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Abstract

Q-space trajectory imaging (QTI) enables the estimation of useful scalar measures indicative of 

the local tissue structure. This is accomplished by employing generalized gradient waveforms 

for diffusion sensitization alongside a diffusion tensor distribution (DTD) model. The first two 

moments of the underlying DTD are made available by acquisitions at low diffusion sensitivity 

(b-values). Here, we show that three independent conditions have to be fulfilled by the mean 

and covariance tensors associated with distributions of symmetric positive semidefinite tensors. 

We introduce an estimation framework utilizing semi-definite programming (SDP) to guarantee 

that these conditions are met. Applying the framework on simulated signal profiles for diffusion 

tensors distributed according to non-central Wishart distributions demonstrates the improved 

noise resilience of QTI+ over the commonly employed estimation methods. Our findings on a 

human brain data set also reveal pronounced improvements, especially so for acquisition protocols 

featuring few number of volumes. Our method’s robustness to noise is expected to not only 

improve the accuracy of the estimates, but also enable a meaningful interpretation of contrast 

in the derived scalar maps. The technique’s performance on shorter acquisitions could make it 

feasible in routine clinical practice.
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1. Introduction

Determining the local structure of neural tissue using diffusion MRI has already made an 

impact in neuroscience and radiology. Diffusion MRI’s sensitivity to tissue microstructure 

is exploited and interpreted through models that provide a simplified picture of the complex 

tissue makeup. The parameters of an adequate model reflect the key characteristics of 

the tissue that influence the stochastic movement of the water molecules. Measuring the 

diffusional process and estimating such model parameters from the acquired data are the two 

essential components of structure determination via diffusion MRI.

In q-space trajectory imaging (QTI) (Westin et al., 2016), diffusion sensitization is achieved 

via general time-dependent gradient waveforms while the tissue is envisioned to have 

numerous non-exchanging compartments. Diffusion is characterized by a diffusion tensor 

within each of these compartments. Consequently, the voxel is represented by a diffusion 

tensor distribution (DTD) (Jian et al., 2007). QTI exploits the sensitivity of the diffusion 

MRI signal to the statistical moments of the parameters characterizing the microscopic 

domain (Özarslan et al., 2011). By doing so, QTI provides a simple means of relating the 

signal obtained via general gradient waveforms to the DTD, which is key for introducing 

meaningful MRI ‘biomarkers’ in QTI. Under the assumptions of the DTD picture, the effect 

of all measurement parameters is captured by a positive-semidefinite tensor, referred to as 

the b-tensor (Mattiello et al., 1994), and denoted by Bij in this work. The level of diffusion 

sensitization is usually quantified by the trace of this tensor, denoted by b.

Common clinical MRI examinations of the neural tissue probe the low-b regime of the 

MR signal attenuation. As shown by Westin et al. (2016), the data in this regime reveal 

the mean and covariance tensors of the underlying DTD. The former is a 3 × 3 symmetric 

positive semidefinite matrix, while the covariance tensor has the symmetries of the fourth 

order elasticity tensor in mechanics (Basser and Pajevic, 2003). Once estimated, these two 

tensors are employed in computing several scalar measures that characterize macroscopic 

and microscopic anisotropies, orientational coherence and size variance of the subdomains 

making up the tissue. Thus, a key step in obtaining reliable estimates of these quantities 

involves accurate estimation of the mean and covariance tensors from the data. In this study, 

we investigate possible improvements in the estimates of the QTI-derived parameters when 

several necessary nonnegativity conditions are enforced.

Improvements due to constrained optimization have been reported for diffusion MRI models 

developed for traditional pulsed field gradient measurements of Stejskal and Tanner (1965). 

For example, diffusion tensor imaging (DTI) (Basser et al., 1994a; 1994b) has benefited 

from estimation schemes (Koay, 2010; Koay et al., 2006; Lenglet et al., 2006; Pennec et 

al., 2006; Wang et al., 2004) that ensure that the diffusion tensor is positive semidefinite—a 

condition that follows from the physics of diffusion. The estimation problems for models 
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that go beyond DTI (Jensen et al., 2005; Özarslan and Mareci, 2003; Tournier et al., 2007) 

have also been studied via methods that enforce relevant constraints (Barmpoutis et al., 

2012; 2009; Chen et al., 2013; Ghosh et al., 2014; Qi et al., 2010; Veraart et al., 2011).

In a recent work, Dela Haije et al. (2020) considered three such prominent models, namely, 

spherical deconvolution (Tournier et al., 2004), diffusion kurtosis imaging (Jensen et al., 

2005; Liu et al., 2004), and mean apparent propagator MRI (Özarslan et al., 2013) and 

formulated several sum-of-squares (SoS) constraints arising from the nonnegativity of the 

relevant distribution functions yielding remarkable improvements in the model estimates 

over earlier methods. Enforcing them in the estimation via semidefinite programming (SDP) 

guaranteed the fulfillment of such constraints in contrast to earlier methods that either did 

not account for them or imposed them “softly,” i.e., did not ensure strict adherence to the 

relevant constraints. "Softly" imposed constraints were also initially considered for QTI in 

(Jeurissen et al., 2019), highlighting the interest and need for more sophisticated fitting 

approaches to be used with this method.

To investigate the effects of constrained optimization for the QTI technique, we devised 

an estimation framework that guarantees the fulfillment of three conditions that mean and 

covariance tensors of DTDs have to respect. Following the naming convention in Dela 

Haije et al. (2020), we refer to our method as QTI+. After introducing our notation and 

providing an overview of the QTI model, we introduce the constraints to be imposed. 

Several methods for estimating the mean and covariance tensors as well as a test for 

checking the fulfillment of one of the constraints are introduced. Simulated signals for 

non-central Wishart distributed DTDs (Shakya et al., 2017) are employed to compare the 

performance of commonly-employed methods with ours. We also provide analyses on 

tensor-valued diffusion encoded brain data (Szczepankiewicz et al., 2019) and assess the 

performance of our framework on data sets with few number of acquisitions.

2. Background

Our notation

There is a multitude of notations for tensors. Here, we describe the notations and 

conventions we employ. In this study, there is no need to make a distinction between contra- 

and covariant tensors. Thus, all indices are written as subscripts.

