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ABSTRACT

A comprehensive analysis of enriched functional
categories in differentially expressed genes is
important to extract the underlying biological
processes of genome-wide expression profiles.
Moreover, identification of the network of significant
functional modules in these dynamic processes is
an interesting challenge. This study introduces
DynaMod, a web-based application that identifies
significant functional modules reflecting the
change of modularity and differential expressions
that are correlated with gene expression profiles
under different conditions. DynaMod allows the
inspection of a wide variety of functional modules
such as the biological pathways, transcriptional
factor–target gene groups, microRNA–target gene
groups, protein complexes and hub networks
involved in protein interactome. The statistical sig-
nificance of dynamic functional modularity is scored
based on Z-statistics from the average of mutual
information (MI) changes of involved gene pairs
under different conditions. Significantly correlated
gene pairs among the functional modules are used
to generate a correlated network of functional
categories. In addition to these main goals, this
scoring strategy supports better performance to
detect significant genes in microarray analyses, as
the scores of correlated genes show the superior
characteristics of the significance analysis
compared with those of individual genes. DynaMod
also offers cross-comparison between different
analysis outputs. DynaMod is freely accessible at
http://piech.kaist.ac.kr/dynamod.

INTRODUCTION

The analysis of genome-wide gene expression profiles is
widely used in the current biomedical research. An im-
portant goal of this analysis is to generate biological

hypotheses by identifying statistically significant genes
and their functions that reflect the different phenotype
classes under test. Various useful gene selection tools are
available for this purpose (1,2). Typical gene selection
approaches focus on the characterization of individual
genes distinguishing the biological conditions. These indi-
vidually selected genes are subjected to annotate enriched
functional categories. However, many phenotypes and
underlying cellular processes are associated with groups
of genes in various functional categories and their
networks rather than with isolated genes. Under the
typical gene selection procedure, the coordinated effect
of correlated genes in the functional modules or
networks cannot be well characterized. Furthermore, the
statistical significance of individual genes cannot be pre-
sented properly when the sets of genes in the test have
expression dependencies that may exist in the functionally
correlated genes. In fact, statistical test showed that the
average significances of functionally correlated genes are
closer to a normal distribution than those of individual
genes (3). The coordinated changes of functionally
correlated gene sets appears to be an improved measure
of extracting significant causes from differential gene ex-
pression profile in the sense of biological and statistical
significance at the same time.
Several gene set enrichment analyses (GSEAs) have

been introduced (3–8). These tools emphasize the discov-
ery of functionally correlated genes more reliably and
completely than individual gene-based approaches. The
typical strategy of the gene set-based approach is to
combine the initial significance evaluation of all genes to
the coordinated significance of the set of genes obtained
from predefined functional categories. Although GSEA
approach can more appropriately determine the potent
effects of functionally correlated genes than individual
gene-based approach, the efficiency of this method can
vary depending on the strategy of selecting and scoring
the gene sets. Most scoring methods used in GSEA tools
remain limited, in that they must use a relatively large size
of gene set in conjunction with a parametric approach
(3,5). Alternative non-parametric approaches are usually
associated with an increase in the computational
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complexity and a decrease in the level of the generality in
comparisons of results from different tests. Another re-
striction to use current GSEA approaches is on the
coverage of functional categories they choose. More im-
portantly, they do not handle the networked characteristic
of functional modules. A networked feature of the genes in
a module can be characterized by the dynamic changes of
correlated activities or biologically dysregulated relation-
ships of the genes under different conditions (9,10). This
can be applied to various functional modules to identify
dynamic functional modularity (DFM), which could not
be described in typical GSEA approaches. Another net-
worked characteristic can be obtained by hub protein
networks or protein complexes that connect the functional
module sets of the analysis.
DynaMod is a web-based application that identifies sig-

nificant functional modules reflecting the dynamic changes
of correlated activities and differential expressions in gene
expression profiles under different conditions. A novel
scoring strategy uses the average mutual information
(MI) differences of gene pairs in predefined functional
modules depending on phenotypes. The gene sets are con-
structed from a wide variety of functional categories rep-
resenting cellular pathways, transcription factor
regulations, miRNA regulations, hub protein networks
and protein complexes. Overlap genes across the function-
al modules are used to find interconnectivity across func-
tional modules. It also provides a cross-comparison
between different analysis outputs that helps users to in-
terpret the results from more than two phenotypes or dif-
ferent functional categories together.

