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Abstract

Many decisions in life are sequential and constrained by a time window. Although mathe-

matically derived optimal solutions exist, it has been reported that humans often deviate

from making optimal choices. Here, we used a secretary problem, a classic example of finite

sequential decision-making, and investigated the mechanisms underlying individuals’ sub-

optimal choices. Across three independent experiments, we found that a dynamic program-

ming model comprising subjective value function explains individuals’ deviations from

optimality and predicts the choice behaviors under fewer and more opportunities. We further

identified that pupil dilation reflected the levels of decision difficulty and subsequent choices

to accept or reject the stimulus at each opportunity. The value sensitivity, a model-based

estimate that characterizes each individual’s subjective valuation, correlated with the extent

to which individuals’ physiological responses tracked stimuli information. Our results provide

model-based and physiological evidence for subjective valuation in finite sequential deci-

sion-making, rediscovering human suboptimality in subjectively optimal decision-making

processes.

Author summary

In many real-life decisions, such as hiring an employee, the current candidate is the only

option decision-makers can choose among sequentially revealed options, while past

options are forgone and future options are unknown. To make the best choice in such

problems, decision-makers should set appropriate criteria considering the distribution of

values and remaining chances. Here, we provide behavioral and physiological evidence

for subjective valuation that explains how individuals set criteria deviating from optimal-

ity. The extent to which individuals expect from candidates, how sensitive they are to the

value of candidates, and how costly it is to examine each candidate determine the way

how individuals make choices. Our results suggest that seemingly suboptimal decision

strategies in finite sequential decisions may be optimal in subjective valuation.
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Introduction

Hiring a new employee is one of the toughest decisions to make as a team leader. Most of the

time, there are only a limited number of job openings available and a limited time period in

which to complete the hiring process. This process is even more difficult when applicants are

accepted on a rolling basis, because one has to make a choice whether to accept the current

applicant without knowing whether other future potential applicants would have been a bet-

ter fit for the job. Likewise, there are many decision problems in life that are sequential and

constrained by a certain time window. The ‘secretary problem’ is a classic example of this

finite sequential decision problem and has been widely used to understand the optimal policy

in making choices (e.g., to hire or not) under a limited number of opportunities [1,2]. Pro-

vided with the full information (i.e., distribution of candidates), the optimal solution for the

problem is to choose the first number that is above a mathematically calculated decision

threshold [3]. However, it is not clear whether and how humans deviate from optimal

choices. Here, we used one variant of the secretary problem [4], in which the distribution of

candidates is given and the reward is the value of the chosen candidate, to investigate

(i) whether individuals make the optimal decision in a finite sequential decision problem,

and (ii) if not, how do they make their decisions. Our results provide behavioral and physio-

logical evidence supporting that individuals make threshold-based choices in a finite sequen-

tial decision problem and that seemingly suboptimal decision patterns (deviation from the

optimal) originate from the process of optimally calculating thresholds using individuals’

subjective value function.

Since the 1960’s when the secretary problem was originally introduced, a vast amount of

studies were conducted examining the optimal solution of the problem [2–5]. Although an

equally large volume of studies followed focusing on biases in human choice patterns, the

major stream took a descriptive approach explaining the extent to which human choices

drifted apart from the optimal solution [6–9], leaving where the bias originated from an open

question.

In various psychological studies, including an optimal stopping problem in the mate choice

domain [10] and consumers’ purchasing decisions [11,12], it was suggested that individuals’

heuristic valuation, the framework of Prospect theory [13], underlies the biases observed in

their decision patterns [14]. Specifically, the Prospect theory has shown that individuals’

choices are guided by subjective valuation of potential gains and losses relative to the context

where they are situated [13]. We constructed a computational model that adopts this concept

of ‘reference point’ and examined whether the process of subjective valuation explains how

individuals’ decision processes deviate from the optimal decision strategy. In addition, to cap-

ture individual differences in subjective valuation, we hypothesized that nonlinear value sensi-

tivity (i.e., concave value function for gains and convex value function for losses) [13] would

take crucial parts in determining individuals’ decision patterns.

To examine how individuals make choices in a finite sequential decision problem, we

recorded behavioral choices and response time (RT) of 87 participants (male/female = 43/44,

age = 22.74 ± 1.98 years) as they made a series of choices to accept or reject a random number

presented on the screen (Fig 1A). During each round, they had a fixed amount of opportuni-

ties (chances) to evaluate a new random number by rejecting previously presented numbers.

When they accepted, the presented number was added to their final payoff, and then they

moved on to the next round (up to 200 rounds) that consisted of a new set of chances. We

implemented two separate experiments. In Experiment 1, participants had up to five opportu-

nities (K = 5), and they were not explicitly informed of the maximum number that would be

presented. Experiment 2 tested three distinctive contexts where participants had up to two,
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five, or ten opportunities (K = 2, 5, or 10), and the participants were informed of the full distri-

bution information (including the maximum).

Various theoretical and experimental studies took into account physical and/or mental

efforts as a cost (or cost function) in subjective valuation [for review, see 15,16]. In line with

the literature, we assumed that individuals would take into account a mental cost (referred to

as ‘waiting cost’ hereafter) in valuation processes. Such an assumption is also linked with previ-

ous other studies where a version of secretary problem is used with their focuses being on the

impact of sampling cost [8,17,18]. Thus, we also included a waiting cost [8,18] parameter as a

linear disutility (negative subjective value), which captures a broad range of mental costs dur-

ing decision processes (see Methods for detailed model structure; see Text A in S1 File for

detailed model justification).

In conjunction with the computational modeling approach, we recorded individuals’ pupil

dilation responses and analyzed their association with participants’ choice behaviors to cor-

roborate our suggested model. A rich set of evidence suggests that pupil dilation (or contrac-

tion)—a neurophysiological signature coinciding with norepinephrine levels in the brain—

reflects not only individuals’ arousal level [19,20], but also cognitively complex information,

such as value [21,22], uncertainty [19], surprise [23], cognitive conflict [24,25], and choice

[26]. More specifically, recent studies showed that pupil-linked neuromodulatory systems

have a critical role in decision formation, rather than simply in reflection of the decision

Fig 1. Experimental procedures and behavioral results of Experiment 1. (A) Participants made a series of choices between accepting and

rejecting a presented number. At each round, they had up to K opportunities (K = 5 in Experiment 1, K = 2 or 5 in Experiment 2) to reject

the number and get a new random number; the round ended when participants accepted a presented number. At the last opportunity,

participants were given no choice but to accept the presented number. A new set of stimuli (numbers) was used in the next round. (B) The

optimal decision threshold per opportunity (blue), calculated under the assumption of the full information, was compared with a

corresponding empirical decision threshold (red). (C) Response times (RTs) for each opportunity were computed against the presented

stimuli values. Regardless of the opportunity, RTs showed negative association with the absolute distance between the presented stimuli and

the corresponding decision threshold. That is, participants showed the shortest RTs for the numbers that are farthest from decision

thresholds, and vice versa. Error bars represent s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g001
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consequences [26], and moreover that the size of pupil responses is associated with individu-

als’ choice patterns [27,28].

Based on these previous studies, we hypothesized that individuals’ pupil responses would

be linked to their decision processes in three folds; i) pupil responses may be larger to the

options that will be accepted versus rejected, ii) pupil dilation may reflect the deviation

between option values and decision thresholds, supporting value- and threshold- based deci-

sion processes, and iii) pupil responses in individuals who show larger value sensitivity may be

larger. To test these hypotheses, we conducted an additional experiment (Experiment 3) where

actions (choosing to accept or reject) were temporally dissociated from physiological responses

to stimuli; participants (N = 24, male/female = 12/12, age = 22.67 ± 2.28 years) were not

allowed to make a choice until an audio cue was played. All the other settings were equal to

Experiment 2 where participants had up to five chances (K = 5). Non-overlapping samples

were obtained from each experiment (see Methods for detailed procedures).