Scalars are denoted with italic characters, while matrices and second order tensors are 

denoted with boldface characters. Blackboard bold (double struck) characters are used for 

fourth-order tensors. For example, Aijkℓ is a fourth order tensor whose ijkℓth component is 

Aijkℓ. Fourth-order tensors considered in this work can also be represented by 6 × 6 matrices. 

To make the distinction clear, we employ the following convention:

• Latin letters i, j, k, ℓ range from 1 to 3.

• Early Greek letters α, β, and γ range from 1 to 6.

Thus, Aijkℓ and Aαβ are the fourth order and second order representations of the same 

tensor. When used with double struck and boldface characters, the indices are retained just 
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to inform about the order of the tensor, which is the number of indices and the range of those 

indices; they do not refer to a particular component of the tensor.

We employ the Einstein summation convention, which is usually described as “all repeated 

indices are summed over.” E.g., Aii = ∑i = 1
3 Aii is the trace of the matrix Aij, while 

Cik = AijBjk = ∑j = 1
3 AijBjk is the ikth component of the product of matrices Aij and Bij.

QTI

In this work, we are interested in the statistical properties of a distribution of diffusivity 

tensors Dij, represented by a family of samples {Dij
(n)}. Here, since it represents a diffusivity, 

which is proportional to second moment of displacements, each second order tensor Dij
(n)

is symmetric and positive semidefinite. With ⟨·⟩ indicating mean (expectation) value, we 

would like to estimate the mean diffusivity tensor1

Dij = 〈Dij〉

and the covariance, which in this case becomes the fourth order (covariance) tensor ℂ, 

defined as

ℂijkℓ = 〈Dij − Dij〉 ⊗ 〈Dkℓ − Dkℓ〉 .

This tensor has the so called minor (Cijkℓ = Cjikℓ, Cijkℓ = Cijℓk) and major (Cijkℓ = Ckℓij) 

symmetries, which result in ℂijkℓ having 21 independent components. It is (as usual) 

possible to express ℂijkℓ in terms of the (second) moment tensor Mijkℓ = 〈Dij ⊗ Dkℓ〉
through the relationship

ℂijkℓ = Mijkℓ − Dij ⊗ Dkℓ .

Mijkℓ has the same symmetries and degrees of freedom as ℂijkℓ.

The QTI signal’s dependence on the b-matrix Bij is given by (Westin et al., 2016)

S(Bij) = S0 exp −BijDij + 1
2BijBklCijkℓ , (1)

where S0 is the signal with no diffusional attenuation, i.e., when Bij = 0. Thus, given a 

family of measurement tensors {Bij
(n)}n = 1

N  and the corresponding signal values S1, S2, … , 

SN with Sn = S(Bij
(n)), the task, given the model (1), is to produce estimates of S0, Dij and 

ℂijkℓ.

1The mean is defined in the traditional sense. For a family of N tensors, Dij = 1
N ∑n = 1

N Dij
(n)

.
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The Voigt notation

The diffusivity tensors Dij in three-dimensional space are symmetric second order tensors. 

The set of all symmetric second order tensors forms a vector space V of dimension six, and 

this space is equipped with a natural scalar product: < Aij, Bij >= AijBij. Hence one can 

introduce an orthonormal basis {eij
(β)}β = 1

6  and express any tensor in V as

Aij = ∑
β = 1

6
aβ eij

(β) .

These six coordinates aβ are customarily put into a vector with six elements, and this is 

referred to as the Voigt notation. See Appendix A for our choice for the basis.

This approach yields various representations of the covariance tensor ℂijkℓ as well. Because 

of the symmetries of ℂijkℓ, this tensor can be regarded as a symmetric mapping V → V, and 

in turn (given an orthonormal basis for V) represented as a symmetric 6 × 6 matrix, which 

is consistent with ℂijkℓ having 21 degrees of freedom. This matrix will be denoted by Cαβ 

where 1 ≤ α, β ≤ 6 as described above.

We can proceed in a similar manner. The set of symmetric mappings V → V constitute a 

vector space of dimensions 21 and, again, given an orthonormal-basis for this space, any 

tensor ℂ (with the appropriate symmetries) can be represented by a vector with 21 elements.

3. Theory

As mentioned in the previous section, given a family of measurements tensors {Bij
(n)}n = 1

N , 

the set of corresponding signal values {Sn}n = 1
N  and the model (1), the task is to produce 

estimates of S0, Dij and ℂijkℓ. Assuming approximately Gaussian noise, this is achieved by 

finding the S0, Dij and ℂijkℓ, which minimize the ‘error,’ i.e.,

argmin
S0, Dij, ℂijkℓ

∑
n = 1

N
Sn − S0e−Bij

(n)Dij + 1
2Bij

(n)Bkl
(n)Cijkℓ

2
. (2)

Here we make two remarks:

1. Even if there is a global minimum, it is not easy to specify in advance a 

minimizing routine, which is guaranteed to find the minimum.

2. If a minimum is found, the obtained estimates of Dij and ℂijkℓ may be 

unacceptable.

We start by addressing the second issue in the following subsection.

Herberthson et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.1. Positivity conditions

There are a number of positivity conditions one can impose on the estimates, which have to 

be met in order for their interpretation to be physically reasonable. Here, we will give three 

such conditions, which are independent in the sense that any two of them do not imply the 

other. See Appendix B.

The first condition is on Dij, namely, it should represent a diffusivity and thus Dij (in 

addition to being symmetric) is positive semi-definite. We express this condition as Dij ≻ 0.

The second condition is similar. From the fact that ℂijkℓ represents a covariance (so that 

Cijkl Aij Akl ≥ 0 for all symmetric matrices Aij), it is necessary that when cast as a 6 × 6 

matrix Cαβ, this matrix should also be positive semi-definite, i.e., Cαβ ≻ 0.

The third condition is on Mijkℓ, i.e., concerns ⟨Dij ⊗ Dkℓ⟩. Since Mijkℓ is the mean of tensor 

products of diffusion tensors, each of which is positive semi-definite, this property is carried 

over to Mijkℓ. The conclusion is that for any vector ui ∈ R3, the symmetric second order 

tensor, whose ijth component is Mijkℓ ukuℓ, should be positive semi-definite. In other words, 

for any pair of vectors vi and ui, we must have Mijkℓ vivjukuℓ ≥ 0.

