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Abstract UbiA prenyltransferase domain-containing protein-1 (UBIAD1) synthesizes the vitamin

K subtype menaquinone-4 (MK-4). Previous studies in cultured cells (Schumacher et al., 2015)

revealed that UBIAD1 also inhibits endoplasmic reticulum (ER)-associated degradation (ERAD) of

ubiquitinated HMG CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway

that produces cholesterol and essential nonsterol isoprenoids. Gene knockout studies were

previously attempted to explore the function of UBIAD1 in mice; however, homozygous germ-line

elimination of the Ubiad1 gene caused embryonic lethality. We now report that homozygous

deletion of Ubiad1 is produced in knockin mice expressing ubiquitination/ERAD-resistant HMGCR.

Thus, embryonic lethality of Ubiad1 deficiency results from depletion of mevalonate-derived

products owing to enhanced ERAD of HMGCR rather than from reduced synthesis of MK-4. These

findings provide genetic evidence for the significance of UBIAD1 in regulation of cholesterol

synthesis and offer the opportunity in future studies for the discovery of new physiological roles of

MK-4.

Introduction
Vitamin K refers to a group of lipophilic molecules that serve as a cofactor for g-carboxyglutamyl car-

boxylase, which converts specific glutamate residues in a limited set of proteins to g-carboxygluta-

mate (Shearer and Newman, 2014; Shearer and Okano, 2018). This post-translational modification

is obligatory for biological functions of resultant vitamin K-dependent proteins (VKDPs), some of

which play key roles in blood coagulation. Other VKDPs are implicated in processes ranging from

bone and cardiovascular mineralization to energy metabolism and inflammation (Booth, 2009;

Shearer and Okano, 2018). In addition, vitamin K may exert direct effects on gene expression, sig-

nal transduction, and cellular regulation.

All vitamin K forms include a common 2-methyl-1,4-naphthoquinone ring structure known as men-

adione (MD) (Figure 1A) and are distinguished from one another by length and saturation of the

side chain attached at the 3-carbon position on the ring (Shearer and Newman, 2014). MD is a pro-

vitamin form of vitamin K as the side chain is required for vitamin K activity (Buitenhuis et al., 1990).

Phylloquinone (PK, also known as vitamin K1) (Figure 1A) contains a phytyl side chain, whereas

menaquinones (MKs, collectively referred to as vitamin K2) contain a side chain with 5-carbon iso-

prenyl units and are named according to the number of these units (e.g., MK-n) (Figure 1A). PK is
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produced by plants, whereas longer chain MKs (MK-7, MK-9, and MK-11) are predominantly of bac-

terial origin. Invertebrate and vertebrate animals produce MK-4 from dietary PK through a reaction

involving side chain removal and re-addition with MD as an intermediate (Al Rajabi et al., 2012;

Okano et al., 2008).
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Figure 1. Vitamin K and the mevalonate pathway. (A) Structures of the main forms of vitamin K. (B) The mevalonate pathway in animal cells.
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UbiA prenyltransferase domain-containing protein-1 (UBIAD1), a member of the UbiA superfamily

of prenyltransferases (Li, 2016), transfers the 20-carbon geranylgeranyl group from geranylgeranyl

pyrophosphate (GGpp) to PK-derived MD, thereby producing MK-4 (Hirota et al., 2013;

Nakagawa et al., 2010; Figure 1B). The function of UBIAD1 appears to extend beyond its role in

MK-4 synthesis, as indicated by association of mutations in human UBIAD1 with Schnyder corneal

dystrophy (SCD) (Orr et al., 2007; Weiss et al., 2007). This rare, autosomal-dominant disease is

characterized by progressive corneal opacification that results from accumulation of cholesterol. In

2015, we showed that SCD-associated UBIAD1 inhibits the sterol-accelerated, endoplasmic reticu-

lum (ER)-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl coenzyme A reductase

(HMGCR) (Schumacher et al., 2015), one of several feedback mechanisms that converge on the

enzyme to assure cholesterol homeostasis (Brown and Goldstein, 1980).

Polytopic, ER-localized HMGCR produces mevalonate, an important intermediate in synthesis of

cholesterol and the nonsterol isoprenoids farnesyl pyrophosphate (Fpp) and GGpp that are trans-

ferred to many cellular proteins and utilized in synthesis of other nonsterol isoprenoids including

MK-4, heme, ubiquinone-10, and dolichol (Goldstein and Brown, 1990; Wang and Casey, 2016)

(see Figure 1B). Sterols accelerate ERAD of HMGCR by stimulating its binding to ER membrane pro-

teins called Insigs (Sever et al., 2003a; Sever et al., 2003b). Insig-associated ubiquitin ligases facili-

tate ubiquitination of HMGCR (Jiang et al., 2018; Jo et al., 2011; Song et al., 2005), marking it for

extraction across ER membranes and subsequent cytosolic release for ERAD by 26S proteasomes

(Morris et al., 2014). ERAD of HMGCR is enhanced by GGpp, which enhances membrane extraction

of the ubiquitinated enzyme (Elsabrouty et al., 2013).

Sterols also cause HMGCR to bind UBIAD1 (Schumacher et al., 2015). This binding inhibits the

ERAD of HMGCR at a post-ubiquitination step in the reaction, thereby permitting continued synthe-

sis of mevalonate for incorporation into nonsterol isoprenoids even when intracellular sterols are

abundant (Schumacher et al., 2018). GGpp triggers release of UBIAD1 from HMGCR, which allows

for maximal ERAD of HMGCR and translocation of UBIAD1 from the ER to the medial-trans Golgi.