Results

Experiment 1

Individuals show higher decision thresholds than the optimal decision model. In

Experiment 1, participants had up to five opportunities within each round to examine a pre-

sented number and make choices either to accept or reject. Each presented number, sampled

from a uniform distribution ranging from 0 to 150, could be considered as an option whose

value matches its face value (the number). Note that here in Experiment 1, participants were

not explicitly informed of the distribution (including the maximum) from where the numbers

were extracted. Because individuals can only accept a single number within each round, they

should accept a number only when it is large enough. Specifically, an optimal decision-maker

should not accept a presented number unless it is larger than the expected value of successive

opportunities. For example, individuals should accept any numbers at the last opportunity

(i.e., the fifth opportunity in Experiment 1) and thus the expected value of the last opportunity

is 75. Based on this information, at the opportunity one before the last (the fourth in Experi-

ment 1), a value-maximizing individual should accept any numbers higher than 75 but reject

other numbers. Following the dynamic programming approach [29], we computed an optimal

threshold for each opportunity (Fig 1B, blue).

To examine whether individuals follow such decision processes, we calculated empirical

thresholds—the value where individuals were equally likely to accept or reject—at individual

level using each individuals’ behavioral choices (male/female = 10/10, age = 22.85 ± 1.31 years)

(Fig 1B). Consistent with the optimal thresholds (blue), empirical thresholds (red) at the later

opportunities were lower than those at the earlier opportunities (mean threshold differences

between the first and the second = 4.70, t(19) = 5.24, Cohen’s d = 1.17, p = 4.66e-5; the

second and the third = 5.39, t(19) = 3.99, Cohen’s d = 0.89, p = 7.84e-4; and the third and the

fourth = 15.38, t(19) = 7.10, Cohen’s d = 1.59, p = 9.41e-7). However, participants showed

empirical thresholds significantly higher than the optimal thresholds, indicating that people

have higher expectations about later opportunities (the difference between empirical and opti-

mal thresholds = 8.49, t(19) = 3.28, Cohen’s d = 0.73, p = 0.004).

Compared with optimal thresholds, it is not difficult to notice that the average empirical

thresholds have a shallower slope as evidenced by the increasing difference between the empir-

ical and optimal thresholds across opportunities (mean slope of [empirical—optimal]: 3.75, t

(19) = 4.40, Cohen’s d = 0.98, p = 3.08e-4). Although the empirical decision thresholds suggest

otherwise, one may still suspect that an alternative heuristic individuals might have used was

to apply a constant threshold regardless of the number of remaining opportunities (i.e.,
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applying a constant threshold across all opportunities). It is well known that easier choices—

here, deciding whether to accept or not the presented value that is far smaller or larger than

the threshold—require shorter response times (RT) [30,31, see 32 for review]. If individuals

applied the same threshold across all opportunities, mean RTs should be symmetric around a

fixed value (i.e., fixed threshold), whereas if individuals applied differential thresholds at each

opportunity, RTs should be symmetric around the thresholds that correspond to the opportu-

nity. To examine this possibility, we calculated mean RT within each opportunity. The sym-

metric pattern was observed only when mean RTs were calculated as a function of presented

values adjusting for the estimated empirical threshold within each corresponding opportunity

(Fig 1C). This result suggests that individuals did apply differential thresholds for each oppor-

tunity during decision-making.

Subjective optimality explains individual choice patterns. Prospect theory has suggested

that outcomes are perceived as gains and losses relative to a certain reference point, and that

gains and losses are valued following concave and convex subjective value functions, respec-

tively [13]. We drew on this framework to evaluate potential decision processes accounting for

individuals’ sub-optimal decision thresholds. In accordance with Prospect theory, we hypothe-

sized that individuals’ subjective valuation (Util) for a given value (v) is dependent on their

individual reference point (r) and nonlinear value sensitivity (ρ), as follows:

Util ¼ v � rð Þ
r if v � r

Util ¼ � r � vð Þ
r otherwise:

In the current study, we assume that individuals would set an expectation about future out-

comes and use the expectation as a reference point [33] (see Text A in S1 File for detailed

model justification). Note, we focused on valuation per se, and thus, the time it took for indi-

viduals to establish (learn) their reference points (their own perspective of the environment)

was assumed negligible (Figs H and I in S1 File; see Discussion for further consideration of

learning effects). Importantly, two additional components were introduced. First, individuals

may perceive the waiting time until acceptance costly and take it into account in valuation

[8,18]. Second, we hypothesized that this subjective value-based computation occurs not only

during active decision-making, but also at mental simulation such that individuals use their

subjective valuation in constructing expectations of each opportunity (i.e., computing decision

thresholds; Fig 2A).

This ‘Subjective optimality model’ with a waiting cost converges to three nested models in

special cases: the Subjective optimality model without a waiting cost (Cost = 0), the Optimal

decision model (ρ = 1), and the Constant threshold model (ρ = 0) (see Methods for model

details). A formal model comparison using Akaike Information Criterion (AIC) revealed that

the Subjective optimality models with and without a potential waiting cost showed superior

explanatory power compared to the other two nested decision models (Fig A in S1 File).

Between the two Subjective optimality models, the model without a waiting cost showed a bet-

ter model-fit than the model with a waiting cost (95% CI of ΔAIC = [-2.082, -0.099]; see Fig A

in S1 File). These results suggest that the waiting cost was negligible in Experiment 1 and that

individuals used the reference point significantly larger than zero (mean r = 110.51, Fig G in

S1 File), which set values larger than the reference point as gains, and any value stimuli smaller

than the reference point as potential losses (Fig 2B). Moreover, this result indicates that indi-

viduals use marginally diminishing (concave) and increasing (convex) subjective value func-

tion for gains and losses, respectively, in finite sequential decision-making.
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From the formal model comparison, we noticed that our suggested computational model

showed comparable model-fit with some of the alternative models including the Linear thresh-

old model, a model recently presented to well explain human stopping decisions in sequential

decision-making [34]. Here, besides examining model fits, we examined whether the distinc-

tive linear feature of the Linear threshold model presents in our empirical data. Decision

thresholds calculated from empirical data showed a decreasing pattern along the opportunities

(Fig 1B), but moreover, the extent of threshold change between opportunities also showed a

decreasing pattern (i.e., second derivative of the decision threshold curve < 0; Fig 2C). Such a

qualitative difference between the linear threshold model and the empirical data was corrobo-

rated by the observed statistical difference across opportunities ([1st-2nd] vs [2nd-3rd] vs [3rd-

4th]; F(2, 38) = 14.13, η2 = 0.43, p = 2.59e-05). These results suggest that individuals’ choice

data in the current variant of Secretary problem task cannot be fully explained by the Linear

threshold model.

Experiment 2

The Subjective optimality model predicts behavioral alterations in the context of scarce

opportunity. In our suggested model, a change of reference point reframes one’s subjective

valuation and, in turn, alters decision thresholds. As described earlier, we assumed that indi-

viduals would set an expectation about future outcomes based on the number of opportunities

they have, rather than trial-by-trial experience (c.f., [35]), and use the expectation as a refer-

ence point [33]. That is, we predicted that, based on our suggested model, one would set a

lower (or higher) reference point in the context where one expects less (more) overall out-

comes, which consequently lower (heighten) their decision thresholds. To examine whether

empirical data matches the prediction from the model, we conducted a second experiment

using a between-group design where one group of participants had two (K = 2), the second

group of participants had five (K = 5), and the third group of participants had ten opportuni-

ties (K = 10) in each round (Fig 1A). For all three separate task conditions (K = 2, 5, and 10),

Fig 2. Subjective optimality model. (A) The optimal decision model assumes that individuals compute the decision threshold of a certain

opportunity based on the expected value of successive opportunities. In the ‘Subjective optimality model’, expected values of the successive

opportunities are replaced by expected utilities (EU) calculated based on the subjective value function as per Prospective theory. (B) Two free

parameters, reference point, and nonlinear value sensitivity define subjective valuation of the presented stimuli values. Group average subjective

value function (green) is depicted using the group mean of individual estimates: reference point = 110.51; value sensitivity = 0.62. (C) Decision

thresholds calculated from empirical data showed a decreasing pattern along the opportunities, but moreover, the extent of threshold change

between opportunities also showed a decreasing pattern (i.e., second derivative of the decision threshold curve< 0). Such a change in the slope

of decision threshold curve is a unique feature that our suggested Subjective optimality model successfully could explain (differences between

the model and empirical data do not vary across opportunities; F(2, 38) = 0.70, η2 = 0.036, p = 0.090), and has superior explanatory power to the

linear threshold model. Negative values on the y-axis indicate that decision thresholds decrease between opportunities. Error bars indicate

s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g002
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participants were informed that the maximum possible number that would be presented was

150, and any numbers between 0 and 150 (inclusive) were equally likely to appear.