We shall refer to these three conditions as ‘(d)’, ‘(c)’, and ‘(m)’ where the letters indicate the 

tensor on which the conditions are imposed. To summarize, our conditions are, then,

(d) Dij ≻ 0,

(c) Cαβ ≻ 0, and

(m) for all vi and ui, Mijkℓ vi vj uk uℓ ≥ 0.

Let us also remark that the condition S0 ≥ 0 is obviously also required, but that it need not be 

imposed explicitly (this can be inferred from the fact that all Sn ≥ 0).

3.2. Linearizing the equation and the least squares solution

As mentioned above, it is not trivial to ensure that a global minimum to (2) is found. 

However, there is a related problem for which a global minimum is guaranteed to be found. 

Namely, by taking the logarithm of (1), the model is linearized as

ln S(Bij) = ln S0 − BijDij + 1
2BijBkℓCijkℓ . (3)

Due to the heteroscedasticity caused by taking the logarithm of the signal, the minimization 

problem arising from (3) is the weighted problem (Basser et al., 1994a; Bevington and 

Robinson, 2003)
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argmin
S0, Dij, ℂijkℓ

∑n = 1
N Sn

2 ln(Sn) − ln(S0) + Bij
(n)Dij − 1

2Bij
(n)Bkl

(n)Cijkℓ
2
, (4)

which is an approximation to (2); see Appendix C. Using the Voigt notation, the unknowns 

determining ln(S0), Dij and ℂijkℓ can be stacked into a vector x with 1 + 6 + 21 = 28 

components, i.e., x = (x1, … , x28)⊤. The components of x could be determined through2

ln(S0) = x1

Dij ≐ 1
2

2x2 x5 x6
x5 2x3 x7
x6 x7 2x4

Cαβ ≐ 1
2

2x8 x11 x12 x17 x18 x14
x11 2x9 x13 x19 x15 x20
x12 x13 2x10 x16 x21 x22
x17 x19 x16 2x23 x26 x27
x18 x15 x21 x26 2x24 x28
x14 x20 x22 x27 x28 2x25

,

and Eq. (4) can be formulated as the weighted linear least squares (WLLS) problem

Ax = y (5)

where the vector y = (S1 ln(S1), … , SN ln(SN))⊤ contains the weighted signals and the N × 

28 matrix A is formed by the signal values Sn and the measurement tensors Bij
(n).

Without further restrictions, the minimizing vector x can easily be found by standard linear 

regression routines. However, we also give two other formulations, which are equivalent to 

(5) in the unconstrained case, but differ when it comes to imposing the positivity constraints 

(d), (c), and (m).

3.3. Quadratic programming (QP) for the linearized problem

First, we note that since the least squares solution minimizes ∥Ax − y∥2, i.e.,

xTATAx − 2yTAx + yTy (6)

this can also be solved using quadratic programming (Nocedal and Wright, 2006). Note that 

if A has full rank, Q = A⊤A is positive definite. Through the substitution c = −2A⊤y, the 

(least squares) solution to (5) can also be found as the solution to

argmin
x

xTQx + cTx . (7)

2Here, “≐” is used to indicate that the following matrix is just one representation of the tensor in a particular basis.
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Here, we ignored the constant factor y⊤y as we are interested in the minimizing argument.

3.4. Semidefinite programming (SDP) for the linearized problem

Eq. (7) can be further reformulated. First, we note that the minimizing argument x can be 

found by minimizing an auxiliary variable t under the condition t ≥ x⊤Qx + c⊤x, i.e., we are 

interested in

argmin
t, x

t, subject to t − xTQx − cTx ≥ 0 . (8)

With P being a square matrix such that P⊤P = Q, and with I being the identity matrix of the 

same size as Q, this can be formulated as

argmin
t, x

t, subject to
I Px

xTPT t − cTx
≻ 0 (9)

which shows that we can employ SDP as well to solve this problem (see Appendix D).

3.5. Imposing positivity conditions: Nonlinear least squares with (d) and (c) constraints 
(NLLS(dc))

Comparing the original problem (2), and the various linearized versions (4),(7), and (8), they 

all differ when it comes to imposing the positivity constrains (d), (c), and (m).

For Eq. (2), it is possible to impose conditions (d) and (c), by utilizing the Cholesky 

decomposition, i.e., the fact that any symmetric positive semi-definite matrix A can be 

written A = LL⊤, where L is a lower triangular matrix with positive diagonal entries.

To this end, we cast ℂijkℓ in its 6 × 6 matrix form Cαβ. We also introduce a fourth order 

tensor Bijkℓ′  whose ijkℓth component is Bij Bkℓ and its 6 × 6 matrix form is Bαβ′ . We can use 

the ansatz

Dij = LikLjk and
Cαβ = ΛαγΛβγ

(10)

where both Lij and Λαβ are lower triangular matrices with positive diagonal entries. The 

problem (2), then, becomes

argmin
S0, Lij, Λαβ

∑
n = 1

N
Sn − S0e−Bij

(n)LikLjk + 1
2Bαβ

′(n)ΛαβΛβγ
2
, (11)

which guarantees that (d) and (c) (but not necessarily (m)) are satisfied.

3.6. Imposing positivity conditions: SDP with (d) and (c) constraints (SDP(dc))

The estimation schemes based on the linearized version of the model (weighted linear, 

quadratic programming, and semidefinite programming) described above, which all produce 

global minima, differ when it comes to imposing the positivity constraints. In particular, 
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the semi-definite programming (SDP) framework is particularly well-suited for imposing (d) 

and (c). With x = (x1, … , x28)⊤ as before, the conditions (d) and (c), namely that Dij and 

Cαβ are nonnegative, then fit directly into the SDP framework, i.e., we can impose (d) and 

(c) by solving

argmin
t, x

t, subject to

I Px 0 0
xTP T t − cTx 0 0

0 0 Dij 0
0 0 0 Cαβ

≻ 0 . (12)

Again, condition (m) is not imposed, which is mostly because Mijkℓ depends quadratically 

on ⟨Dij⟩.