SCD-associated mutations cluster around the membrane-embedded active site of UBIAD1

(Cheng and Li, 2014; Huang et al., 2014), indicating they may disrupt sensing of GGpp. Indeed,

SCD-associated UBIAD1 is refractory to GGpp-induced release from HMGCR and becomes seques-

tered in the ER (Schumacher et al., 2016). The resultant inhibition of HMGCR ERAD leads to

enhanced synthesis and intracellular accumulation of cholesterol (Schumacher et al., 2018).

To explore the in vivo function of UBIAD1, efforts were attempted to generate mice lacking

Ubiad1 (Nakagawa et al., 2014). However, mouse embryos homozygous for Ubiad1 deficiency

failed to survive past embryonic day 7.5. We recently observed that the ERAD of HMGCR was

enhanced in transformed human fibroblasts lacking UBIAD1 (Schumacher et al., 2018). This obser-

vation led us to speculate that embryonic lethality of Ubiad1 deficiency in mice results from mevalo-

nate depletion due to accelerated ERAD of HMGCR rather than from reduced synthesis of MK-4.

We evaluate this notion here by determining whether ubiquitination/ERAD-resistant HMGCR rescues

embryonic lethality of Ubiad1-deficiency.

Results
We used CRISPR/Cas9 methods to introduce heterozygous Ubiad1 deficiency in wild type (WT) and

previously described HmgcrKi/Ki mice (Hwang et al., 2016), which harbor knockin mutations that

prevent ubiquitination and subsequent ERAD of HMGCR (Sever et al., 2003a). These mice are des-

ignated Ubiad1+/- and Ubiad1+/-: :HmgcrKiKi/Ki. Two independent lines of mice were obtained in

which the Ubiad1 gene was disrupted by a 172- (Disrupted Allele A) or 29 bp deletion (Disrupted

Allele B) in exon 1 (Figure 2). If transcribed and translated, these alleles would produce protein frag-

ments comprising amino acids 1–38 (Disrupted Allele B) or 1–39 (Disrupted Allele A) of UBIAD1

fused to a novel polypeptide of 55 or 56 amino acids (Figure 2). Table 1 shows results of breeding

experiments in which mice heterozygous for Ubiad1 deletion were mated and genotypes of off-

spring determined by PCR analysis. Intercrosses of Ubiad1+/- mice produced WT and Ubiad1+/- off-

spring at a ratio of approximately 1:2, which is consistent with Mendelian segregation. However,

Ubiad1-/- offspring were not produced, regardless of disrupted Ubiad1 allele. In striking contrast, all

three expected genotypes (Ubiad1+/+: :HmgcrKi/Ki, Ubiad1+/-: :HmgcrKi/Ki, and Ubiad1-/-: :HmgcrKi/Ki)

were produced when Ubiad1+/-: :HmgcrKi/Ki mice were intercrossed (Table 1). The observed
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proportion of +/+ : +/- : -/- Ubiad1 alleles was 137:280:114 (Disrupted Allele A) and 23:36:20 (Dis-

rupted Allele B), when the expected proportion is 1:2:1. These results provide genetic evidence that

ubiquitination/ERAD-resistant HMGCR rescues embryonic lethality of Ubiad1 deficiency.

In Figure 3A, we measured UBIAD1 and HMGCR protein levels in livers of 8-week-old WT and

Ubiad1+/- mice. Male and female Ubiad1+/- mice exhibited reduced levels of hepatic UBIAD1 protein

as expected (Figure 3A, compare lanes 1 and 3 with lanes 2 and 4). HMGCR protein was slightly

reduced in livers of the mice (lanes 1–4), which likely resulted from enhanced ERAD. Similar results

were obtained with livers of mice harboring Disrupted Allele B (data not shown). Sterol regulatory

element-binding protein (SREBP)�1 and �2 are transcription factors synthesized as inactive, ER-

bound precursors (Brown and Goldstein, 1997). Upon lipid deprivation, transcriptionally active
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Figure 2. CRISPR/Cas9-mediated disruption of the mouse Ubiad1 gene. (A) Amino acid sequence and predicted topology of mouse UBIAD1 protein.

(B) Genomic structure of mouse Ubiad1 and predicted proteins encoded by CRISPR/Cas9-disrupted Ubiad1 alleles (Disrupted Alleles A and B).
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fragments of SREBPs are proteolytically released from membranes and migrate to the nucleus where

they activate transcription of genes encoding cholesterol and fatty acid synthetic enzymes

(Horton et al., 2003). The level of membrane-bound precursor and nuclear forms of SREBPs

remained constant in Ubiad1+/- mice (lanes 5–8 and 9–12). Despite reduced levels of hepatic UBIAD1

and HMGCR protein, Ubiad1+/- mice were indistinguishable from WT littermates and had similar

body weights.