Individuals who had up to two opportunities (K = 2) always had to accept the second value

if they rejected the first presented stimulus. In the Optimal decision model, decision thresholds

are determined by the number of remaining opportunities and expected values calculated fol-

lowing the dynamic programming approach [29]. This means that regardless of the total num-

ber of opportunities (K = 2, 5, or 10), individuals should be facing the same problem at the

opportunity preceding the last (i.e., the first opportunity in K = 2, the fourth in K = 5, and the

ninth in K = 10) if they were following the Optimal decision model. On the contrary, the Sub-

jective optimality model predicts differently. The decision thresholds depend on individuals’

reference point at a given context, which is dependent on the total number of opportunities

and the expected future earnings in the context.

As predicted from the Subjective optimality model, the decision thresholds estimated from

participants (K = 2: N = 23, male/female = 11/12, age = 23.09 ± 2.09 years; K = 5: N = 21, male/

female = 11/10, age = 23.19 ± 1.86 years; K = 10: N = 20, male/female = 10/10, age =

22.00 ± 2.41; non-overlapping from Experiment 1) were significantly different depending on

the number of opportunities one had per round (thresholdK = 2, 1st = 79.28 ± 15.45, thresh-

oldK = 5, 4th = 90.42 ± 9.72, thresholdK = 10, 9th = 93.50 ± 17.77; F(2,61) = 5.69, η2 = 0.157,

p = 0.0054; post-hoc comparison K = 5 vs 2: CI = [0.49, 21.78], p = 0.038; K = 10 vs 2: CI =

[3.44, 25.00], p = 0.0067; K = 10 vs 5: CI = [-7.93, 14.10], p = 0.78; Fig H in S1 File). Note that

decision thresholds and response time patterns for Experiment 2 (K = 5) were comparable

with those of Experiment 1 (Fig 3A and Fig B in S1 File), indicating that informing the full dis-

tribution information to participants did not have any noticeable effects. Furthermore, a

model comparison using AIC scores revealed that the Subjective optimality models with and

without a potential waiting cost explained individuals’ choice behaviors comparably well (95%

CI of ΔAIC = [-2.047, 3.519]), but significantly better than other models (see Fig A in S1 File

for model comparison results).

Next, we examined whether our model quantitatively captures behavioral alterations

dependent on the scarcity or abundancy of opportunities. Again, we hypothesized that the

changes in the number of opportunities and the corresponding changes in expected future

outcomes would manifest the adjustments of reference points. To compute the prediction, we

simulated choice behaviors by adjusting the reference point parameter while keeping all the

other parameters estimated from the empirical data in K = 5. As depicted in Fig 3B, the model

predicts that the decision thresholds at the opportunity preceding the last will vary accord-

ingly. Consistent with our prediction, the observed behavioral thresholds closely matched the

model-based threshold predictions for K = 2 (78.50 ± 4.09) and K = 10 (92.55± 3.58) (see

Methods for model prediction details). Note that a direct parameter estimation from the

empirical data revealed that individuals’ characteristics (e.g., value sensitivity) in subjective val-

uation other than the reference point were indeed comparable between the task conditions,

consistent with the assumption we made for the model-based threshold prediction (Fig 3C

and Fig G in S1 File). The performance of model-based prediction showed comparable results

when the empirical data in K = 10 were used to predict decision thresholds for K = 2 and 5

(Fig C in S1 File). Besides the prediction approach, we also confirmed that empirical decision

threshold curves from Experiment 2 also showed negative second derivative across contexts,

and that Subjective optimality model captures the patterns (Fig 3D). These results suggest that

change of the decision context indeed alters individuals’ reference point and their choice pat-

terns, and that the reference point has a critical role in finite sequential decision-making.

One may suggest that the task with K = 2 is simple enough for participants and that they

would have followed the optimal strategy (i.e., using 75 as a decision threshold at the first
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opportunity). However, this is unlikely given that only 7 out of 23 participants’ credible inter-

vals of the empirical decision threshold, defined by the 95% highest density interval, included

75 (see Methods). Furthermore, the large across-individual variability in behavioral decision

thresholds (SDK = 2 = 15.45; Fig 3B) showcased that the Optimal decision model cannot

explain individuals’ decision strategies. These results again support the Subjective optimality

model suggesting that individuals make threshold-based choices in a finite sequential decision

problem, and that seemingly suboptimal decision patterns (e.g., waiting for future chances)

may have originated from the process of calculating thresholds using individuals’ subjective

value function.

Experiment 3

To further investigate physiological instantiation of the decision processes implemented in our

model, we examined changes of pupil diameter acquired while participants made a series of

Fig 3. Behavioral results of Experiment 2. (A) In individuals who had five opportunities (K = 5), empirical decision

thresholds (red) along the opportunities were comparable with that of Experiment 1. (B) To examine whether or not our

Subjective optimality model can be generalized to other contexts, a model prediction of the decision threshold was made for

K = 2 and 10; value sensitivity was assumed to be the same even in the different context, but the reference point was adjusted

proportionately to the changes of the expected payoff. Empirical (observed) decision thresholds (red) at the opportunity

preceding the last in the condition with two (K = 2), five (K = 5), or ten (K = 10) opportunities were consistent with the

prediction (blue). Error bars represent 95% confidence interval. (C) Model parameters were estimated using the Subjective

optimality model with a waiting cost. The parameters cannot be estimated for K = 2, because there is only one valid

opportunity per round for each individual. (D) The pattern within the decision curve (change in the slope of decision

threshold) was consistent in both of the Exp 2 data, and our Subjective optimality model successfully explained the pattern

(differences between the model and empirical data do not vary across opportunities; Exp2 (K = 5): F(2, 40) = 2.37, η2 = 0.11,

p = 0.11; Exp2 (K = 10): F(7, 119) = 0.67, η2 = 0.039, p = 0.70), and has superior explanatory power to the linear threshold

model. Negative values on the y-axis indicate that decision thresholds decrease between opportunities. Error bars indicate

s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g003
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choices. As noted earlier, we drew upon previous findings suggesting the role of pupil-linked

neuromodulatory systems in decision formation [26] and the association between pupil

responses with individuals’ choice patterns [27,28], and hypothesized that participants’ pupil

responses would reflect their subjective valuation defined within our suggested computational

model: i) deviation between option values and decision thresholds, ii) acceptance versus rejec-

tion decisions, and iii) individuals’ value sensitivity. To test this hypothesis, we operated a

slightly modified task; i) participants had to view the presented stimuli for a period of time

(1.5–2.5 seconds) before being allowed to accept or reject the stimuli, and ii) an audio cue was

used to announce to participants that they could make a choice (Fig 4A). This modification

temporally dissociated choice from other cognitive processes (e.g., valuation) and prevented

the introduction of any visual confounds in analyzing physiological signals at the time of deci-

sion-making. Participants had up to five opportunities per each round, and all other experi-

mental settings were equal to Experiment 2; the full distribution information was informed to

participants, and all participants played up to 200 rounds (see Methods for details).

Waiting is costly. Twenty-one new participants were recruited for Experiment 3 (10

females, age = 22.62 ± 2.38 years; non-overlapping from Experiments 1 or 2). With the addi-

tion of forced waiting time, which accumulated over opportunities, we expected that partici-

pants would perceive choices to accept after a longer wait less valuable [36,37] and thus, they

would accept earlier. Consistent with our expectation, a stark difference in the behavioral

Fig 4. Experimental procedures and behavioral results of Experiment 3. (A) To temporally dissociate valuation from action

selection, we implemented a modified task design where individuals had to wait for an audio cue to make choices. (B) Empirical

decision thresholds (red) were compared with the optimal decision thresholds (blue). Compared with Experiments 1 and 2, in

Experiment 3, individuals showed lower decision thresholds at the early opportunities. Error bars represent s.e.m. (C) The pattern

within the decision curve (change in the slope of decision threshold) was consistent in Exp 3 data, and our Subjective optimality

model successfully explained the pattern (differences between the model and empirical data do not vary across opportunities; F(2,

40) = 1.80, η2 = 0.082, p = 0.18), and has superior explanatory power to the linear threshold model. Negative values on the y-axis

indicate that decision thresholds decrease between opportunities. Error bars indicate s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g004
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pattern was observed in Experiment 3 compared to Experiments 1 and 2. Specifically, decision

thresholds from empirical data in Experiment 3 (red solid line) were below the optimal deci-

sion thresholds (blue dotted line), indicating that participants were more likely to accept small

numbers that they would have rejected in the other two experimental settings (Fig 4B).

