1 81.47
Gradient 34 0.79842 1.063 84.3 76.7 80 80.33

Average 0.80524 1.037 80.633 84.667 80.267 81.86

34 0.80767 2.457 83.6 83.3 86.7 84.53 30

28 0.79215 1.073 81.2 72.1 69.5 74.27

31 0.82531 1.352 86.6 76.5 78.8 80.63

Average 0.80837 1.627 80.433 80.4 79.067 79.9

A number of authors have considered training and validation of data to determine the
effectiveness of their system [29,44,94]. Tsai et al. divided the recognition experiments into training
and validation phases to compare the differences of upper limb motion patterns during dynamic and
isometric muscle contractions with four conditions: (1) training and validation phase data containing
EMG signals with dynamic contractions, denoted as “D-D”; (2) training and validation phase data
containing EMG signals with isometric contractions, denoted as “I-1”; (3) training data of dynamic
contractions, and validation data of isometric contractions, denoted as “D-1"; and (4) training data of
isometric contractions, and validation data of dynamic contractions, denoted as “I-D” [29]. The results
of their experiment presented STFI-ranking feature exceeds 90% of recognition accuracy during the
training and validation phases of the same type muscle contractions.
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The work done by Englehart et al. divided EMG data into a training set (100 patterns), a test set
(150 patterns), and a validation set (150 patterns) to compare the performance of TD and TFD features.
The validation set provides an estimate of the classification performance of the test set [44]. Meanwhile,
Khezri and Jahed [94] considered 100 signals for each class to extract the feature set from four different
subjects and divided these signals into two groups, namely 50 signals as the training set and 50 signals
for the test set. For the training set, arbitrary outputs were chosen for each hand motion. They were
able to determine the correctness of the system by recognizing each hand motion after training it using
the three pattern-recognition systems and obtaining the estimated outputs for each class. Overall,
all studies discussed in this section are summarized in Table 7.

Table 7. Comparison of classification accuracy.

Authors Feature Extraction Classifier = Accuracy

[13] TD ANFIS 86%
[27] TD LDA 98.87%
[34] TD SVM 73%
[28] TD LDA 91.64 %
[35] TD FL 97%
[47] TD ANN 89.2%
[29] TFD SVM 90%
[44] TFD LDA 93.75%
[94] TFD ANFIS 92%
[98] TD ANN 88.4%
[22] TFD PSO-SVM  96.75%

5. EMG Dataset

5.1. Placement of Electrodes

This section will briefly explain the suitable muscle that has been considered by previous
researchers. For upper limb movement, most studies conducted have characterized hand and
arm movements based on EMG signals recorded on the biceps brachii muscle during isometric
contractions [65,76,99]. Later, biceps brachii and triceps brachii muscles were selected in the analysis
of motion pattern EMG signals in isotonic and isomteric contractions [29]. Balbinot and Favieiro had
interpreted EMG signals recorded from an 8-channel located on the biceps, palamaris longus, flexor
carpi ulnaris, flexor carpi radialis, pronator teres, extensor digitorum, brachio radialis and extensor
carpi ulnaris muscles to characterize arm movements [13]. Besides that, Matsubara and Morimoto
extracted information on EMG signals from the flexor carpi ulnaris, extensor carpi radialis, flexor
digitorum profundus and extensor digitorum muscles in their study [34]. It is similar with the work
done by Ahmad and Chappell [12] who detected the stages of contraction of wrist muscles.

There are relatively few historical studies in the area of analysis of EMG signals on lower limbs.
Instead of classifying motion patterns of EMG signals, lower limb applications are more related in
clinical practice and EMG signals were collected during isotonic contractions. Walking pattern has
become the main concern in a majority of studies in lower limb applications. To illustrate walking
patterns, the tibialis anterior (TA), gastrocnemius lateralis, gastrocnemius medialis, soleus and flexor
hallucis longus muscles were selected [100]. To discriminate walking speeds, a study conducted
in [101-103] and Hussain et al. [104] extracted EMG signals from the rectus femoris (RF) muscle.
Meanwhile, Ogawa et al. detected normal gaits by placing electrodes on TA, medial head of the
gastrocnemius, RF, biceps femoris, anterior head of deltoid (aDEL), and the posterior head of deltoid
(pDEL) muscles [97].
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5.2. Muscle Conditions

Several recent studies have investigated motion patterns of EMG signals in isotonic and
isometric conditions. Generally, raw data of EMG signals in isometric contractions as reported by
Daud et al. [7] within hand-lifting of three different loads: (a) 1 kg; (b) 3 kg; (c) 5 kg. In 2011,
Lorrain et al. [26] recorded EMG signals of 9 hand motions in 10 s duration with 3 s resting periods
between consecutive contractions of 8 subjects. In each contraction, the subject was instructed to start
from the rest position and reach the target position in 3 s, then maintain the target position for 4 s,
and return to the rest position in 3 s. They segment of static portion (4 s in the middle), and two
segments of dynamic (anisotonic and anisometric, representing the two main dynamic situations in
real movements) portion (3 s at each end) in each contraction.