The absence of UBIAD1 protein from hepatic membranes of Ubiad1-/-: :HmgcrKi/Ki was confirmed

in Figure 3B (compare lanes 1–2 and 4–5 with lanes 3 and 6, respectively). The amount of HMGCR

protein and nuclear SREBPs was varied in livers of the animals (lanes 1–18); however, the nature of

this variation was not clear. Although ubiquitination/ERAD-resistant HMGCR rescued embryonic

lethality of Ubiad1 deficiency, male and female Ubiad1-/-: :HmgcrKi/Ki mice were smaller (30% and

20%, respectively) than their Ubiad1+/+: :HmgcrKi/Ki and Ubiad1+/-: :HmgcrKi/Ki littermates at 8 weeks

of age. Similar results were observed with 8-week-old Ubiad1-/-: :HmgcrKi/Ki mice harboring Dis-

rupted Allele B (Figure 3—figure supplement 1A). Hepatic levels of cholesterol and triglycerides

(Figure 3—figure supplement 1B) as well as most mRNAs encoding SREBPs, SREBP pathway com-

ponents, and cholesterol/fatty acid synthetic enzymes were not globally changed in the absence of

Ubiad1 (Figure 3—figure supplement 1C). Notably, the mRNA encoding Insig-2a (the major Insig-2

isoform in the liver) was reduced, whereas the minor Insig-2b transcript was slightly increased in

Ubiad1-deficient mice. The variation in Insig-2 mRNA, HMGCR, and nuclear SREBPs could be related

to variations in food intake or failure of Ubiad1-deficient mice to thrive (see below). For all experi-

ments described hereafter, male and female Ubiad1+/-: :HmgcrKi/Ki mice with Disrupted Allele A

were crossed to obtain Ubiad1+/+: :HmgcrKi/Ki, Ubiad1+/-: :HmgcrKi/Ki, and Ubiad1-/-: :HmgcrKi/Ki lit-

termates for analysis.

Figure 3C compares post-weaning weight gain of Ubiad1+/+: :HmgcrKi/Ki, Ubiad1+/-: :HmgcrKi/Ki,

and Ubiad1-/-: :HmgcrKi/Ki mice consuming chow diet ad libitum. The results show that Ubiad1+/+: :

HmgcrKi/Ki and Ubiad1+/-: :HmgcrKi/Ki mice gained weight at similar rates up to ~8 weeks post-wean-

ing. Ubiad1-/-: :HmgcrKi/Ki mice gained weight up to 2 weeks post-weaning (albeit at a reduced rate

compared to littermates), after which weight gain plateaued. After 7.7 weeks, male and female

Ubiad1-/-: :HmgcrKi/Ki mice were 30–40% smaller than Ubiad1+/+: :HmgcrKi/Ki and Ubiad1+/-: :

HmgcrKi/Ki littermates.

The amount of UBIAD1 and HMGCR protein was next measured in various tissues of male

Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice. As expected, UBIAD1 was not detected in

membranes isolated from the liver, pancreas, brain, kidney, and spleen of Ubiad1-deficient mice

(Figure 4A). Figure 4B shows that MK-4, the product of UBIAD1 enzymatic activity, accumulated to

the highest level in the pancreas of Ubiad1+/+: :HmgcrKi/Ki mice. Lower levels of MK-4 were found in

the brain, kidney, spleen, and liver of the animals. In contrast, MK-4 failed to accumulate to detect-

able levels in tissues of Ubiad1-deficient mice.

Having established the absence of UBIAD1 protein and its enzymatic product (MK-4) in Ubiad1-

deficient mice, we next compared blood chemistries between Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :

HmgcrKi/Ki animals. Serum cholesterol levels were not significantly different between the two groups

Table 1. Segregation of Disrupted Ubiad1 Alleles in Mice.

Genotype of breeding pairs

Ubiad1 genotype of offspring

+/+ +/- -/-

Disrupted Allele A
Ubiad1+/-X Ubiad1+/-

83 201 0

Ubiad1+/-: :HmgcrKiKi/Ki

X
Ubiad1+/-: :HmgcrKiKi/Ki

137 280 114

Disrupted allele B
Ubiad1+/-X Ubiad1+/-

77 183 0

Ubiad1+/-: :HmgcrKiKi/Ki

X
Ubiad1+/-: :HmgcrKiKi/Ki

23 36 20

Genotype was determined by PCR analysis of genomic DNA prepared from tails of mice.
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Figure 3. Hepatic immunoblot analysis and body weights of Ubiad1-deficient mice on HmgcrWT/WT and HmgcrKi/Ki backgrounds. (A and B) Male and

female WT and Ubiad1+/- (A) or Ubiad1+/+: :HmgcrKi/Ki, Ubiad1+/-: :HmgcrKi/Ki, and Ubiad1-/-: :HmgcrKi/Ki (B) littermates (8 weeks of age, five mice/

group) were fed an ad libitum chow diet prior to weighing and sacrifice. Livers were harvested and subjected to subcellular fractionation as described

in ‘Materials and methods.’ Aliquots of resulting membrane (Memb.) and nuclear extract (N.E.) fractions (80–160 mg protein/lane) for each group were

Figure 3 continued on next page
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of male mice (Figure 4C). Modest, but significant increases in levels of triglycerides (55%) and non-

esterified fatty acids (46%) were observed in the serum of Ubiad1-/-: :HmgcrKi/Ki mice compared to

Ubiad1+/+: :HmgcrKi/Ki littermates. The Ubiad1-deficient mice exhibited larger increases in serum lev-

els of two classic markers of liver injury, alanine aminotransferase (ALT) (174%) and aspartate amino-

transferase (AST) (583%); serum alkaline phosphatase (ALP) was reduced approximately 35%. Similar

results were obtained with serum from female Ubiad1-/-: :HmgcrKi/Ki mice (Figure 4—figure supple-

ment 1A).