METHODS AND IMPLEMENTATION

Collection of functional modules and biological gene pairs

There are five types of functional modules in this system:
biological pathways from KEGG (11), transcriptional
factor–target gene groups from TRANSFAC (12),
microRNA–target gene groups from MsigDB (4),
protein complexes and hub networks from protein
interactome. Integrated protein complexes from
COFECO (13) and combined protein interaction
database (14) are used here. Protein complexes are
increased by adding human protein complexes from
Ewing et al. (15). Hub networks with at least five interact-
ing partners are retrieved from an integrated interactome
including BIND (16), BioGrid (17), DIP (18), HPRD (19),
IntAct (20), MINT (21) and MIPS MPPI (22). Gene pairs
are constructed from the pairwise relations presented in
these five types of functional modules and are utilized to
compute MI. DynaMod imports flat files related to func-
tional modules and their gene pairs. In addition, three
disease databases including OMIM (23), Genetic
Association Database (24) and Cancer Gene Census (25)
are used to annotate disease genes in functional modules.
All gene entries for the functional modules of DynaMod
are marked with an Entrez Gene ID. Gene identifiers from
various databases including Entrez Gene, UniGene,
RefSeq, EMBL, ENSEMBL, SGD, RGD, MGI, HGNC
and the microarray probe identifiers of Affymetrix and

Agilent are allowed. DynaMod also accepts identifiers of
UniProtKB, iProClass and IPI. The same Entrez Gene is
frequently represented by several probes in a microarray
data set. DynaMod determines a probe representing a
gene with the best scored gene probe when there are
several probes corresponding to a gene in a microarray
data set.

Significance test of DFM

Our proposed DFM analysis works in two steps. We first
use an aforementioned compendium of gene pairs to
compute MI. MI is a quantity that measures the mutual
dependence of two variables in information theory, which
is zero if and only if the two variables are independent.
The MI of gene pairs shows a correlation or dependence
between two genes in the phenotype of interest. We then
identify DFM of predefined modules according to the stat-
istical significance of the altered correlation of gene pairs
in the functional modules. To perform the latter step, MI
difference (�MI) is measured by a method similar to that
of Mani et al. (9), which proposed an oncogene prediction
method using dysregulated interactions that show signifi-
cant MI differences in the phenotype of interest. MI dif-
ference is given by the following equation:

�MI ¼MItotal �MIcontrol

Here, MItotal is the MI calculated from all given samples
and MIcontrol is the MI calculated from control sample set
that excludes the phenotype samples of interest. The MI
differences of gene pairs represent the change of correlated
activity or biologically dysregulated relationships among
the genes and the dynamic modularity can be measured by
the average MI differences of functional modules. It is
assumed that given an expression profile, there are N pre-
defined gene pairs in each module type. Subsequently, N
MI differences are computed. A null distribution is
generated by sampling a subset of gene pairs across 100
equally sized MI difference bins covering N MI difference
range in overall gene pairs of an expression profile. For
each bin of 100 gene pairs, MI differences for those gene
pairs are computed by phenotype randomization of ex-
perimental samples. Thereafter, a null distribution
composed of resulting 10 000 MI differences is con-
structed. A normality test was conducted by several
standard routines on four microarray data sets. The null
distribution of MI differences for individual gene pairs in
glioblastoma data set [GSE4290 from Gene Expression
Omnibus (GEO) in NCBI] was slightly out of normal dis-
tribution according to Kolmogorov–Smirnov normality
test (D=0.0094, P=0.04493), although it was much
closer to normal than the case using other previously
used measure such as fold change (D=0.0819,
P=2.2e-16). After the test of increasing number of gene
pairs, the sufficient minimal size of the gene pairs was set
to two, which shows confident normality (D=0.0082,
P=0.2036 according to Kolmogorov–Smirnov normality
test). This result is comparable with the normality charac-
teristic of the previous method acquired from the mean of
10 samples with a fold change measure (Supplementary
Data). DynaMod identifies significant functional
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modules in different conditions by using the Z-statistics of
the average MI difference. This tool computes a Z-score
for the average MI difference of a functional module using
the aforementioned null distribution of MI differences and
estimates the statistical significance of the Z-score against
a standard normal distribution. If a sample size of MI
differences is k (i.e. �2), the mean of the averages of all
MI differences (�) and the standard deviation of the
averages of all of MI differences (�) are computed from
a null distribution. When the mean of the MI differences
for a given functional module is �MI and the number of
gene pairs in that module is n, the standard error (SE) of
�MI and the Z-score is computed as follows:

SE ¼
�
ffiffiffi
n
p , Z ¼

�MI� �

SE
,

The statistical significances (P-values) of the functional
modules are adjusted for multiple-testing routines, such
as with the Bonferroni method or the false discovery
rate (FDR) of Benjamini and Hochberg (26).

Determination of module expression activity

Module expression activity (MEA) is a score estimating
the differential expression of a module and upregulated
group (Up_MEA) or downregulated group
(Down_MEA) of a module. MEA is given by the follow-
ing equations.

Up MEA ¼

Pn
i¼1 gi � ðsgnðgiÞ+1Þ

2n
,

Down MEA ¼

Pn
i¼1 gi � ð1� sgnðgiÞÞ

2n

Here, gi is a gene score acquired by t-test or fold change,
sgn is an indicator function and n is the number of
member genes in the module. In Up_MEA, sgn results
in 1 if gi is positive and 0 otherwise. In Down_MEA,
sgn results in �1 if gi is negative and 0 otherwise.

Network study among significant functional modules

Unions of the functional and neighbor modules are
provided for the significant functional modules, whose
overlap score exceeds a specific threshold (one overlap
gene as the default number). Alternative score is defined
as (n�n)/n1�n2, where n, n1, and n2 are the number of
genes in the overlap and modules 1 and 2, respectively.
Users can acquire the association among functional
modules by genes in the overlap.

Significance test for individual genes and gene pairs

Although functional module-based analysis is the main
goal, users may need occasionally the significance of indi-
vidual genes. DynaMod evaluates the significance scores
of individual genes by t-test or fold changes. DynaMod
also provides the significances of �MI for individual gene
pairs.

Implementation

The core algorithm of DynaMod was implemented in R
and the web interface was implemented in JAVA and Java
Server Page on Linux. It runs on Apache Web Server
combined with the Tomcat servlet engine. All annotation
data for gene entries and functional modules within this
system were stored in Oracle 10g RDBMS. As the com-
putation works of DynaMod runs on a Linux-based
cluster system, a large number of MI calculations of
gene pairs can be parallelized using the Parallel Virtual
Machine (PVM) via the rpvm and snow in R packages
on a cluster of nine nodes, each with dual quad-core
Intel Xeon 2.46GHz CPUs and 24 GB of RAM. The
functional modules, biological gene pairs, annotation re-
sources, organisms and identifiers will be updated
periodically.

DYNAMOD WEB SERVER

Input

The input of DynaMod is a genome-wide expression
profile. Expression profiles have to contain gene identi-
fiers, expression values and class labels (i.e. 1 or 2) of ex-
perimental samples.

Outputs

The following DynaMod outputs are accessible
at specified URL addresses that are sent to user by
e-mail. These outputs are also downloadable from the
web pages. An example outputs are shown in Figures 1
and 2.

Summary of significant functional modules, their networks
and involved genes. DynaMod produces a summary rank
table of significant functional modules and their neighbor
modules including their significance scores and Up/
Down_MEA scores. The summary table is linked to the
further detail tables that contain the information of entry
genes, gene pairs and their scores with P-values in the
functional modules and networked modules. Biological
functions of significant modules can be efficiently
annotated by composite functional enrichment of
COFECO (13).

Graphical representation of functional modules. Individual
functional modules and their neighbor modules are
summarized with a network graphical view of the scored
genes and gene pairs. Up/down expression of genes and
up/down expression correlations are depicted from green
to red. The network graph is implemented using the
GraphViz library.