3.7. An SDP scheme for checking if condition (m) is fulfilled ((m)-check)

Addressing (11) or (12), we get (initial) estimates of S0, ⟨Dij⟩, ℂijkℓ and Mijkℓ, where 

the constraints (d) and (c) are imposed. To determine whether condition (m) needs to be 

imposed, we first check whether it is violated or not. Hence, we pose the question: for a 

given estimate of Mijkℓ, is it true that

for all vi, ui, Mijkℓ vi vj uk ul ≥ 0 ? (13)

Again, this can be investigated with SDP by addressing a feasibility problem. As explained 

in Appendix E, it is possible from Mijkℓ to construct a 9 × 9 matrix M where each entry is 

a first order polynomial in the parameters ℓ1, ℓ2, … , ℓ9, and check (using SDP) whether there 

are feasible solutions to the problem

min
ℓ

0, subject to M(ℓ ) ≻ 0 . (14)

Here we have put the parameters ℓi into a vector: ℓ = (ℓ1, ℓ2, … , ℓ9)⊤. This expression differs 

from the earlier adaptations of the SDP method in that we are only interested in finding out 

whether a solution fulfilling all the constraints exists. Thus, the function to be minimized is 

unimportant, and is taken to be 0 by choice. If3 the SDP routine finds a vector ℓ, condition 

(m), i.e., (13) is satisfied.

3.8. Imposing positivity conditions: SDP with (c) and (m) constraints (SDP(dcm))

In the case when condition (m) is violated, it is imposed in the following way. From the 

estimate at hand, we fix S0 and Dij, i.e., x1, x2, … , x7,4 so that Mijkℓ is linear in the 

remaining variables x8, … , x28. These are then re-estimated to ensure that both (c) and (m) 

3We do not have strict equivalence, see Appendix E
4This may seem like a restriction. In our experience, however, the estimates of x1, x2, … , x7 are relatively ‘stable’ as compared to x8, 
… , x28.
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are satisfied. Again, this can be accomplished with SDP, and we refer the reader to Appendix 

F for the formulation. In short, with x1, … , x7 fixed, we set x = (x8, …, x28)T and ℓ = (ℓ1, ℓ2, 

… , ℓ9)⊤ and can assert (c) and (m) by solving

min
t, x, l

t, subject to

I Px 0 0

xTPT t − cT x 0 0
0 0 Cαβ 0
0 0 0 M(l)

≻ 0 . (15)

Note that we refer to this scheme as “SDP(dcm)” as it relies on a previous estimate of 

Dij, which is positive semidefinite. Thus, the end result is guaranteed to fulfill all three 

conditions (d), (c), and (m).

3.9. Rank deficient estimation

Normally, it is assumed that the matrix A in the (weighted) least squares problem (5) is of 

full rank, which in our case is 1 + 6 + 21 = 28. This is achieved by having a sufficiently 

rich family of measurement tensors {Bij
(n)}n = 1

N , which ‘spans the parameter space.’ However, 

for practical reasons there is a trade-off since there is also a desire to keep the measurement 

protocol short.

Acquisition protocols could feature measurements having Bij tensors with quite general 

features (e.g., non-axisymmetric or anisotropic rank-3 tensors), which could offer some 

benefits (Herberthson et al., 2019). However, in the current practice, it is quite common to 

use measurement tensors which fall into one of the following three classes: (i) LTE (linear 

tensor encoding) where each measurement tensor is the outer product of some vector with 

itself, implying the eigenvalues of each such Bij
(n) being {λ(n), 0, 0} for some λ(n) > 0. (ii) 

PTE (planar tensor encoding), where each such measurement tensor Bij
(n) has eigenvalues 

{λ(n), λ(n), 0}, λ(n) > 0. (iii) STE (spherical tensor encoding) where each such measurement 

tensor is proportional to the identity matrix.

For protocols that use measurements of only type (i) and (iii), i.e., LTE and STE, this will 

lead to a rank deficient matrix A, with (maximum) rank 1 + 6 + 16 = 23. The reason for this 

is that with measurement tensors of type (i), i.e., LTE, the measurements are only sensitive 

to the completely symmetric part of ℂijkℓ, and the space of such tensors has dimension 15. 

Furthermore, since all isotropic (STE) measurement tensors, i.e., tensors of type (iii), are 

proportional to each other, they will only be capable of measuring one more dimension in 

the parameter space.

This raises two questions. First, how does this affect the estimates and the routines to find 

these? The observation is that the solution is non-unique and also that derived matrices like 

Q = A⊤A become singular (positive semidefinite but not positive definite). There are various 

ways to handle this challenge; the most common with degenerate least squares problem is 

perhaps to pick the solution vector with minimal norm. This can be achieved by employing 
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a pseudoinverse or using a so called subspace reduction. When integrated into the WLLS 

method, we refer to the technique as “WLLS(ss).”

The second question is: how are the presented results affected by the rank deficiency of 

the design matrix? Indeed, because of this degeneracy, many ℂijkℓ tensors are equivalent 

in terms of their ability to represent the data. However, as shown in Appendix G, all scalar 

measures to be used in this work are insensitive to this degeneracy, the exception being 

the Frobenius norm involving the covariance tensor ℂijkℓ in the case of rank deficient 

estimation.

4. Methods

4.1. Implementation

In this section, we describe our strategy incorporating the techniques described above into a 

unified framework. The framework contains the following steps:

1. SDP(dc): See Section 3.6 and Eq. (12). The result of this step could be taken as 

the final result. However, it can also be treated as an initial estimate and fed into 

Step 2, for which heteroscedasticity is not an issue. It can also be fed into Step 3 

(and 4 if necessary) for imposing condition (m).

2. NLLS(dc): See Section 3.5 and Eq. (11). This step employs the original 

(nonlinear) model, which should in general reduce the residues (in the nonlinear 

form of the model) obtained via SDP(dc). In rare cases when NLLS(dc) fails 

to produce an improvement over SDP(dc), which can occur when the modified 

Cholesky decomposition leads to poor initial estimates, the SDP(dc) outcome is 

retained. The result of this step could be used as the final result. However, if 

condition (m) is to be imposed, further analysis is necessary.