In Figure 4D, we conducted a second blood chemistry analysis on male Ubiad1+/+: :HmgcrKi/Ki

and Ubiad1-/-: :HmgcrKi/Ki mice. Similar to results of Figure 4C, serum levels of AST and ALT were

elevated 5-fold and 1.8-fold, respectively, in the absence of Ubiad1 (Figure 4D). Serum lactate dehy-

drogenase (LDH) was elevated approximately 2-fold in Ubiad1-deficient mice; however, a more

prominent elevation (7.5-fold) of serum creatine kinase (CK) was observed. Finally, a slight reduction

in the amount of serum lipase and amylase was present in Ubiad1-deficient mice; serum albumin

remained unchanged. Serum from female Ubiad1-/-: :HmgcrKi/Ki mice exhibited similar characteristics

(Figure 4—figure supplement 1B).

To further characterize Ubiad1-/-: :HmgcrKi/Ki mice, we conducted a complete histological analysis

of all tissues from the animals. Surprisingly, abnormalities were observed in only two tissues of

Ubiad1-deficient mice – skeletal muscle and bone. Hematoxylin and eosin (H and E)-staining of gas-

trocnemius (Figure 5A, panels 1–4) and quadriceps muscles (panels 5–8) from male Ubiad1-deficient

mice revealed occasional degenerating myofibers with macrophage infiltration as well as frequent

myofibers with centrally-localized nuclei. Similar results were observed in gastrocnemius and quadri-

ceps muscles isolated from female mice (Figure 5—figure supplement 1). Overall, these histological

findings are indicative of ongoing muscle injury and correlate to the elevated serum CK levels

observed in Figure 4D. We used H and E together with Safranin O staining to examine growth

plates in femurs from both male (Figure 5B) and female (Figure 5—figure supplement 2) Ubiad1+/

+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice. The results reveal that Ubiad1 deficiency led to the

disorganization of cells within proliferative and hypertrophic zones of the growth plate, persistence

of cartilage within trabeculae, and a mild decrease in the number of boney trabeculae.

Discussion
The genetic ablation of UBIAD1 in transformed human fibroblasts led to enhanced ERAD of HMGCR

and reduced cholesterol synthesis and intracellular accumulation of cholesterol (Schumacher et al.,

2018). These observations prompted us to consider the possibility that embryonic lethality associ-

ated with Ubiad1 deficiency in mice resulted from mevalonate depletion. Indeed, homozygous

Hmgcr deficiency caused early embryonic lethality in mice (Ohashi et al., 2003), establishing that

mevalonate-derived metabolites are crucial for embryonic development. We previously generated

HmgcrKi/Ki mice, which harbor knockin mutations in the Hmgcr gene that prevent sterol-induced

ubiquitination and subsequent ERAD of HMGCR (Hwang et al., 2016). As a result of resistance to

ERAD, HMGCR protein accumulated in tissues of HmgcrKi/Ki mice that stimulated the overproduction

of cholesterol and likely other sterol and nonsterol isoprenoids. Hence, we reasoned that overpro-

duction of sterol and nonsterol isoprenoids in HmgcrKi/Ki mice would rescue embryonic lethality asso-

ciated with Ubiad1 deficiency. Our current studies show that homozygous Ubiad1 deletion was

produced at expected Mendelian ratios in HmgcrKi/Ki, but not in WT mice (Table 1). This important

observation not only highlights the crucial role for UBIAD1 in regulation of HMGCR ERAD, but also

Figure 3 continued

pooled and subjected to SDS-PAGE, followed by immunoblot analysis using antibodies against endogenous HMGCR, UBIAD1, SREBP-1, SREBP-2,

calnexin, and LSD-1. Although shown in separate panels, LSD-1 is a loading control for nuclear SREBP immunoblots. (C) Male and female Ubiad1+/+: :

HmgcrKi/Ki, Ubiad1+/-: :HmgcrKi/Ki, and Ubiad1-/-: :HmgcrKi/Ki littermates (eight mice/group) were weaned at 4 weeks of age, fed chow diet ad libitum,

and weighed for seven consecutive weeks, after which they were sacrificed. Error bars, S.E. *, p<0.05 and ****, p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Body weights of Ubiad1-/-: : HmgcrKi/Ki mice.

Figure supplement 1. Characterization of Ubiad1-deficient mice.

Figure supplement 1—source data 1. Body weights and hepatic lipid levels of Ubiad1-/-: : HmgcrKi/Ki mice.
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confirms that abrogating the reaction allows production of a mevalonate-derived metabolite(s) that

rescues embryonic lethality associated with Ubiad1 deficiency. Notably, administration of MK-4, ubi-

quinone-10 (Nakagawa et al., 2014), or cholesterol (data not shown) to Ubiad1+/- mice prior to

intercrossing and throughout pregnancy failed to rescue embryonic lethality of Ubiad1 deficiency.

While the identity of the mevalonate-derived metabolite(s) that rescues embryonic development
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Figure 4. Levels of HMGCR, UBIAD1, and MK-4 in various tissues and blood chemistry analysis of Ubiad1-deficient mice. Male Ubiad1+/+: :HmgcrKi/Ki

and Ubiad1-/-: :HmgcrKi/Ki littermates (12 weeks of age, 4–11 mice/group) were fed an ad libitum chow diet prior to sacrifice. (A and B) Indicated tissues

were harvested for subcellular fractionation, after which aliquots of membrane fractions were subjected to immunoblot analysis using antibodies against

HMGCR, UBIAD1, and calnexin (A). Some of the tissues were subjected to homogenization (B) for subsequent determination of MK-4 levels by reverse-

phase high performance liquid chromatography or liquid chromatography-mass spectrometry as described in ‘Materials and methods.’ (C and D) Blood

drawn from mice following sacrifice was subjected to chemical analysis by the Metabolic Phenotyping Core Facility in the Touchstone Diabetes Center

(UT Southwestern Medical Center). Bars, mean ± S.E. of data from 4 to 11 mice. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Blood chemistry analysis of male Ubiad1-/-: : HmgcrKi/Ki mice.