This result was corroborated by the model-based results. First, the Subjective optimality

model with a waiting cost showed superior explanatory power for Experiment 3 compared

with alternative models (Fig A in S1 File), emphasizing again that the waiting cost plays an

important role in finite sequential decision-making [8,18]. In addition, as in both Experiments

1 and 2, empirical decision threshold curve showed negative second derivative, which is the

feature that Linear threshold model, unlike our Subjective optimality model, cannot capture

(Fig 4C). Second, the average of the estimated waiting cost parameter was significantly larger

than zero in Experiment 3 (t(20) = 63.51, Cohen’s d = 13.86, p = 1.51e-24), and it was larger

than the cost parameters in the other experiments (Experiment 3> 1: t(40) = 15.67, Cohen’s

d = 4.84, p< 1.00e-15; Experiment 3> 2 (K = 5): t(41) = 5.64, Cohen’s d = 1.72, p = 1.41e-6)

(Fig G in S1 File). Third, as it was intended from the task modification, individuals’ behavioral

change was sourced specifically back to the waiting cost parameter, such that other parameters

(nonlinear value sensitivity and reference point) were not affected (Fig G in S1 File). These

results together support our interpretation suggesting that the perceived cost of waiting under-

lies the behavioral alteration in the new task environment.

Pupil dilation reflects choice and decision difficulty. As described above, we then exam-

ined whether physiological responses reflect cognitive decision processes. First, we compared

pupil diameter changes between accepted and rejected opportunities. Consistent with previous

reports, pupil size was significantly different depending on the subsequent choices [26] (Fig

5A). Particularly, pupil dilations within 558–726 msec and 1182–1500 msec were associated

with subsequent acceptance of the presented values (t(17) > 2.11, all ps < 0.05). Only the latter

cluster remained significant after correcting for multiple comparisons using a cluster-based

permutation method [38] (pcorrected = 3.50e-4). Still, given the fact that the time of the earlier

cluster (558–726 msec) overlaps with the range of RTs in Experiments 1 and 2 (Fig 1C and

Fig A in S1 File), this result suggests that participants may have covertly made choices as

early as 550 msec and the cognitive process was reflected in the physiological responses [26]

(see Fig D in S1 File for a pupil size result reflecting individuals’ arousal level).

Fig 5. Pupillometry responses reflect subsequent choices and decision values. (A) Pupil size change from the stimuli onset was measured,

separately for the accepted (green) and rejected (red) opportunities. Paired comparison between the cases revealed significant pupil dilation

for the accepted stimuli at the early stage after the onset, and again at the later time. (B) To examine whether or not pupil size reflected

stimuli value, the peak pupil size between the stimuli onset and 1500 msec after the onset was depicted as a function of the signed distance

between stimuli value and the corresponding decision threshold. (C) Individuals who had higher value sensitivity in their estimated

parameter (median split; red) showed more pronounced pupillometric responses reflecting the value information. Shades represent s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g005
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Next, we calculated the peak pupil diameters between the stimuli onset and 1500msec after

the onset as a function of stimuli values. This was done for accepted and rejected stimuli sepa-

rately, so that the relationship between pupil sizes and values is independent of subsequent

choices. As we observed from RT patterns (Fig 1C and Fig A in S1 File), pupil size was posi-

tively correlated with ‘decision difficulty’. That is, pupil size decreased as a function of the

absolute distance between the decision threshold and value of the presented stimuli (slope =

-0.0105, t(17) = -3.15, Cohen’s d = -0.74, p = 0.0059; Fig 5B). A comparable result was observed

across all the opportunities (Fig E in S1 File) or when we used pupil diameter at 1500msec

after the onset, the latest time point when no single participant was allowed to make choices by

the task design. Together, these results suggest that pupil dilation reflects both decision diffi-

culty and subsequent choices [24,26], the two crucial components comprising subjective valua-

tion [39,40].

Physiological sensitivity matches behavioral value sensitivity. As evidenced by the

model parameter estimates, there are individual differences in the extent to which one

responds to a unit increase of presented stimulus value (i.e., value sensitivity). We tested

whether or not this modeling construct of individual characteristics matches with individuals’

physiological responses. To provide an illustrative description, we divided participants into

two subgroups based on their parameter estimation (median split) where one group had lower

value sensitivity and the other group had higher value sensitivity. For each group, we calcu-

lated average pupil dilation as a function of signed decision difficulty (the difference between

stimulus value and the decision threshold of the corresponding opportunity) (Fig 5C). Individ-

uals who had high value sensitivity (red) showed relatively high pupil dilation compared to

individuals who had low value sensitivity (blue). This positive correlation between value sensi-

tivity and pupil dilation was statistically significant within the signed decision difficulty

(Value–Thresholdi-th) ranging from -60 to -47 and from -22 to 40 (Pearson’s correlation

r> 0.47, all ps< 0.05). Only the latter cluster remained significant (pcorrected = 0.016) after cor-

recting for multiple comparisons using a cluster-based permutation method [38]. The result

indicates that individuals who have high behavioral value sensitivity indeed have higher physi-

ological sensitivity to stimuli value. Moreover, the consistent patterns across physiological and

behavioral data reflecting individuals’ characteristics serve as additional evidence suggesting

the use of subjective valuation in finite sequential decision-making.

Alternative mechanisms and factors

In the current study, we tested our hypothesis that individuals use subjective valuation and

dynamic programming approach during finite sequential decision-making. Here, we further

explored potential factors (e.g., regret, selection bias) that could be recruited and contribute to

biasing behavioral choices.

Regret model. It is possible that individuals may regret about the past choices, and thus

less likely to accept the stimuli values they previously rejected. To more directly examine

potential effects of “regret”, we simulated behavioral choices with additional computational

model assuming that participants would accept the candidates those are higher than the high-

est value they have rejected before (see Methods for simulation details). The Regret model par-

tially explain the observed empirical data (Fig 6A). The accumulated impacts of regrets, as

expected, is the part that allowed decision thresholds to have shallower slopes than the Opti-

mal. Note that the current Regret model assumed perfect memory, which simulates maximum

effect of previous stimuli value, and thus, was provided with the maximal power to explain

“flat” decision thresholds across opportunities induced by the regret. Our simulation results

suggest that, although we cannot rule out the impact of regret (see Discussion for further
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discussion about potential learning effects), the regret is not the major factor that underlies the

behavioral suboptimality.

Selection biases. It is possible that due to decision variabilities, participants’ choice

rounds where they happened to have lower decision thresholds would be accepted at earlier

opportunities, and thus be under-represented at subsequent opportunities. We ran a new sim-

ulation to implement how the behavioral pattern would become if the selection bias indeed is

the major factor that biases individuals away from the optimal behavioral pattern (see Methods

for simulation details). To test whether selection bias explains the flatness of the empirical

decision thresholds, we first, as the most conservative setting, assumed that the entire behav-

ioral choice variability contributes to the within-subject variability across rounds (see Methods

for justification). Based on the simulated choices, the model that explicitly incorporated selec-

tion bias (‘Selection bias model’ hereafter) partially explained the deviation from the optimal

thresholds and show relatively shallower slopes as expected (Fig 7A). However, compared to

empirical decision thresholds across opportunities, the simulation slopes were relatively

steeper even though the simulation was run with the maximum level of variability as we

described above. Note that in this simulation-based analysis, we are using the differences in

slopes across decision thresholds, rather than other features (e.g., the deviation at the initial

opportunities in Experiment 3), as criteria to examine whether the simulation model captures

the core mechanism explaining the empirical data.