3. (m)-check: See Section 3.7 and Eq. (14). If the voxel satisfies condition (m), no 

further step is necessary. If not, the next step is employed.

4. SDP(dcm): See Section 3.8 and Eq. (15).

All the fitting routines were implemented in Matlab (The Mathworks Inc, Natick, 

Massachussets). For SDP we used CVX, a package for specifying and solving convex 

programs in Matlab (Grant and Boyd, 2008; 2014). In steps 1, 3, and 4 CVX calls the 

solver MOSEK version 9.1.9 (MOSEK ApS, Denmark). For the non-linear fit in step 2 we 

used the Matlab routine lsqcurvefit. For the standard QTI analysis, the multidimensional 

dMRI toolbox, provided at https://github.com/markus-nilsson/mddmri was employed. The 

estimation methods were also independently implemented in Mathematica (Wolfram 

Research Inc., Champaign, IL, USA) to check for consistency.

4.2. Simulations

We performed simulations to assess the impact of adding different constraints to the 

estimation of S0, Dij and ℂijkℓ. We considered an independent method for the generation 

of the diffusion signals to be fitted with both the available and proposed methods. For this 

task, we chose the non-central Wishart distribution whose mean and covariance tensors can 
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be derived analytically. As discussed elsewhere (Herberthson et al., 2019; Jian et al., 2009; 

2007), the diffusion MR signal is the Laplace transform of the underlying DTD. For the 

case of non-central Wishart distributions, the result is provided by Mayerhofer (2013). Given 

some measurement tensor Bij, the signal for a non-central Wishart distribution with the 

non-centrality matrix5Ωij, the scale parameter (degrees of freedom) p, and scale matrix Σij is 

given by6 (Shakya et al., 2017)

S(B) = S0 ∣ I + ΣB ∣−p exp( − Tr[B(I + ΣB)−1Ω]) (16)

where “∣ · ∣” indicates matrix determinant and we dropped the subscripts for brevity. We 

employed this expression for the signal to find Dij and Cijkℓ in the model (1), the result being

Dij = pΣij + Ωij (17)

Cijkℓ = p
2(ΣiℓΣjk + ΣikΣjℓ)

+ 1
2(ΣjkΩiℓ + ΣiℓΩjk + ΣjℓΩik + ΣikΩjℓ) .

(18)

The derivation of the above expressions is provided in Appendix H. The non-central Wishart 

distribution simulated here has higher order cumulants, which is what we expect to have 

in neural tissue as well. However, we provide the expressions for the first two cumulants, 

which are to be estimated using the model.

In our simulations, we took 0.7 μm2/ms for 1
3Tr(Dij), and set Σij = Dij ∕ (5p). We performed 

two simulations, first having isotropic Dij with p = 2, while in the other we took p = 4 and 

the eigenvalues of Dij to be 0.6, 0.2, and 1.3 μm2/ms. Note that p determines the asymptotic 

behavior of the signal decay curve; see (16). For p = 2. one obtains a signal decay consistent 

with Debye-Porod law, which is the expected decay for diffusion in porous media measured 

via Stejskal-Tanner pulse sequence featuring narrow pulses (Sen et al., 1995). For wide 

pulses, such slow decay is replaced by a steeper one (Özarslan et al., 2018). Fig. 1 shows 

the joint distributions of Mean Diffusivity (MD) and Fractional Anisotropy (FA) for the 

tensor distributions whose averages are the anisotropic and isotropic Dij considered in the 

simulations.

Two sets of measurement tensors Bij were used to generate the signal for the simulations. 

The shorter protocol having 56 measurements is referred to as p56s. This protocol combines 

Bij tensors of rank 1 and 3, i.e., linear (LTE) and spherical (STE) encodings, and one 

measurement without diffusion encoding. A longer protocol, referred to as p217, consisting 

of 217 measurements was also considered. This longer protocol combines encoding tensors 

of rank 1, 2, and 3 as well as 13 measurements without diffusion weighting. The two 

5Here we are following the notation of Letac and Massam (1998). In this work, which emphasizes the relation to gamma distributions, 
the Wishart distribution is written γp,Σ. It is related to the more common notation Wd(p, Σ) by γp,Σ = Wd(2p, Σ/2).
6We note and correct an error in the order of Σ and B matrices in (Shakya et al., 2017).
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protocols are summarized in Table 1. The protocol p56s can be found at http://github.com/

filip-szczepankiewicz/fwf_seq_resources/tree/master/GE. The longer protocol p217 is a 

subset of the one described in Szczepankiewicz et al. (2019) and available at https://

github.com/filip-szczepankiewicz/Szczepankiewicz_DIB_2019. In particular, the repeated 

STE measurements were removed from the full protocol in Szczepankiewicz et al. (2019). 

Note that the shorter protocol p56s leads to rank-deficient design matrices while the matrices 

associated with the long protocol p217 are not rank-deficient.

Noisy Gaussian and Rician distributed signals were synthesized by adding Gaussian noise 

to the real and to the real and imaginary parts of the analytical signals obtained from 

(16), respectively. The standard deviations of the Gaussian noise were taken to be σ = [0, 

0.020 0.056, 0.092, 0.128, 0.164, 0.200], which correspond to SNR7 values of SNR = 1/σ 
= [∞, 50, 18, 11, 8, 6, 5] for the non-diffusion weighted signal, where this signal was 

taken to be S0 = 1. For each standard deviation, 1000 noisy signals were generated and 

then fitted using the various QTI and QTI+ estimation schemes. We compared the results 

produced by the different methods using metrics derived from Dij and ℂijkl. These metrics 

involved both a direct measure of the distance between the analytical and the estimated 

tensors, given by the Frobenius norm of the difference between the reference and estimated 

tensors normalized with the Frobenius norm of the reference tensors, ∣ ∣ ΔDij ∣ ∣ ∕ ∣ ∣ Dij ∣ ∣
and ∣ ∣ Δℂijkl ∣ ∣ ∕ ∣ ∣ ℂijkl ∣ ∣, and invariants obtained from the estimated Dij (fractional 

anisotropy (FA), mean diffusivity (MD), and macroscopic anisotropy (CM)) as well as those 

that utilize additional information from the covariance tensor (microscopic anisotropy (Cμ), 

size variance (CMD), and microscopic orientation coherence (Cc)).