Figure supplement 1. Blood chemistry analysis of female Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice.

Figure supplement 1—source data 1. Blood chemistry analysis of female Ubiad1-/-: : HmgcrKi/Ki mice.
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Ubiad1-/-
HmgcrKi/Ki

Ubiad1-/-

Figure 5. Histological analysis of skeletal muscle and femoral growth plates from Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice. Histological

analysis of gastrocnemius and quadriceps muscles (A) and femoral growth plates (B) from male Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki

littermates using H and E and Safranin O staining. Myofibers harboring centrally-localized nuclei are indicated by white arrows, and degenerating

myofibers with macrophage infiltration are indicted by black arrowheads in (A). Asterisks in (B) indicate boney trabeculae, and red hue in Safranin

O-stained sections highlight cartilage. gp, growth plate. Scale bars, 100 mm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Histological analysis of gastrocnemius and quadriceps muscles from female Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki

littermates using H and E staining.

Figure supplement 2. Histological analysis of femoral growth plates from female Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki littermates using H

and E and Safranin O staining.
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remains unknown, genes encoding HMGCR, enzymes required for GGpp and Fpp synthesis, and

prenylation of small GTPases are essential for migration of primordial germ cells during embryonic

development (Kunwar et al., 2006). Thus, depletion of GGpp and/or Fpp owing to enhanced ERAD

of HMGCR and reduced prenylation of small GTPases may contribute to embryonic lethality associ-

ated with Ubiad1 deficiency.

Although ubiquitination/ERAD-resistant HMGCR rescues embryonic lethality of Ubiad1 deficiency

(Table 1), Ubiad1-/-: :HmgcrKi/Ki mice 8–12 weeks of age were 20–40% smaller than their Ubiad1+/+: :

HmgcrKi/Ki and Ubiad1+/-: :HmgcrKi/Ki littermates (Figure 3B and C). It will be important in future

studies to determine whether Ubiad1-deficient mice consume less food, have defects in nutrient

absorption, or exhibit increased energy expenditure. UBIAD1 protein and its enzymatic product MK-

4 were not detected in tissues of Ubiad1-deficient mice (Figures 3B, 4A and B). However, it is

important to note that despite the absence of MK-4, Ubiad1-deficient mice did not exhibit typical

signs of vitamin K deficiency (i.e., excessive hemorrhaging). The diet used in this study is supple-

mented with MD, which does not exhibit vitamin K activity (Buitenhuis et al., 1990) and is not con-

verted to MK-4 in absence of UBIAD1. This indicates that the diet and/or gut microbiota provide

sufficient amounts of vitamin K to support g-glutamyl carboxylation of coagulation factors in

Ubiad1-/-: :HmgcrKi/Ki mice, suggesting their failure to thrive may result from disruption of carboxyla-

tion-independent activities of MK-4. Figure 4B shows that similar to previous results

(Harshman et al., 2016; Okano et al., 2008), levels of MK-4 were highest in the pancreas and brain.

Thus, failure of Ubiad1-deficient mice to thrive may result from reduced production of MK-4 in these

or other tissues of the animals.

Recent studies show that inducible knockout of Ubiad1 in adult mice caused death within 60 days

(Nakagawa et al., 2019). The most striking abnormality of these mice was a remarkable reduction in

pancreas size resulting from apoptotic disappearance of acinar cells. This observation prompted the

authors to conclude that UBIAD1-mediated synthesis of MK-4 is essential for survival of pancreatic

acinar cells. Our current studies reveal that the pancreas of Ubiad1-/-: :HmgcrKi/Ki mice failed to pro-

duce MK-4 (Figure 4B); however, the organ was normal in size and exhibited no gross abnormalities

(data not shown). These findings argue that ubiquitination/ERAD-resistant HMGCR allows for pro-

duction of sterol and/or nonsterol isoprenoids distinct from MK-4 that are essential for subsistence

of pancreatic acinar cells.

Blood chemistry analyses were conducted to determine whether Ubiad1 deficiency results in

damage of the liver and/or other organs. Compared to Ubiad1+/+: :HmgcrKi/Ki littermates, Ubiad1-/-:

:HmgcrKi/Ki mice exhibited elevated levels of ALT (1.6-fold) and AST (>5 fold) in the serum

(Figure 4C and D; Figure 4—figure supplement 1). Elevated levels of serum aminotransferases are

routinely applied as biomarkers for hepatocyte injury. However, livers of Ubiad1-deficient mice did

not feature gross abnormalities upon histological analysis (data not shown). Further examination

revealed Ubiad1 deficient mice exhibited a 2-fold increase in serum LDH and a 4–7.5-fold increase in

CK that was accompanied by a 35% decrease in ALP (Figure 4 and Figure 4—figure supplement

1). These observations are consistent with muscle injury and bone dysfunction in Ubiad1-/-: :HmgcrKi/

Ki mice. Indeed, degenerating skeletal muscle myofibers with macrophage infiltration and myofibers

with centrally-localized nuclei as well as cell disorganization within the femoral growth plate were all

observed by histological analysis of Ubiad1-deficient mice (Figure 5; Figure 5—figure supplement

1 and 2).