Cross-comparison between different analysis results. A
cross-comparison is used to identify changes/trends
between the analysis results from different phenotypes.
This functionality is useful for comparing various types
of outputs from different input sets.
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AN EXAMPLE APPLICATION

Figures 1 and 2 show the selected DynaMod outputs for
an example analysis of glioblastoma data set (GSE4290)
that have been submitted to the GEO database at NCBI
(27). The functional modularity of PA700-20S-PA28
complex, one of the proteasome complexes, looks
decreased mostly [most negative Z-score of MI difference
in DFM activity (DFMA) column] and the member genes
are separated into up- and downregulated groups during
the change from normal to glioblastoma. For the second
ranked MCM complex, it increases mostly (most positive
Z-score) and all member genes are upregulated during the

cancer formation. These results can give new implications
of the role of those complexes in conjunction with
previous studies indicating that PA700-20S-PA28
complex is involved in tumorigenesis and immune surveil-
lance (28) and MCM complex is highly expressed in ma-
lignant human cancer cells (29). The eighth ranked
complex, ‘SNARE complex’, is sublocalized in neurons
of brain and is responsible for membrane fusion in the
secretory pathway (30). All member genes are
downregulated with significant decrease of their modular-
ity in glioblastoma. Detail information of SNARE
complex is shown in Figure 2. With the inspection of

Figure 1. Screenshots of the selected DynaMod analysis results with the example of glioblastoma (GSE4290 of GEO) data set. Highly significant
modules in DFM are listed with their modular expression activity showing modular differential expression activity of a module (MEA) and
upregulated group (Up_MEA) or downregulated group (Down_MEA) of a module for the functional categories of protein complex (A), KEGG
pathway (B) and miRNA targets (C). The name of module in ‘Module’ column links the detail information of each module as shown in
Figure 2A–C. The icon in ‘Neighbor modules’ column links the detail neighbor information as shown in Figure 2D.
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gene relationships (Figure 2B and C) and neighbor
modules that have overlapped genes (Figure 2D), further
refined association study among the specific pairs of
genes in different functional categories can be designed
in detail.

CONCLUSIONS

DynaMod provides a new method to identify both signifi-
cant changes of functional modularity by using the
average MI differences of gene pairs and differential ex-
pressions in predefined functional modules depending on
expression profiles under different phenotypes, which

could not be fully supported by typical GSEA approaches.
Interestingly, this study showed that the average MI dif-
ferences acquired by phenotype randomization of an ex-
pression profile demonstrate normality in small sampling
size. Hence, this proposed method supports that paramet-
ric tests such as Z-statistics properly analyze functional
modules composed of at least three genes (including at
least two biological gene pairs). On the basis of this back-
ground, a wide variety of functional modules can
be collected and analyzed, including protein complexes,
hub-partner groups, miRNA–target groups and
transcriptional factor-target groups.
In summary, this tool evaluates the significant modular

correlations of various functional categories with gene

Figure 2. Screenshots of detail information page of SNARE complex. Detail information module includes the description of subunit proteins (A),
known gene relationships with their pairwise MI differences (B), graphical view of interaction network (C) and neighboring modules with overlapping
genes (D). Disease-associated information of each gene is linked by ‘GAD’ icon (A and B). Green and red colors of gene nodes in (C) represent the
degree of up- and downexpressions, respectively. Yellow colored genes in (A) link to Entrez database at NCBI. Yellow colored gene pairs in (B) link
to an information page showing gene functions, known gene relationships and associated functional modules.
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expression profiles of different phenotypes using the
average MI differences of gene pairs in the modules.
Significantly correlated networks across functional
modules can be generated through utilization of
overlapping genes among different modules. As this tool
ascertains the overall effect of those modules, it provides
module-wise interpretation of dynamic cellular behaviors.
User can conveniently interpret the dynamic modular
activities of various functional categories and their
networks depending on phenotype changes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENT

The authors thank anonymous reviews for constructive
criticisms and fruitful discussions.

FUNDING

Grant from the Korea Institute of Science and Technology
Information (KISTI). Funding for open access charge: the
Korea Institute of Science and Technology Information
(KISTI).

Conflict of interest statement. None declared.