4.3. Experimental data

Four subsets of the data set publicly available at https://github.com/filip-szczepankiewicz/

Szczepankiewicz_DIB_2019 and described in Szczepankiewicz et al. (2019) were used 

to test the proposed framework. One subset was formed with the 217 samples 

previously described in Table 1, i.e., protocol p217. Further subsets containing 39, 56, 

and 81 measurements produced the protocols p39, p56, and p81, respectively. These 

are also summarized in Table 1. The samples in p56 and p81 were chosen with 

the purpose of mimicking the protocols found at http://github.com/filip-szczepankiewicz/

fwf_seq_resources/tree/master/GE. Having to pick samples out of an existing dataset, we 

randomly selected the measurements from the ones available with the goal of keeping 

reasonably spread measurement directions while making sure that the design matrix will 

have rank 23. Fig. 2 shows the sample distributions for p217, p81, p56, and p39.

On these four datasets, we fitted the QTI model using Eqs. (5) (with and without subspace 

implementation), (12), (11), and (15). For each fit we then checked where the conditions 

(d), (c), and (m) were violated. Conditions (d) and (c) were considered satisfied if the 

eigenvalues of the estimated Dij and Cαβ were non-negative. However, we consider that a 

simple check done on the raw eigenvalues of the two tensors might mistake a violation of 

7Our definition of the SNR is the same as that in other studies on noise in MRI (Gudbjartsson and Patz, 1995; Koay et al., 2009).
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the two conditions with numerical errors arising from limited tolerances in the employed 

fitting routines. For example, a tensor having eigenvalues 2, 1, and −10−8 can still be 

considered nonnegative if the proximity of the negative eigenvalue to 0 is smaller than 

numerical tolerance. To overcome this ambiguity, we introduced a metric we refer to as 

“negativity index,” which in essence is a normalized and dimensionless indicator of the 

positivity violations. For any symmetric matrix, we calculate the eigenvalues λ1, … , λN and 

form the quotient

NI = ∑
i, λi < 0

N
λi

2/∑
i

N
λi

2 (19)

i.e., the sum in the numerator is only taken over the negative eigenvalues. Note that this 

measure is insensitive to scalings of the underlying matrix. When NI is below 5×10−4, the 

nonnegativity condition (d) or (c) is deemed to be fulfilled. To check whether condition (m) 

is fulfilled, we employed the scheme described in Appendix E.

4.4. Synthetic data

Additional simulations, inspired by those performed in Dela Haije et al. (2020), were 

performed to further assess the relevance of enforcing positivity constraints for the 

estimation of the parameters. The S0, Dij, and ℂijkl estimated by applying SDP(dcm) on 

the dataset with 217 measurements were used to create a synthetic dataset according to 

equation (1). As explained in Dela Haije et al. (2020), such dataset can be seen as the 

output of an ideal preprocessing pipeline which removes any bias and artifacts in the data. 

Moreover, assuming that the signal reconstruction provided by the investigated model is 

representative of the acquired data, this dataset can effectively be seen as a collection of 

signals produced by many different plausible tissue specimens. Therefore, it can act as 

ground truth for validation purposes.

Gaussian and Rician noise with standard deviation σ = 0.04, corresponding to SNR = 

1/σ = 25 on an S0 value estimated from a region of interest containing white and gray 

matter voxels, was added to the dataset. The noisy datasets were then subsampled to 

56 measurements. The parameters were estimated through both WLLS(ss) and SDP(dcm) 

applied on the noisy synthetic datasets with 217 and 56 measurements.

5. Results

5.1. Simulations

The results of our simulations are illustrated in Fig. 3 for the isotropic Dij and Fig. 4 

for the anisotropic Dij. The analytical results are depicted via dotted lines, which can 

be regarded as the ground truth in cases when QTI offers an accurate representation of 

the analytical signal. For a comparison of the QTI model in general compared to other 

methods for estimating statistical descriptors, we refer to (Reymbaut et al., 2020)8. Here, it 

8Note, however, that the work of Reymbaut et al. (2020) focuses on DTDs of axisymmetric diffusion tensors.
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is observed that the QTI model allows for, and indeed may produce, negative estimates of 

manifestly non-negative quantities. If the model in (1) is insufficient in describing the signal, 

i.e., when the higher order cumulants influence the signal within the range of employed 

diffusion weightings, we expect a deviation of the noiseless (SNR=∞) estimates from the 

dotted lines. Each solid circle shows the mean value of the estimates, different colors 

representing different estimation methods. The standard deviations are depicted via error 

bars. No appreciable difference was observed between the fits obtained on the noisy Rician 

and Gaussian distributed signals, therefore only the results on the Rician noise are shown.

From Figs. 3 and 4, it is clear that the QTI+ estimates obtained via SDP(dc), NLLS(dc), and 

SDP(dcm) methods are more robust to noise. In general, this refers to smaller deviations of 

the mean of the presented metrics, and substantially reduced standard deviations (error bars). 

This is particularly evident for the derived scalar measures. The Frobenius norms exhibit 

more noise sensitivity, which is likely because the Frobenius norm captures the tensors in 

their entirety while the other parameters are sensitive only to certain features of the tensors. 

Therefore, larger deviations appear, as expected, in the Frobenius norms of the difference 

between the reference and estimated tensors. This suffices to explain as well why most of 

the metrics derived from the WLLS(ss) fit are acceptable for SNRs down to ≈ 20 despite 

complications due to the rank deficiency of the design matrix for the shorter protocol.

Concerning the QTI+ estimation methods, we note that the results produced with SDP(dc), 

NLLS(dc), and SDP(dcm) are not drastically different. Especially when comparing 

NLLS(dc) and SDP(dcm), the difference is very subtle. This is partly because the violations 

of condition (m) are not frequent9 and perhaps also because satisfying condition (m) does 

not have a very strong influence on the estimated metrics.