Statins, competitive inhibitors of HMGCR, are widely prescribed to lower plasma levels of choles-

terol-rich low-density lipoprotein and reduce atherosclerotic cardiovascular disease. However, a sig-

nificant fraction of patients undergoing statin therapy develop myopathy; a small portion of these

patients progress to rhabdomyolysis (Thompson et al., 2003; Ward et al., 2019). Statin-induced

myopathy has been attributed to depletion of mevalonate-derived metabolites resulting from inhibi-

tion of HMGCR. Skeletal muscle-specific knockout of HMGCR in mice causes severe myopathy that

is rescued by mevalonate (Osaki et al., 2015). The observation that Ubiad1-/-: :HmgcrKi/Ki mice

exhibit signs of muscle injury suggests statin-induced myopathy may in part, result from MK-4 deple-

tion. Support for this possibility requires MK-4 rescue experiments in Ubiad1-deficient mice and

determination of whether HmgcrKi/Ki mice with skeletal muscle-specific knockout of Ubiad1 develop

myopathy.

Evidence indicates that vitamin K modulates bone homeostasis and metabolism through two

mechanisms. One mechanism is mediated by osteocalcin and matrix Gla protein (Fusaro et al.,
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2017), two VKDPs that play key roles in bone formation and mineralization. The second mechanism

is mediated by the nuclear receptor known as steroid and xenobiotic receptor (SXR) in humans and

pregnane X receptor (PXR) in mice. These promiscuous nuclear receptors are activated by a wide

variety of xenobiotics and regulate genes involved in metabolism and clearance of the substances

(Kliewer, 2003). Pxr-deficient mice present with osteopenia accompanied by reduced bone forma-

tion and increased bone resorption (Azuma et al., 2010). Considering that MK-4 has been reported

to bind to and activate PXR (Tabb et al., 2003), it will be important to determine whether Ubiad1-

deficiency phenocopies Pxr-deficiency with regard to bone homeostasis.

The characterization of genetically-manipulated mice underscores the physiological significance

of UBIAD1 as an inhibitor of HMGCR ERAD. We recently generated mice (designated Ubiad1Ki/Ki)

harboring a knockin mutation that changes asparagine-100 (N100) to serine (N100S) (Jo et al.,

2019). The N100S mutation in mouse UBIAD1 corresponds to SCD-associated N102S mutation in

human UBIAD1 that abolishes sensing of membrane-embedded GGpp. UBIAD1 (N100S) was

sequestered in ER membranes to inhibit ERAD of HMGCR, causing the protein’s accumulation and

overproduction of sterol and nonsterol isoprenoids in the liver and other tissues of Ubiad1Ki/Ki mice.

Significant corneal opacification was observed in Ubiad1Ki/Ki mice greater than 50 weeks of age

(HmgcrKi/Ki mice used in the current study were not aged and thus, not examined for corneal opacifi-

cation). Considered together with current studies, these findings unequivocally position UBIAD1 as a

major regulator of HMGCR and mevalonate metabolism in vivo, provide new links between synthesis

of sterols and MK-4, and establish Ubiad1-/-: :HmgcrKi/Ki mice as a model of MK-4 deficiency. Further

analysis of these mice may reveal new physiological roles for MK-4 and additional pathways modu-

lated by the vitamin K subtype.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(M. musculus)

Mouse/Wild Type:C57BL/6J The Jackson
Laboratory

Stock#000664

Genetic reagent
(M. musculus)

Mouse/HmgcrKi/Ki

(HMGCR K89R/K248R):C57BL/6
PMID: 27129778 N/A Knockin mice

harboring mutations
in the Hmgcr gene that
prevent ubiquitination
of HMGCR protein

Genetic reagent
(M. musculus)

Mouse/Ubiad1+/D172:C57BL/6J This paper N/A Mice heterozygous for 172 bp
deletion in exon 1
of the Ubiad1 gene

Genetic reagent
(M. musculus)

Mouse/Ubiad1D172/D172: : HmgcrKi/Ki

(HMGCR K89R/K248R):C57BL/6J
This paper N/A HmgcrKi/Ki mice homozygous for

172 bp deletion in exon 1
of the Ubiad1 gene

Genetic reagent
(M. musculus)

Mouse/Ubiad1D29/D29: : HmgcrKi/Ki

(HMGCR K89R/K248R):C57BL/6J
This paper N/A HmgcrKi/Ki mice

homozygous for
29 bp deletion in exon 1
of the Ubiad1 gene

Antibody Rabbit monoclonal
anti-SREBP-1

PMID: 28244871 IgG-20B12 used at 1–5 mg/ml for
immunoblots

Antibody Rabbit monoclonal
anti-SREBP-2

PMID: 25896350 IgG-22D5 used at 1–5 mg/ml for
immunoblots

Antibody Rabbit polyclonal
anti-UBIAD1

PMID: 30785396 IgG-205 used at 1–5 mg/ml for
immunoblots

Antibody Rabbit polyclonal
anti- HMGCR

PMID: 27129778 IgG-839c used at 1–5 mg/ml for
immunoblots

Antibody Rabbit polyclonal
anti-Calnexin

Novus Biologicals Cat#NB100-1965;
RRID: AB_10002123

used at 1–5 mg/ml for
immunoblots

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Rabbit polyclonal
anti-LSD-1

Cell Signaling Technology Cat#2139;
RRID: AB_2070135

used at 1–5 mg/ml for
immunoblots

Sequence-
based reagent

Ubiad1 genotyping
primers

Genotyping of mice is
described in
Materials and methods.