REFERENCES

1. Hwang,T., Sun,C.H., Yun,T. and Yi,G.S. (2010) FiGS: a
filter-based gene selection workbench for microarray data. BMC
Bioinformatics, 11, 50.

2. Inza,I., Larranaga,P., Blanco,R. and Cerrolaza,A.J. (2004) Filter
versus wrapper gene selection approaches in DNA microarray
domains. Artif. Intell. Med., 31, 91–103.

3. Kim,S.Y. and Volsky,D.J. (2005) PAGE: parametric analysis of
gene set enrichment. BMC Bioinformatics, 6, 144.

4. Subramanian,A., Tamayo,P., Mootha,V.K., Mukherjee,S.,
Ebert,B.L., Gillette,M.A., Paulovich,A., Pomeroy,S.L.,
Golub,T.R., Lander,E.S. et al. (2005) Gene set enrichment
analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl Acad. Sci. USA, 102,
15545–15550.

5. Kim,S.B., Yang,S., Kim,S.K., Kim,S.C., Woo,H.G., Volsky,D.J.,
Kim,S.Y. and Chu,I.S. (2007) GAzer: gene set analyzer.
Bioinformatics, 23, 1697–1699.

6. Subramanian,A., Kuehn,H., Gould,J., Tamayo,P. and
Mesirov,J.P. (2007) GSEA-P: a desktop application for gene set
enrichment analysis. Bioinformatics, 23, 3251–3253.

7. Backes,C., Keller,A., Kuentzer,J., Kneissl,B., Comtesse,N.,
Elnakady,Y.A., Muller,R., Meese,E. and Lenhof,H.P. (2007)
GeneTrail–advanced gene set enrichment analysis. Nucleic Acids
Res., 35, W186–W192.

8. Boorsma,A., Foat,B.C., Vis,D., Klis,F. and Bussemaker,H.J.
(2005) T-profiler: scoring the activity of predefined groups of
genes using gene expression data. Nucleic Acids Res., 33,
W592–W595.

9. Mani,K.M., Lefebvre,C., Wang,K., Lim,W.K., Basso,K., Dalla-
Favera,R. and Califano,A. (2008) A systems biology approach to
prediction of oncogenes and molecular perturbation targets in
B-cell lymphomas. Mol. Syst. Biol., 4, 169.

10. Taylor,I.W., Linding,R., Warde-Farley,D., Liu,Y., Pesquita,C.,
Faria,D., Bull,S., Pawson,T., Morris,Q. and Wrana,J.L. (2009)
Dynamic modularity in protein interaction networks predicts
breast cancer outcome. Nature Biotechnol., 27, 199–204.

11. Kanehisa,M., Goto,S., Hattori,M., Aoki-Kinoshita,K.F., Itoh,M.,
Kawashima,S., Katayama,T., Araki,M. and Hirakawa,M. (2006)
From genomics to chemical genomics: new developments in
KEGG. Nucleic Acids Res., 34, D354–D357.

12. Matys,V., Kel-Margoulis,O.V., Fricke,E., Liebich,I., Land,S.,
Barre-Dirrie,A., Reuter,I., Chekmenev,D., Krull,M.,
Hornischer,K. et al. (2006) TRANSFAC and its module
TRANSCompel: transcriptional gene regulation in eukaryotes.
Nucleic Acids Res., 34, D108–D110.

13. Sun,C.H., Kim,M.S., Han,Y. and Yi,G.S. (2009) COFECO:
composite function annotation enriched by protein complex data.
Nucleic Acids Res., 37, W350–W355.

14. Han,Y.W., Sun,C.H., Kim,M.S. and Yi,G.S. (2009) Combined
Database System for Binary Protein Interaction and Co-complex
Association. 2009 International Association of Computer Science and
Information Technology—Spring Conference, iacsit-sc, pp. 538–542.

15. Ewing,R.M., Chu,P., Elisma,F., Li,H., Taylor,P., Climie,S.,
McBroom-Cerajewski,L., Robinson,M.D., O’Connor,L., Li,M.
et al. (2007) Large-scale mapping of human protein-protein
interactions by mass spectrometry. Mol. Syst. Biol., 3, 89.