Looking at specific metrics, we note that FA increases with noise when Dij is isotropic. 

Interestingly, constrained estimation tends to reduce FA in simulations featuring anisotropic 

Dij tensors. This could be explained considering that in absence of constraints, smaller 

eigenvalues would spread in the negative direction, thus incorrectly increasing the spread 

of the eigenvalues of Dij hence the FA value, while when constraints are applied, the small 

eigenvalues can only grow in the positive direction, leading to a reduction in anisotropy. The 

same trends are evident in the CC results as expected.

Microscopic anisotropy is perhaps the most interesting scalar measure that has prompted 

much interest in the development of alternative diffusion encoding methods (Cheng and 

Cory, 1999; Cory et al., 1990; Ianus et al., 2017; Lawrenz et al., 2010; Özarslan, 2009) that 

eventually led to the introduction of QTI. Note that having isotropic Dij does not imply 0 

microscopic anisotropy because a non-central Wishart distributed set of tensors represent 

an ensemble of anisotropic subdomains even if their mean is isotropic. Our simulations 

suggest that the microscopic anisotropy index (Cμ = μFA2) is also quite susceptible to noise 

9The numbers of signal profiles that violated condition (m) after the NLLS(dc) fitting and were subsequently fed into the SDP(dcm) 

routine were highest for the simulations of the p56s protocol with anisotropic Dij. These numbers were, respectively, 0, 12, 92, 200, 

307, 358, out of the 1000 noisy samples for each (non-zero) noise level.
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when traditional QTI methods are employed. The estimates benefit greatly from constrained 

estimation methods.

The noise sensitivity issue is more serious for indices of size variance (CMD) and coherence 

(CC). In fact, the estimates are simply unreliable under noisy conditions when no constraint 

is employed. QTI+ estimates of these indices could make them suitable for comparative 

analyses.

Effects of employing shorter acquisition protocols can be assessed by comparing the two 

panels of Figs. 3 and 4. Remarkably, employing the shorter protocol leads to a very 

considerable loss of quality for unconstrained QTI estimates of Cμ for example. As far as 

the constrained QTI+ estimators are concerned, the influence of the protocol has a relatively 

minor effect. This observation is important as it suggests that QTI+ could facilitate the 

employment of the method in clinical investigations where the acquisition time is a critically 

important limitation.

5.2. Experimental data

In Fig. 5, we illustrate the extent of the violations of the three postivity conditions. For both 

the long protocol p217 (left) and shorter protocol p56 (right), condition (c) is violated almost 

everywhere within the brain parenchyma when WLLS methods are employed. Condition 

(d) seems to be violated mostly in the very anisotropic and coherently organized regions 

like in the corpus callosum. As expected, these violations do not prevail when the QTI+ 

methods are employed. The rank deficiency of the design matrix associated with the shorter 

protocol seems to have the biggest impact on condition (m). Without the formulation in the 

subspace, this issue manifests as violation of (m) in almost all voxels. WLLS(ss) reduces 

the extent of such violations considerably. Interestingly, the SDP(dc) method provides 

further improvement although the condition (m) is not enforced. SDP(dcm) fulfills all three 

conditions as expected.

Fig. 6 illustrates the maps of the scalars obtained through various estimation methods for 

the dataset comprising 56 volumes. Despite the apparent similarity of the maps, some 

differences are visible, particularly in anisotropy measures (FA, CM, Cμ, μFA). Namely, the 

maps derived through constrained estimation methods shown in the last three rows appear 

to be smoother than those obtained via unconstrained estimation. As none of the analyses 

employs information from neighboring voxels, we think this is an important finding, which 

corroborates the noise resilience associated with the constrained estimation methods evident 

in the simulations. Appreciable changes are also evident in the CC maps by way of a 

reduction in the apparent coherence values in CSF.

Fig. 7 shows the scalar maps obtained by fitting the considered protocols, respectively, 

with WLLS(ss) and SDP(dcm). Looking at both panels, one observes that the non-

diffusion weighted (S0) and mean diffusivity (MD) maps are not severely affected by the 

downsampling. The anisotropy maps (fractional anisotropy FA, macroscopic anisotropy CM, 

and microscopic anisotropy Cμ = μFA2) obtained via both methods are acceptable for the 

81-measurement protocol. At sparser samplings, the improvement obtained by enforcing 

constraints becomes clear. Such improvement is evident also when looking at the bar plots 
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indicating the mean absolute deviations of the scalar maps from their ground truth values, 

which are taken to be the maps computed on the p217 protocol. The results obtained by 

employing SDP(dcm) show consistent lower deviations from the respective ground truths 

compared to those obtained via WLLS(ss). The bar plots also reveal that the coherence (Cc) 

and size variance (CMD) estimates have very large absolute deviations for unconstrained 

estimation. A further examination of the pixel values revealed that this can be attributed in 

part to a small number of voxels that yield values way outside their expected range ([0, 1]). 

This issue is remedied by the QTI+ framework.

Figs. 8 and 9 show details for the FA and μFA maps computed on all considered protocols 

by employing WLLS(ss) and SDP(dcm), respectively. Looking at the (a) panels, the benefits 

of applying constraints are already evident. Again, we stress how the maps obtained with 

SDP(dcm) appear overall smoother even though the method is performed on a voxel-by-

voxel basis without incorporating any intervoxel information. Panels (b) in these figures 

show the difference between the maps estimated with the p217 protocol, taken here as 

reference, and its subsets p81, p56, and p39. It is quite interesting to note that reducing 

the number of measurements from 56 to 39 does not drastically change the results. The 

histograms in panels (c) illustrate how reducing the number of available samples introduces 

a bias towards higher values in the anisotropy measures. We also note that constraining the 

fit strongly reduces the number of voxels presenting values outside the expected range ([0, 

1] for FA and μFA). With respect to this, applying constraints (d), (c), and (m) seems to be 

insufficient to guarantee the condition μFA ≤ 1. We found that when μFA is greater than 1 

in the results produced by SDP(dcm), the values are still very close to 1. Although one can 

be tempted to attribute this error to numerics, a more reasonable explanation is that μFA is 

formed from the estimates of Dij and ℂijkl, which are in a sense independent, and there is no 

guarantee that μFA should in fact not be greater than 1. Moreover, QTI+ only ensures some 

necessary constraints, but not all. Having μFA values strictly lower or equal to 1 could be 

added as a constraint, but from our findings this would have a very marginal effect10.