N/A Forward:
TCCCCTTGAGTGGCTCACTTTTA;
Reverse:
AAATCGAACAACATCCTGGGGCT

Sequence-
based reagent

HmgcrKi/Ki genotyping
primers

PMID: 27129778 N/A K89R Forward:
GTCCATGAACATGTTCACCG;
Reverse:
CAGCACGTCCTATTGGCAGA
K248R
Forward:
TCGGTGATGTTCCAGTCTTC;
Reverse,
GGTGGCAAACACCTTGTATC

Sequence-
based reagent

Guide RNAs (gRNAs)
used to target mouse Ubiad1

Targeting of mouse
Ubiad1 gene is
described in
Materials and methods

N/A gRNA-A:
GGCTTCCCGAACGATCCTGG
gRNA-B:
CAAGTGCGCCTCCTACGTGT
gRNA-C:
TGTACACGGGGCCGGCAATT

Sequence-
based reagent

qRT-PCR Primers
for UBIAD1

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for SREBP1a

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for SREBP-1c

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for SREBP-2

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for HMGCR

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for Insig-1

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for Insig-2a

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for Insig-2b

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for SCAP

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for HMGCS

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for FPPS

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for LDLR

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for PCSK9

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for ACS

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for ACC1

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for FAS

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for SCD1

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

qRT-PCR Primers
for GPAT

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for LXRa

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for ABCG5

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for ABCG8

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for GGPS

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Sequence-
based reagent

qRT-PCR Primers
for Cyclophilin

PMID: 30785396 N/A The sequence of these primers
can be found in indicated reference

Commercial
assay or kit

TaqMan Reverse
Transcription

Applied Biosystems Cat#N8080234

Commercial
assay or kit

Power SYBR Green
PCR Master Mix

Applied Biosystems Cat#4367659

Commercial
assay or kit

DNeasy Blood
and Tissue Kit

Qiagen Cat#69506

Commercial
assay or kit

MEGAshortscript Kit Ambion Cat#AM1354

Commercial
assay or kit

Surveyor Mutation
Detection Kit

Integrated DNA
Technologies

Cat#706020

Commercial
assay or kit

FuGENE6 Transfection
Reagent

Promega Cat#1815075

Chemical
compound, drug

Menaquinone-4 Sigma-Aldrich Cat#809896

Chemical
compound, drug

Phylloquinone (Vitamin K1) Cerilliant Cat#V-030

Mice
Previously described HmgcrKi/Ki mice harbor homozygous nucleotide mutations in the Hmgcr gene

that change lysine residues 89 and 248 to arginine (Hwang et al., 2016). These mutations prevent

Insig-mediated ubiquitination and subsequent ERAD of HMGCR in the liver and other tissues of the

knockin mice. Ubiad1-/+ and Ubiad1+/-: :HmgcrKi/Ki mice (C57BL/6N background) were generated

using WT and HmgcrKi/Ki mice, respectively, using CRISPR/Cas9 technology in the Transgenic Core

Facility at UT Southwestern Medical Center. The guide RNAs were designed to generate a deletion

in exon 1 of the Ubiad1 gene, resulting in production of a truncated, nonfunctional protein (see Fig-

ure 2). F0 founders were used to produce F1 offspring that carried the Ubiad1-deficient allele

through the germline. Pairs (male and female) of Ubiad1+/- and Ubiad1+/-: :HmgcrKiKi/Ki mice were

intercrossed for production of homozygous Ubiad1-deficient mice in the WT or HmgcrKi/Ki back-

ground. To genotype Ubiad1-deficient animals, genomic DNA from tails was used for PCR with the

primers indicated in the Key resources table against the mouse Ubiad1 sequence. The genotype of

HmgcrKi/Ki mice was determined as described previously (Hwang et al., 2016). All mice were housed

in colony cages with at 12 hr light/12 hr dark cycle and fed Envigo-Teklad Mouse/Rat Diet 2018 from

Harlan Taklad (Madison, WI). All animal experiments were performed with the approval of the Insti-

tutional Animal Care and Use Committee at UT Southwestern Medical Center (APN - 2016–101636).

Subcellular fractionation and immunoblot analysis
Approximately 80 mg of frozen tissue was homogenized in 500 ml buffer (10 mM HEPES-KOH, pH

7.6, 1.5 mM MgCl2, 10 mM KCl, 5 mM EDTA, 5 mM EGTA, and 250 mM sucrose) supplemented

with a protease inhibitor cocktail consisting of 0.1 mM leupeptin, 5 mM dithiothreitol, 1 mM PMSF,

0.5 mM Pefabloc, 5 mg/ml pepstatin A, 25 mg/ml N-acetyl-leu-leu-norleucinal, and 10 mg/ml aproti-

nin. The homogenates were then passed through a 22-gauge needle 10–15 times and subjected to
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centrifugation at 1,000 X g for 5 min at 4˚C. The 1,000 X g pellet was resuspended in 500 ml of buffer

(20 mM HEPES-KOH, pH 7.6, 2.5% (v/v) glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 1 mM EDTA, 1 mM