16. Alfarano,C., Andrade,C.E., Anthony,K., Bahroos,N., Bajec,M.,
Bantoft,K., Betel,D., Bobechko,B., Boutilier,K., Burgess,E. et al.
(2005) The Biomolecular Interaction Network Database and
related tools 2005 update. Nucleic Acids Res., 33, D418–D424.

17. Breitkreutz,B.J., Stark,C., Reguly,T., Boucher,L., Breitkreutz,A.,
Livstone,M., Oughtred,R., Lackner,D.H., Bahler,J., Wood,V.
et al. (2008) The BioGRID Interaction Database: 2008 update.
Nucleic Acids Res., 36, D637–D640.

18. Salwinski,L., Miller,C.S., Smith,A.J., Pettit,F.K., Bowie,J.U. and
Eisenberg,D. (2004) The Database of Interacting Proteins: 2004
update. Nucleic Acids Res., 32, D449–D451.

19. Keshava Prasad,T.S., Goel,R., Kandasamy,K., Keerthikumar,S.,
Kumar,S., Mathivanan,S., Telikicherla,D., Raju,R., Shafreen,B.,
Venugopal,A. et al. (2009) Human Protein Reference Database–
2009 update. Nucleic Acids Res., 37, D767–D772.

20. Kerrien,S., Alam-Faruque,Y., Aranda,B., Bancarz,I., Bridge,A.,
Derow,C., Dimmer,E., Feuermann,M., Friedrichsen,A.,
Huntley,R. et al. (2007) IntAct–open source resource for
molecular interaction data. Nucleic Acids Res., 35, D561–D565.

21. Ceol,A., Chatr-Aryamontri,A., Licata,L., Peluso,D., Briganti,L.,
Perfetto,L., Castagnoli,L. and Cesareni,G. (2010) MINT, the
molecular interaction database: 2009 update. Nucleic Acids Res.,
38, D532–D539.

22. Pagel,P., Kovac,S., Oesterheld,M., Brauner,B., Dunger-
Kaltenbach,I., Frishman,G., Montrone,C., Mark,P., Stumpflen,V.,
Mewes,H.W. et al. (2005) The MIPS mammalian protein-protein
interaction database. Bioinformatics, 21, 832–834.

23. Hamosh,A., Scott,A.F., Amberger,J.S., Bocchini,C.A. and
McKusick,V.A. (2005) Online Mendelian Inheritance in Man
(OMIM), a knowledgebase of human genes and genetic disorders.
Nucleic Acids Res., 33, D514–D517.

24. Becker,K.G., Barnes,K.C., Bright,T.J. and Wang,S.A. (2004) The
genetic association database. Nat. Genet., 36, 431–432.

25. Futreal,P.A., Coin,L., Marshall,M., Down,T., Hubbard,T.,
Wooster,R., Rahman,N. and Stratton,M.R. (2004) A census of
human cancer genes. Nat. Rev. Cancer, 4, 177–183.

26. Benjamini,Y. and Hochberg,Y. (1995) Controlling the
false discovery rate: a practical and powerful approach to
multiple testing. J. R. Stat. Soc., Series B (Methodological), 57,
289–300.

27. Sun,L., Hui,A.M., Su,Q., Vortmeyer,A., Kotliarov,Y.,
Pastorino,S., Passaniti,A., Menon,J., Walling,J., Bailey,R. et al.
(2006) Neuronal and glioma-derived stem cell factor induces
angiogenesis within the brain. Cancer cell, 9, 287–300.

28. Kopp,F., Dahlmann,B. and Kuehn,L. (2001) Reconstitution of
hybrid proteasomes from purified PA700-20 S complexes and
PA28alphabeta activator: ultrastructure and peptidase activities.
J. Mol. Biol., 313, 465–471.

29. Lei,M. (2005) The MCM complex: its role in DNA replication
and implications for cancer therapy. Curr. Cancer Drug Targets,
5, 365–380.

30. McMahon,H.T., Missler,M., Li,C. and Sudhof,T.C. (1995)
Complexins: cytosolic proteins that regulate SNAP receptor
function. Cell, 83, 111–119.

W108 Nucleic Acids Research, 2010, Vol. 38, Web Server issue