Although our simulation using the maximum level of within-subject variability across

rounds was our attempt to give the Selection bias model the maximal power to explain “flat”

decision thresholds across opportunities, we additionally examined the impact of different lev-

els of within-subject variability on decision thresholds. There was a stark difference between

the simulated and empirical data when probed through the association between within-subject

variability across rounds and decision thresholds. Consistent with our description above, the

largest response variability in the Selection bias model was associated with the smallest thresh-

old change across opportunities, and vice versa (r = -0.97, P = 1.70e-40; Fig 7B). It was also

the case when part of the variability was attributed to across-opportunity rather than across-

round variability in the simulation (Fig 7C). On the contrary, empirical data revealed that

Fig 6. Subjective optimality model versus an alternative Regret model. As depicted in Fig I in S1 File, there are

potential effects of past stimuli values on the subsequent choice. (A) To more directly examine potential effects of

“regret”, individuals accept less likely the stimuli values that are above the optimal threshold but below a value which

they have previously rejected, decision thresholds simulated with a regret model are compared against the optimal

decision model and empirical data. Error bars indicate s.e.m. (B) Effects of past stimuli values on the current decision

were examined by applying the logistic regression analyses using the simulated data from the regret model. The regret

model predicts meaningful deviation from the optimal model in the 3rd and 4th opportunities, and the deviation can be

attributed to the negative weight on the preceding opportunities. However, the regret model, inconsistent with the

observed pattern from the empirical data (Fig I in S1 File), predicts that the value in the earlier opportunities will affect

the current decision more than the value in the recent past. Error bars indicate s.e.m.

https://doi.org/10.1371/journal.pcbi.1009633.g006
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participants who had the largest response variability showed the largest threshold change

across opportunities (r = 0.43, P = 5.21e-04), which is the exact opposite of the Selection bias

model. Together, these results suggest that selection bias cannot explain empirical decision

patterns observed in this task.

Discussion

Our results provide a model-based explanation for suboptimality in finite sequential decision-

making. Specifically, we present evidence that subjective valuation reflecting individuals’ belief

about the environment underlies the mechanism of how the brain computes decision thresh-

olds in the problem.

As a classic example of a finite sequential decision problem, various versions of the secretary

problem were investigated [1,2]. The standard secretary problem simulates the cases where

only the relative ranks matter, such that individuals have to find the best option among the

sequentially presented options [7,41]. In this setting, inferior choices lead to no reward, but we

have to note that this is hardly the case in real-life. First, any choices we make should have

some value even in the case where they were not the best option. For example, an employee

who ends up not meeting the employer’s original expectation still can make some contribution

(unless the employee turns out to be a con artist and shuts down the business). Second, in real-

ity, it is impossible for the decision maker to learn the true relative rank of the chosen option,

Fig 7. Subjective optimality model versus a potential impact of selection bias. Diminishing decision thresholds across

opportunities alternatively may be driven by a combination of within-subject decision variability and selection bias where rounds

in which decision thresholds happened to be higher (due to the within-subject variability across rounds) lasting further at later

opportunities. (A) To directly examine this effect, decision thresholds simulated with a selection bias are compared against the

optimal decision model and empirical data. The Selection bias model can explain the observed empirical data fairly well for some

of the parts in Experiments 1 and 2, but not all of the patterns. Error bars indicate s.e.m. (B) We additionally examined the impact

of different levels of within-subject variability on decision thresholds. There was a stark difference between the simulated and

empirical data when probed through the association between within-subject variability and decision thresholds. The largest

response variability in the Selection bias model was associated with the smallest threshold change across opportunities, and vice

versa (r = -0.97, P = 1.70e-40). On the contrary, participants who had the largest response variability showed the largest threshold

change across opportunities (r = 0.43, P = 5.21e-04), which is the exact opposite of the Selection bias model. Each dot represents

individual simulation. (C) To examine the impact of across-round versus opportunity variability, we ran additional simulations

with varying proportion of across-round variability out of the maximum amount of variability. As the proportion of variability

attributed to across-round against the across-opportunity variability, the threshold-change gradually decreased from the level of

the optimal behavior, and the correlation between threshold-change and response variability asymptotes to -1, decreasing from 0.

Levels of threshold change for the empirical data (red) and the Optimal model (blue) are illustrated together as references.

https://doi.org/10.1371/journal.pcbi.1009633.g007
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because the decision maker will have no knowledge about the subsequent options that were to

follow. In other words, there is no one who can examine the success of the choice and deliver a

reward if, and only if, the choice were correct. The current study addressed this discrepancy by

implementing a task where each option had a monetary reward that matched its face value [4].

Although there was no explicit instruction saying that individuals should find the best option

within the finite number of opportunities, participants were informed that the final payoff

would be determined by the accumulated reward amount across the entire task and thus, the

task preserved the goal of reward maximization (see Fig J in S1 File for number of accepted

occasions at each opportunity). We believe that the current variation of the secretary problem

provides a more naturalistic setting to investigate individuals’ sequential decision-making.

A typical behavior pattern observed across various versions of the secretary problem is that

individuals show suboptimal choices, such that they wait less than the optimal stopping point

[8,17,42]. This suboptimal choice tendency is accounted for by lower decision thresholds than

the optimal decision threshold, indicating that they are more likely to accept the option that

has low value. However, a recent study reported the opposite pattern, i.e., higher decision

thresholds compared to the optimal, in a variant of optimal stopping problem, and suggested a

possibility that choice biases may occur in both direction [10]. Among the potential factors

why they think they observed the opposite pattern (e.g., usage of naturalistic image stimuli),

Furl et al. [10] suspected that a sampling incentive being larger than a sampling cost might

underlie participants’ motivation to oversample. Although Furl et al. [10] reported that this

sampling reward model does not match their empirical data, our results across the three exper-

iments were consistent with this perspective. Specifically, individuals showed higher thresholds

for both Experiments 1 and 2 (oversampling), but lower thresholds for Experiment 3 (under-

sampling). The main change in Experiment 3 was the additional forced wait introduced before

the cue when participants were allowed to submit their choice. Our model-based analysis

results suggest that this subtle change in task design may have triggered participants to think

more about the tradeoff between payoffs and time they spent per round. Such an impact of

additional ‘cost of waiting (extra time)’ is consistent with previous reports showing that non-

zero interview cost was associated with lowering decision thresholds [8,17,18,43]. Our model

parameter estimates support this interpretation, such that the estimated cost was significantly

larger than zero in Experiment 3 where individuals were provided with additional forced waits

and in Experiment 2 with more abundant opportunities (K = 10) where individuals were given

with further opportunities. These results highlight that the context of decision-making (e.g.,

task schedule) as well as the extent to which individuals find the task costly (e.g., cognitively

demanding or mentally boring) are crucial in decision-making processes [44]. In the current

study, we hypothesized a waiting cost as a single component encompassing various types of

mental cost and focused on its mechanistic involvement. Future studies exploring the source

of the waiting cost may further our understandings about how and why individuals sometimes

make choices impulsively or patiently.

Our Subjective optimality model included two free parameters essential in capturing indi-

viduals’ choice patterns. First, the reference point reflects each individual’s belief about the

environment [13]. It is known that beliefs can alter how individuals respond to given informa-

tion [45], and specifically in the current study, we hypothesized that different contexts (i.e.,

numbers of available opportunities) would change expectations about future outcomes, which

in turn would alter individuals’ reference points [33]. In line with this, we showed that discour-

aged expectation (scarce opportunities in Experiment 2; K = 2) causes individuals to be more

pessimistic about future chances and wait less in deciding (lowering thresholds). Moreover,

encouraged expectation under abundant opportunities (K = 10 in Experiment 2) seemed like

causing individuals to be more optimistic about future changes and wait longer. Such an
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increment of expectation in response to abundant opportunities parallels a recent study in

marketing where they observed higher expectation in individuals’ satisfaction for the choices

from larger than smaller set of assortments [46]. Interestingly, individuals’ expectations (refer-

ence point) were significantly higher when they did not have full information about stimuli

distribution (Experiment 1). This result suggests that an optimistic bias [47], potentially gener-

ated due to the uncertainty about upper bound in the current study, may diminish or even

become inverted in other contexts (e.g., scarce opportunities, mental costs).