In 2013, a study conducted by Phinyomark et al. instructed subjects to perform eleven upper limb
motions including extension (m1), flexion (m2), ulnar deviation (m3), radial deviation (m4), pronation
(mb5), supination (m6), open (m7), close (m8), key grip (m9), pincer grip (m10), and extract index finger
(m11) for five seconds [27]. After this study, a comparison of upper limb motion pattern of EMG
signals in both conditions was revealed by Tsai et al. [29]. Based on the experimental results, the same
type of muscle contraction is preferable to be used in training and validation phases in determining
the motion pattern recognition performance.

6. Discussion

This study described the importance of pattern recognition methods of EMG signals, which is
very important in many applications, such as rehabilitation devices, prostheses, orthoses and detection
for neuromuscular disorders. As EMG signals contain undesired signal sources such as ECG artifacts,
filtering techniques is suggested to eliminate all the noises. However, this process may reduce the
noises but the quality of EMG signals is not guaranteed. For real-time control of a robotic arm or leg, the
classification of EMG signals is an important issue. Therefore, researchers tend to focus on processing
methods of EMG signals in order to obtain a more accurate, simple and reliable system in detecting
the motion patterns. It is noted that a large number of EMG channels will increase the number of
control commands of the classifier, thus effecting the computational time. For feature extraction, TD
and TFD features are widely used in the literature compared to FD features as performance using
FD features is not promising, especially in isometric conditions. In the case of upper limb motions,
the performance of TFD features using ANFIS and SVM classifications are better than TD features
based on the classification accuracy. Nonetheless, higher accuracy was gained using TD features with
LDA as a classifier than TFD features in order to characterize hand movements. LDA methods are
recommended when a huge number of features are used as input to the classifier. Even when the
results are obtained with different types of muscle contractions, it is preferred by previous researchers
to analyse EMG signals in same muscle contractions.

On the other hand, the new approach, PDF is recommended as a feature to be extracted in
motion pattern recognition. The main advantage of this approach is its mathematical modelling in
understanding the intrinsic biological phenomenon of EMG signals, improving the algorithm for onset
muscle activation and is a useful tool to indicate muscular changes. Based on reviews, the potential of
PDF in describing EMG signals for isometric contractions are for a Gaussian distribution at higher level
contractions and a Laplace distribution at low level contractions. Meanwhile, there is little attention
in the case of lower limb motion as the analysis of leg movement is more related to clinical practice.
Walking patterns have become the interest of researchers in most studies, such as walking patterns at
different speed of subjects with and without neuromuscular diseases such as cerebral palsy. To increase
classification accuracy, a combination of processing methods and pattern recognition techniques along
with similar muscle contractions is strongly suggested. This combination method may be helpful to
increase classification accuracy without having to use too many muscle positions.
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7. Future Trends

Other important findings that should be researched upon in the future to improve the development
of control system performance are as recommended below:

e Most studies do not critically highlight the pre-processing stage. To remove the artifacts in
EMG signals, the cutoff frequency should be in the range between 20 Hz to 500 Hz and a
Butterworth filter commonly applied. Meanwhile, the segmentation techniques used should
depend upon its applications. However, the comparison performance between adjacent and
overlapped windowing technique has not yet been identified.

e Feature extraction is the most difficult part in motion pattern recognition. In the literature,
they compared the performance of TD, FD and TFD features of EMG signals during isometric
contractions. The features of muscle contractions under isotonic has yet to be explored.

e Sample data of EMG signals has always been fitted with PDF under physical situations which
correspond to non-fatiguing conditions, also called as isometric contractions. However, the PDF
of isotonic contractions for EMG signals has never been investigated.

e To achieve better classification accuracy, significant features extracted is the main contribution.
A classifier can be chosen depending on the number of features. Different classifiers result in
different percentage error.

e Pattern recognition of EMG signals for upper limbs has been widely investigated compared to
lower limbs especially in isometric contraction. The proper isotonic contractions behind the
generation of the EMG signals is still unknown.

8. Conclusions

This paper provides an overview of how EMG signal systems are designed, in particular on
controlling the HMI for improving the quality of life for individuals. Several challenge issues referring
to an analysis of EMG signals are such as the signals are non-deterministic. Recent advances in
the analysis of EMG signal studies that are gathered and reviewed include areas of pre-processing,
feature extraction, PDF and performance of features to classify motion pattern recognition with
different conditions of muscles. From the reviews that were made, a conclusion can be drawn that
continued efforts are needed to make EMG signals more accessible in medical and physiological
applications, especially during isotonic and isometrics conditions. Moreover, interpretation regarding
both contractions becomes much easier for the development of assistive devices.
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