EGTA) supplemented with the protease inhibitor cocktail, rotated for 30 min at 4˚C, and centrifuged

at 100,000 X g for 30 min at 4˚C. The supernatant from this spin was precipitated with 1.5 ml cold

acetone at �20˚C for at least 30 min; the precipitated material was collected by centrifugation,

resuspended in SDS-lysis buffer (10 mM Tris-HCl, pH 6.8, 1% (w/v) SDS, 100 mM NaCl, 1 mM EDTA,

and 1 mM EGTA), and designated the nuclear extract fraction. The post-nuclear supernatant from

the original spin was used to prepare the membrane fraction by centrifugation at 100,000 X g for 30

min at 4˚C. Each membrane fraction was resuspended in 100 ml SDS-lysis buffer. Protein concentra-

tion of nuclear extract and membrane fractions were measured using the BCA Kit (ThermoFisher Sci-

entific). Prior to SDS-PAGE, aliquots of the nuclear extract fractions were mixed with 5X SDS-PAGE

loading buffer to achieve a final concentration of 1X. Aliquots of the membrane fractions were mixed

with an equal volume of buffer containing 62.5 mM Tris-HCl, pH 6.8, 15% (w/v) SDS, 8 M urea, 10%

(v/v) glycerol, and 100 mM DTT, after which 5X SDS loading buffer was added to a final concentra-

tion of 1X. Nuclear extract fractions were boiled for 5 min, and membrane fractions were incubated

for 20 min at 37˚C prior to SDS-PAGE. After SDS-PAGE, proteins were transferred to Hybond

C-Extra nitrocellulose filters (GE Healthcare, Piscataway, NJ). The filters were incubated with the

antibodies described below and in the figure legends. Bound antibodies were visualized with peroxi-

dase-conjugated, affinity-purified donkey anti-mouse or anti-rabbit IgG (Jackson ImmunoResearch

Laboratories, Inc, West Grove, PA) using the SuperSignal CL-HRP substrate system (ThermoFisher

Scientific) according to the manufacturer’s instructions. Gels were calibrated with prestained molecu-

lar mass markers (Bio-Rad, Hercules, CA). Filters were exposed to film at room temperature. Anti-

bodies used for immunoblotting to detect mouse SREBP-1 (rabbit monoclonal IgG-20B12), SREBP-2

(rabbit monoclonal IgG-22D5), HMGCR (IgG-839c), and UBIAD1 (rabbit polyclonal IgG-205) were

previously described (Engelking et al., 2005; Jo et al., 2011; McFarlane et al., 2014; Rong et al.,

2017). Rabbit polyclonal anti-calnexin IgG was purchased from Novus Biologicals (Centennial, CO).

Rabbit polyclonal anti-LSD1 IgG was obtained from Cell Signaling (Danvers, MA). All antibodies

were used at a final concentration of 1–5 mg/ml; the anti-calnexin antiserum was used at a dilution of

1:5000.

Blood chemistry, MK-4 measurement, and histological analysis
Blood was drawn from the vena cava after mice were anesthetized in a bell jar atmosphere contain-

ing isoflurane. Serum was immediately separated and analyzed or stored at �80˚C until use. Blood

chemistries (cholesterol, triglycerides, AST, ALT, ALP, nonesterified fatty acids, etc.) were measured

in the Metabolic Phenotyping Core Facility at UT Southwestern Medical Center.

MK-4 levels in mouse tissues was measured as follows. Approximately 100 mg of tissue from

Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice was homogenized in phosphate-buffered

saline (PBS) using a Powergen homogenizer (Fisher Scientific). The internal standard, vitamin K1(25),

was added to homogenates generated from the kidney, pancreas, and spleen. The concentration of

MK-4 in these homogenates was subsequently determined by reverse-phase HPLC as described pre-

viously (Booth et al., 2008) using a C30 column that allows improved resolution. The MK-4 content

of the liver, brain, and adipose tissue was determined as described (Fu et al., 2009;

Harshman et al., 2016) by LC-MS using deuterium-labeled vitamin K1 as an internal standard.

The histological analysis of tissues from Ubiad1+/+: :HmgcrKi/Ki and Ubiad1-/-: :HmgcrKi/Ki mice

was conducted by the Pathology Core at UT Southwestern Medical Center.

Quantitative real-time PCR (qRT-PCR)
Total RNA was prepared from mouse tissues using the RNA STAT-60 kit (TEL-TEST ‘B’, Friendswood,

TX). Equal amounts of RNA from individual mice were treated with DNase I (DNA-free, Ambion/Life

Technologies, Grand Island, NY). First strand cDNA was synthesized from 10 mg of DNase I-treated

total RNA with random hexamer primers using TaqMan Reverse Transcription Reagents (Applied

Biosystems/Roche, Branchburg, NJ). Specific primers for each gene were designed using Primer

Express software (Life Technologies) or Primer Bank of Harvard University. The real-time RT-PCR

reaction was set up in a final volume of 20 ml containing 20 ng of reverse-transcribed total RNA, 167

nM of the forward and reverse primers, and 10 ml of 2X SYBR Green PCR Master Mix (Life
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Technologies). PCR reactions were done in triplicate using ViiA7 Applied Biosystems. The relative

amount of all mRNAs was calculated using the comparative threshold cycle (CT) method. Mouse

cyclophilin mRNA was used as the invariant control. Sequences for primers used for qRT-PCR are

listed in the Key resources table.

Quantification and statistical analysis
Graphs were generated, and statistical analysis was performed using Prism software (Graphpad).

Quantitative data are presented as mean ± SEM. Statistical parameters (n, mean, SEM) can be found

within the figure legends. The t-test was used to define differences between two datasets. The crite-

rion for significance was set at p<0.05. No statistical method was used to determine whether the

data met assumptions of the statistical approach.

Reproducibility of data
All results were confirmed in at least two independent experiments conducted on different days

using different animals.
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