Second, the nonlinear value sensitivity indicates the extent to which individuals’ subjective

valuation increases for an additional unit of reward. In the current study, the sensitivity repre-

sented as an exponent term in the utility function was smaller than one, which captures mar-

ginally diminishing returns for gains and marginally increasing returns for losses [13]. In our

suggested model, a range of value sensitivity characterizes a spectrum of decision characteris-

tics in individuals. Value sensitivity close to zero represents a rather categorical valuation (gain

or loss relative to the reference point) and choices that are accounted for by a constant thresh-

old being insensitive to the context (i.e., remaining opportunities). On the other hand, value

sensitivity close to one represents objective valuation and choices that follow the Optimal deci-

sion model. In concert with the reference point, individuals’ value sensitivity shapes the extent

to which they take into account uncertainty of future opportunities in decision-making. This

wide range of individual differences may explain why some individuals are more stubborn

with their opinions (e.g., stereotype), while others easily adapt to contextual information [48].

The conclusions of the present study regarding the subjective valuation recruited in deter-

mining decision thresholds differ from previous findings by Baumann et al. [34], who argued

that people rely on a mental heuristic and determine their thresholds linearly. As illustrated in

our formal model comparison (Fig A in S1 File), individuals’ behavioral choices in each

opportunity were explained by the Linear threshold model as well as by the Subjective optimal-

ity model. However, the decision patterns between opportunities were not accounted for by a

linear decrease in decision thresholds, which is the main feature of the Linear threshold model

(Figs 2C, 3D and 4C). This discrepancy suggests that individuals’ choice data at least in the cur-

rent variant of Secretary problem tasks cannot be fully explained by linear heuristic processes.

Nevertheless, subtle differences in task designs (e.g., stimuli values followed a normal distribu-

tion in Baumann et al. [34], but a uniform distribution in the current study) may recruit differ-

ent cognitive strategies. On the same line, we acknowledge that there might be other factors

(e.g., regret, memory, selection bias) and their combination which would be able to explain

choice patterns during the task, and thus future studies should explore potential factors that

affect individuals’ decision processes.

In the current study, the pupil responses encode both decision difficulty and the subsequent

choice of whether individuals will accept or reject the presented stimulus. Both types of infor-

mation temporally preceded actual choice, so these pupil dilations are the physiological repre-

sentations of the processed information regarding decision-making, rather than a simple

reflection of the presented visual information [26]. As suggested from previous studies, pupil

dilation may reflect the downstream processing of the anterior cingulate cortex [24,25], the

brain region that is involved in encoding decision difficulty [49], and, more broadly, a wealth

of value-related information—including difficulty signals—during decision-making processes

[40]. Differential pupil sizes depending on the subsequent choices suggest that there is more to

neurophysiological representation than simple decision difficulties. The pupil responses may

be reflecting the involvement of the neuromodulatory systems (e.g., locus coeruleus [50]) in

decision processes through release of norepinephrine, which temporarily facilitates computa-

tions in cortical networks [22,26]. During the process of decision-making, individuals who

had higher value sensitivity showed exaggerated pupil responses reflecting both decision
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difficulty and subsequent choice information. This correlation result indicates that ‘behavior-

level sensitivity’ we extracted from our model is consistent with an independent ‘neurophysiol-

ogy-level sensitivity’. Consistent with previous studies, our pupillometry results evidence the

association between neurophysiological pupil responses and individuals’ characteristics in val-

uation [27], and support a mechanistic account of seemingly suboptimal decision strategies in

finite sequential decisions.

Alternatively, the observed pupil responses could be a result of top-down control, such that

individuals may pay more attention to the stimuli that they plan to accept for accumulating

more evidence [51] or a process following the opposite causality, in that the rich amount of

accumulated evidence of a particular stimulus may induce even higher attention levels (e.g.,

saliency driven bottom-up attention [52]). In the current study, the latter is unlikely, given that

all low-level visual information (e.g., contrast) of the displayed stimuli were matched or con-

trolled for. To sum up, the current results show that the two pieces of information essential in

subjective valuation are linked together at the physiological level, deeply involved in the pro-

cess of decision formation [26].

The future direction of the current study includes expanding our model further, so that it

can capture more realistic decision contexts where various factors may interact (e.g., confi-

dence, concerns about sunk cost, limitation of information processing capacity). The first and

foremost extension should be to explain the mechanisms of how individuals learn the stimulus

distribution (e.g., reinforcement learning). Previous studies reported no evidence of learning

in various versions of the secretary problem [8,53]. In line with these studies, in the current

study, we assumed that the learning process is rapid and negligible in relevance to other deci-

sion processes. Nevertheless, we conducted two explorative analyses examining potential

learning effects. First, each individual’s task data were divided into the first and the second

half. Across all three experiments, decision thresholds estimated from the first and the second

halves were comparable, indicating no sign of extensive learning (Fig H in S1 File). Second, we

ran a series of logistic regressions to examine the impact of presented stimulus at the preceding

opportunity in subsequent choices. There was a slight hint of negative influence of preceding

stimuli on subsequent choices, but the beta coefficients were less than 1/10 of the betas of the

current stimulus (Fig I in S1 File). Moreover, we showed that decision processes under imper-

fect information (no knowledge of the maximum value) were comparable with the processes

under the full information. These results suggest that, even without explicit information about

the stimuli distribution, people, in general, have a rough idea about the range of values of an

uncertain option. Alternatively, people were able to learn early enough [6] that the behavioral

strategy for the rest of the task was not different from the case where individuals knew about

the distribution from the beginning (c.f., see [35] for dynamic reference point). Still, inclusion

of learning mechanisms in the model (e.g., learning what to expect, regretting previous

choices) would be essential to examine whether or not the decision model generalizes to

broader contexts (e.g., volatile environment).

Examples of finite sequential decision problems span a wide range of life choices, includ-

ing finding the right life partner and choosing a career, the aims of which are to maximize

reward under a limited amount of resources and opportunities. Such value-based decision

processes with reference to costs are not unique to humans but extend from fish choosing a

mate, who become less selective under costly environments [54], to primates making forag-

ing decisions [55]. The Subjective optimality model provides a way in which individual sub-

jective valuation generates systematic biases in sequential decision-making and opens a

window to decompose physiological responses into decision difficulty and signatures of sub-

sequent choice, of which levels differ in the extent of individual value sensitivity. In sum, our

data support a mechanistic account of suboptimal choices varying from overly impulsive
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choices in individuals with substance-use problems [56] to delayed choices in individuals

who suffer from indecisiveness [57].

Methods

Ethics statement

The current study was approved by the Institutional Review Board of Ulsan National Institu-

tion of Science and Technology (UNISTIRB-18-39-C, UNISTIRB-18-14-A). All participants

provided written informed consent and were paid for their participation.

Participants

One hundred eleven healthy young adults (male/female = 55/56, age = 22.72 ± 2.04 years) par-

ticipated in the current study. None of the participants reported a history of neurological or

psychiatric illness. Three separate experiments were conducted and there were no overlapping

participants across experiments. Twenty students participated in Experiment 1 (male/

female = 10/10, age = 22.85 ± 1.31 years), and 67 students were recruited for Experiment 2

where they had two, five, or ten opportunities per round (male/female = 33/34, age =

22.70 ± 2.15 years). Among the participants in Experiment 2, three participants were excluded

from the analyses due to their reported suspicion about the payment structure of the experi-

ment. Among the included participants, 23 participants (male/female = 11/12, age = 23.09 ±
2.09 years) were assigned to the condition where they were given two opportunities per round,

21 students (male/female = 11/10, age = 23.19 ± 1.86 years) were randomly assigned to the

condition where they were given five opportunities per round, and 20 participants (male/

female = 10/10, age = 22.00 ± 2.41 years) were assigned to the condition where they were given

ten opportunities per round. Twenty-four students participated in Experiment 3 (male/

female = 12/12, age = 22.67 ± 2.28 years). Two participants were excluded due to their reported

suspicion about the payment structure of the experiment, and one participant was excluded

due to data loss from a computer error. Three participants were excluded from the pupil diam-

eter analyses due to poor calibration. After exclusion, data from 21 participants (male/

female = 11/10, age = 22.62 ± 2.38 years) were used for behavioral analyses, and a subsample of

the data (N = 18; male/female = 8/10, age = 22.33 ± 2.30 years) was used for further pupil

diameter analyses. All participants reported normal or corrected-to-normal vision under soft

contact lenses (no glasses were allowed due to potential reflections during eye-tracking). The

sample size of each experiment was based on those used in similar studies using finite sequen-

tial decision-making paradigms [e.g., 7,17].

Stimuli and apparatus

All stimuli were generated using Psychophysics Toolbox Version 3 (http://www.psychtoolbox.

org/) and MATLAB R2017a (MathWorks), and presented on a DLP projector (PROPixx

VPX-PRO-5050B; screen size of 163 × 92 cm2; resolution of 1920 × 1080 pixels; refresh rate of

120 Hz; linear gamma). The distance between the participants’ eyes and screen was fixed at

153 cm. The ambient and background luminance were set at 1.1 and 69.2 cd/m2, respectively.

The main stimuli were three-digit integer numbers, randomly selected between zero and 150.

To minimize luminance effects on pupil size, one- or two- digit numbers were displayed as

three-digit numbers with extra zeros attached in front of the stimuli (e.g., 1 is displayed as

‘001’). During the task, fixation was enforced at the center of the screen with an infrared eye

tracker (Eyelink 1000 Plus, SR Research, Canada), and a chin and forehead rest were used to

minimize head movement.
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Experiments

At the beginning of the task, the eye-tracker was calibrated, referencing eye fixation data at the

four corners of the screen. During the task, participants made a series of choices either to

accept or to reject presented stimuli (Fig 1A). As explained above, the stimuli were randomly

selected integers between zero and 150 where each number had equal probability of being

selected (uniform distribution). Each presented number could be considered as an option

whose value matches its face value because participants were instructed that all accepted num-

bers would be added to their final payoff at the end of the task. Given this knowledge, partici-

pants had a fixed number of opportunities (chances) to evaluate and reject a new randomly

selected number. The present ‘round’ ended when participants accepted a presented number

within this limited number of opportunities, or when they ran out of the opportunities where

they had no other choice but to accept the presented number at the last chance. At the begin-

ning of each opportunity, participants were shown which opportunity they were currently at,

so that they would not lose track of the number of remaining opportunities. A new round fol-

lowed, at which the number of available opportunities was reset to the original maximum

quantity. Participants were paid at the end of the study (after completing 200 rounds), based

on the sum of the numbers they chose during the task. All instructions were provided through

illustrated slides.

Overall, we implemented three separate experiments, each of which had slightly different

settings. In Experiment 1, participants had up to five opportunities (K = 5), and they were not

explicitly informed of the maximum number (150) that would be presented. Use of the context

with incomplete information was to incorporate a more naturalistic setting as real-life prob-

lems where, as in most of the cases, individuals do not have knowledge about the best potential

option (e.g., even if the current candidate for a job has a good enough fit for the position, one

cannot assure that a potential future candidate will not have a superior fit). Participants were

instructed that the presented stimuli would be sampled from a uniform distribution, and thus,

we expected that participants would quickly deduce the maximum range through iterative

experiences. At the beginning of the new round, the accumulated payoff amount up until the

last round was presented at the bottom of the screen. In Experiment 2, participants were ran-

domly assigned to one of three conditions where one condition had two (K = 2), one condition

had five (K = 5), and one condition had ten (K = 10) opportunities. Here, participants were

also informed of the maximum number (i.e., 150). In addition, participants were given a prac-

tice session that comprised two rounds where all the stimuli were ‘000’, which allowed them to

be familiarized with associated buttons and the task screen settings. All the rest of the task set-

tings were identical to Experiment 1.

Experiment 3 was designed to temporally dissociate actions (i.e., accept or reject) from the

stimulus onset, so that physiological responses to stimuli independent from potential motor

preparatory signals could be measured. Particularly in Experiment 3, participants were not

allowed to make choices until an audio cue was played (Fig 4). The audio cue was played

between 1.5 and 2.5 seconds after stimulus onset (uniform distribution), which allowed us to

tease out potential confounding factors related to action from the pupil diameter measures at

0–1.5 seconds after stimulus onset. In addition, to prevent participants from making unneces-

sary eye movements, all the information including number stimuli were presented at the cen-

ter of the screen. As implemented in Experiment 2 where K = 5, participants were informed

that the maximum number was 150 and that they have up to five chances to evaluate the sti-

muli per each round.
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Behavioral analysis

For all three tasks, behavioral choices (accept or reject) and response time (RT) were mea-

sured. Individuals’ decision threshold for each opportunity was estimated from their choices.

To estimate empirical decision threshold for each opportunity, a cumulative distribution func-

tion of Gaussian distribution was fitted to individuals’ choice data that corresponded to the

same opportunity across all 200 rounds. The mean and variance parameters of the Gaussian

distribution represent the decision threshold and decision variability, respectively. A set of

best-fitting parameters that maximize the likelihood of the data was estimated per individual

using the Nelder-Mead simplex algorithm provided by MATLAB R2017b.

Computational modeling and model comparison

For a formal model comparison at the group level, choices from all 200 rounds per participant

were used for parameter estimation. We used likelihood-ratio tests to compare goodness-of-fit

of the models for explaining participants’ decisions.

Optimal decision model

An optimal decision maker is expected to maximize their payoff by estimating the expected

value of each opportunity. This computation can be conducted from the final opportunity to

the first, given the full information about the stimuli distribution (U[0, 150]). For example, in

a condition where K = 5, the expected value of the last opportunity is 75, and therefore a pay-

off-maximizing optimal decision maker should set 75 as the decision threshold of the fourth

opportunity (i.e., accept numbers larger than 75 and reject those that are lower). Then, this

decision strategy should again determine the expected value of the fourth opportunity. Gener-

alizing this dynamic programming approach, the decision threshold of the ith opportunity (ϑ
[i]) can be written as follows:

W i½ � ¼
bW½iþ 1�c

151
W iþ 1½ �þ

1
151

X150

v¼bW½iþ1�cþ1
v ði 2 K � 1;K � 2; . . . ; 1ð ÞÞ

W K½ � ¼ 0

where bxc indicates the greatest integer less than or equal to x.

Subjective optimality model

Our hypothesis was that individuals use subjective valuation in reference to their own expecta-

tions about the environment during finite sequential decision-making. To test the hypothesis,

we constructed a computational model drawn upon Prospect theory [13]. Particularly, individ-

uals’ subjective valuation (Util) of an objective value (v) was defined as below:

UtilðvÞ ¼ v � rð Þ
r if v � r

UtilðvÞ ¼ � r � vð Þ
r otherwise

where ρ and r indicate individuals’ nonlinear value sensitivity and reference point, respec-

tively. Subjective valuation is also used in computing decision thresholds:

W i½ �¼ Util� 1 bW½iþ 1�c

151
Util W iþ 1½ �ð Þþ

1
151

X150

v¼bW½iþ1�cþ1
Util vð Þ

� �

where Util-1(.) indicates an inverse function of the aforementioned subjective value function

and Util(ϑ[i+1]) indicates the expected utility of continuing the game.
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Subjective optimality model with a waiting cost

In our secretary problem task, choosing to reject the current stimulus means that participants

have to go through further steps (opportunities) to receive rewards (or at least to find out how

much reward they will receive) until they choose to accept at a later opportunity. Such an addi-

tional wait may introduce a disutility (i.e., negative value) against the choice to reject. To test

this possibility and quantitatively estimate this ‘mental waiting cost’, we modified our sug-

gested Subjective optimality model to a more general format as follows:

W i½ �¼ Util� 1 bW½iþ 1�c

151
Util W iþ 1½ �ð Þþ

1
151

X150

v¼bW½iþ1�cþ1
Util vð Þ � C

� �

where C indicates a waiting cost per opportunity. Note that the waiting cost lowers the

expected utility of the following opportunity (i+1th), and thus has an effect of lowering the

decision threshold of the current opportunity (ith).

Constant threshold model

There is a simple alternative decision strategy for the secretary problem: to use a constant deci-

sion threshold throughout all opportunities. To examine this possibility, we estimated one

decision threshold per individual. This constant threshold model provides a quantitative base-

line for a formal model comparison.

Independent threshold model

The Independent threshold model is the model in which a decision threshold for each oppor-

tunity was independently estimated. This model does not hypothesize any mechanistic associa-

tions among opportunities, but focuses on capturing individuals’ choice tendencies in each

opportunity.

Linear threshold model

In a recent study, Baumann et al. [34] suggested a linear threshold model that assumes a linear

relationship among the thresholds across the opportunities (i.e., Thresholdi-th = a + bi where a

and b are free parameters) [34]. Note that in this Linear threshold model, a decision maker

does not need to use dynamic programming approach. One key feature that clearly dissociates

the Linear threshold model from other models is the linear relationship in decision thresholds

between opportunities.

Regret model

We constructed a model where participants would accept candidates that are higher than both

the optimal threshold and the highest value they have passed up in previous opportunities. To

examine the maximum impact of past stimuli values, we applied the aforementioned rule of

regret as deterministic decision thresholds at each opportunity and also assumed perfect mem-

ory. That is, all the past stimuli values, rather than the most recent stimulus, affect decisions

within the corresponding round. We simulated 10000 rounds of behavioral choices of pseudo-

subjects, and estimated the decision thresholds and the effects of past values on the current

decision. These steps are repeated 20 times to verify the reliability of the estimations. Because

the model is a combination between the Optimal decision model and the regret, decision

thresholds at the initial opportunities are always the same as those from the Optimal decision

model. Note that in this simulation-based analysis, we are using the differences in slopes across

decision thresholds, rather than other features (e.g., the deviation at the initial opportunities in
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Experiment 3), as criteria to examine whether the simulation model captures the core mecha-

nism explaining the empirical data.

Selection bias model

One of the sources of potential variability in individuals’ decision thresholds is within-subject

variability that affects individuals’ across-round behaviors. To run the simulation, we calcu-

lated the behavioral choice variability from the entire data (across- opportunities and rounds),

and assumed it all would contribute to the within-subject variability across rounds (i.e., there

is no across-opportunity variability within a round). This is the most conservative setting,

because large across-round variability opens up the possibility that only the rounds in which

decision thresholds happened to be high decision thresholds to contribute to the post-hoc esti-

mation of the later opportunities; in turn, this would make the estimated decision thresholds

to have a shallower slope (more flat) across opportunities compared to the optimal decision

model.

Predicting change of decision threshold based on the altered decision

context

To examine whether or not our suggested model can be generalized under different contexts

with scarce opportunities, we took a prediction approach using model-based information

from the context with abundant opportunities. Specifically, the reference point and nonlinear

value sensitivity parameters estimated from behavioral choices of individuals (N = 21) who

participated in Experiment 2, K = 5 were used to predict the decision threshold in the two

(K = 2) and ten (K = 10) opportunities condition. Particularly for the nonlinear value sensitiv-

ity, the parameter distribution in the K = 2 or 10 condition was assumed to be the same as that

in the K = 5 condition. On the other hand, the parameter distribution of the reference point

was assumed to be shifted down by the difference of expected earnings between the two condi-

tions, reflecting participants’ acknowledgement of the scarce or abundant number of opportu-

nities. Specifically, we calculated the expected value across all opportunities for each condition

(K = 2, 5, and 10), and assumed their difference to indicate the extent to which participants

changed their expectation about earnings from average number of opportunities (K = 5) to

either abundant (K = 10) or scarce (K = 2) opportunities. To predict the mean threshold in the

K = 2 condition, 23 pairs of parameters (matching the number of participants in K = 2) were

randomly sampled with replacement from the aforementioned parameter distribution, and the

thresholds corresponding to each parameter pair were computed by applying our model. The

mean threshold in the K = 10 condition was predicted following the same procedure. The pro-

cedure was repeated 5,000 times to estimate the distribution of the mean of 23 thresholds. The

95% confidence interval was computed from the 5,000 means.

Parameter estimation procedure

We used Bayesian hierarchical analysis to estimate the best-fitting parameters for participants’

choice data [58]. Here in all the tested models, we introduced a gaussian noise around com-

puted decision thresholds, which mirrors the stochastic nature of choices rather than assuming

that choices are made deterministically before and after each threshold value (as applied in Sig-

nal detection theory). The width of the gaussian noise is set as a free parameter (termed as a

decision variability s) and estimated in individual-level.

The parameters characterizing individual participants were drawn from the population dis-

tributions, each of which follows a Gaussian distribution. The priors on the means of the popu-

lation distributions (μ) were set to broad uniform distributions, and the priors on the SDs (σ)
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were set to an inverse-Gamma distribution in each of which, the shape parameter alpha is one

and the scale parameter beta is manually selected. To improve sampling efficiency, we sampled

the parameters from a transformed space, and the hierarchical structure was assumed in the

transformed space. Specifically, the reference point and value sensitivity parameters were sam-

pled without domain restrictions and transformed by a scaled logistic function g(x) = A/(1

+exp(-x)) before applying to the model. In the function g(x), A was set to 150 for the reference

point parameter r, and set to 2 for the values sensitivity parameter ρ. The decision variability

parameters and the group-level hyper-parameters for parameters’ standard deviation were

transformed by exp(.) after sampling. We did not apply a transformation to the waiting cost

parameter. A Markov chain Monte Carlo (MCMC) method (Metropolis-Hastings algorithm)

was used to sample from the posterior density of the parameters conditioned on all of the

participants’ choices. We estimated the most likely set of parameters for each participant from

the resulting chain of samples using a multivariate Gaussian kernel function provided by

MATLAB R2017b.

Pupillometry: Preprocessing

Pupil diameter was sampled at 500 Hz from both eyes using an infrared eye-tracker (Eyelink

1000 Plus; SR Research, Kanata, Canada) and recorded continuously for the entire session.

Blinks and saccades in each eye were identified using the standard criteria provided by Eyelink,

and the identified intervals were linearly interpolated. Particularly for the blink events, the

interpolation was applied to the intervals between 150 ms before and after each identified

blink. Three participants whose pupil data included a large proportion of interpolated intervals

(> 50%) were excluded from further analyses. The means of the interpolated data from both

eyes were band-pass filtered between 0.02–4 Hz using third-order Butterworth filters. The

long-lasting effects (~ 5 sec) of blinks on pupil diameter were identified by applying least-

squares deconvolution to individual data, and then removed from the data [59]. Then, the

resulting data were z-scored for each session (i.e., each participant). Pupil diameter changes in

response to the value stimulus were computed for each opportunity. Each epoch was defined

for pupil responses between -200 and 1,500 msec around the stimulus onset, and corrected for

its baseline by subtracting the mean pupil size around (± 20 msec) the onset. The choice trials

that required a large proportion (> 50%) of interpolation were excluded from the analysis,

which comprised 28% of the entire choice trials. Applying more liberal exclusion criteria

(excluding the trials that required substantially large proportion (>90%) to be interpolated)

did not alter any of the pupillometry results (Fig F in S1 File).

Pupillometry: Statistical tests

To examine whether physiological responses reflect cognitive decision processes, we tested

pupil dilations and contractions in response to (i) subsequent choices to accept or reject, and

(ii) decision difficulty. First, pupil diameter changes between 0–1,500 msec after the stimulus

onset were compared between accepted and rejected opportunities. We used t-tests to compare

mean differences at each time step and defined statistically significant temporal clusters (alpha

level set to 0.05). To control for the false alarm rate, we used the cluster-based permutation

method [38] and examined the statistical significance of each cluster. Particularly in the per-

mutation procedure, the sign of the difference value for each participant was randomized and

the sum of t-values in each cluster was used as its statistic. Second, the peak pupil dilation

between the stimuli onset and 1,500 msec after the stimulus onset was used to examine the

effect of decision difficulty—the absolute distance between the corresponding decision thresh-

old and the presented value—on the pupil dilation. Linear regression was used for the rejected
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trials (choice = reject, -40 < Value—Thresholdi-th < 5) and accepted trials (choice = accept,

-5< Value—Thresholdi-th < 40) separately for each participant. The same set of data points

was used to test the effect of choice on pupil dilation after controlling for the decision diffi-

culty. We further investigated individual differences in the extent to which one responds to

stimulus value at the physiological level (i.e., pupil dilation). We smoothed each individual’s

pupil dilation data along the threshold centered values (i.e., Value–Thresholdi-th) ranging from

-90 to 60 by applying local regression using a 2D polynomial model provided by MATLAB

R2017b. The estimated pupil dilation at threshold was used to calculate the Pearson correlation

between individuals’ estimated value sensitivity and their pupil responses.
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