5.3. Synthetic data

Fig. 10 shows the results obtained by fitting the synthetic brain datasets with both the 

WLLS(ss) and SDP(dcm) routines. The performance of the two methods was quantified 

through the Fobenius norms of the difference between the estimated and ground truth ℂijkl
tensors, ∣ ∣ Δℂ ∣ ∣, and differences between the estimated and ground truth metrics, ΔFA, 

ΔμFA, ΔCc, counted for all voxels (≈ 84000) in the dataset.

Looking globally at the results in panels (a) and (b), there seems to be no relevant difference 

between the fitting results obtained in the data corrupted with either Gaussian or Rician 

noise. There is moreover not a marked difference between the performance of QTI and 

QTI+ on the 217-measurement protocols, with QTI+ providing slightly better results. The 

difference in performance between WLLS(ss) and SDP(dcm) is instead highlighted in the 

plots showing the results on the 56-measurement protocol. There, the distance between 

10Out of the ≈ 84000 considered voxels, only 42, 30, 14, and 21 had μFA values > 1 for the SDP(dcm) fits performed on the 217, 81, 
56, and 39 measurements datasets, respectively.
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the estimated and reference metrics is almost centered about zero for QTI+, while the 

parameter values produced with QTI exhibit a more pronounced tendency towards being 

over-estimated.

5.4. Run times

One of the appealing features of QTI is the computational speed at which the estimation 

can be performed via standard linear regression routines; it takes only a few seconds to fit 

the model to an entire dataset. This is definitely not the case for non-linear fitting routines, 

but also for the softwares currently available for semidefinite programming. As mentioned 

in the implementation section, we rely on an external package to solve the SDP problems. 

In our experience, calling this package on a voxel-by-voxel basis is inefficient, leading to 

prolonged computational times. A better approach involves performing the operations on 

a batch of voxels each time the function is called. In this case, steps 1, 3, and 4 can be 

performed by, for example, solving the problems on 50 voxels at a time. This provided 

relevant speed up when compared to performing the analysis one voxel at a time, as shown 

in Table 2. The table shows the run times for the different routines using different strategies 

on the experimental dataset (≈ 84000 voxels) with, respectively, 217 and 56 measurements. 

The clock times were recorded on a workstation featuring a 12-core Intel Core i9-7920X 

CPU. The “multi voxel” implementation concerned sending 50 voxels at a time to the SDP 

solver.

Performing the fit on a multivoxel basis is perhaps intuitive for SDP(dc), but maybe not so 

much for the (m)-check and eventual SDP(dcm) steps, given the conditional step involved 

in the process. In the worst case scenario, one would in fact have to run the (m)-check on 

all batches of voxels, and then SDP(dcm) on all those batches. Even though this would still 

be faster than doing this process voxel-by-voxel, a faster option could be to skip the check 

on the (m) condition and directly perform SDP(dcm) on a multivoxel basis. However, since 

already after SDP(dc) (and NLLS(dc)) most of the (m) violations are resolved, and since the 

(m)-check appears to be faster than SDP(dcm), we find that the fastest option is to perform 

both the (m)-check and SDP(dcm) on a multivoxel basis.

It is well-known that non-linear fitting is typically more time-consuming than linear 

regression. One aspect to be considered is that having a good starting point, provided here by 

SDP(dc), helps in speeding up the non-linear fitting of the NLLS(dc) routine. However, we 

would like to remind the reader that NLLS(dc) is not a necessary step to perform in QTI+ 

as satisfactory results can be obtained using SDP(dc) and SDP(dcm). If truly pressed with 

time, one could also rely on the results produced with SDP(dc) only, as violations of the (m) 

condition are both infrequent and not extremely influential on the estimates.

6. Discussion

Since the inception of the DTD model (De Swiet and Mitra, 1996; Jian et al., 2007), the 

challenge of obtaining the underlying DTD from the MR signal has been addressed in 

different ways. One approach is to assume a parametric distribution, which can naturally 

ensure that all tensors in the DTD are positive-nonnegative. Indeed, Jian et al. (2007) have 

assumed a mixture of Wishart distributions for the DTD and even provided the analytical 
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signal for diffusion encoding via arbitrary b-tensors; that relationship can be obtained by 

setting Ω = 0 in (16). The Wishart distribution is the multidimensional generalization of the 

gamma distribution, which has been employed to represent the distribution of diffusivities 

for diffusion in polymer solutions (Röding et al., 2012). This approach has been adopted 

by Lasič et al. (2014) for representing the distribution of diffusivities along all directions 

combined. When employed on tensor-encoded data, this approach yields visually appealing 

results for some of the parameters considered in this work (Szczepankiewicz et al., 2015; 

2016). However, the validity of the gamma distribution is not guaranteed in all voxels, and 

the consequences of not fulfilling this assumption have not been understood. Moreover, this 

method relies on an accurate estimation of the orientationally-averaged signal, which can 

be challenging especially when the number of samples is limited (Afzali et al., 2020). Most 

recently, Magdoom et al. (2021) have introduced an alternative method, which employs 

a new pulsed field gradient sequence. The DTD is taken to be a tensor-valued normal 

distribution with non-positive-definite tensors suppressed. Due to the lack of an analytical 

form of the signal for this distribution, the signal is approximated using a large number of 

samples drawn from a given normal distribution. The mean and covariance are subsequently 

estimated using a least squares optimization.

Rather than employing an assumption regarding the underlying distribution like in the works 

mentioned above, we have employed the framework in Westin et al. (2016), which allows 

the estimation of the mean and covariance tensors only. It should be noted that this is 

not meant to represent the signal in the entire “b-space,” but only its behavior at low b-

values, which are probed in typical clinical acquisitions. Here, we considered imposing three 

constraints on the estimated mean and covariance tensors. Strictly speaking, each and every 

diffusion tensor in the underlying DTD has to be positive-semidefinite. However, imposing 

such a strong condition without attempting to solve an extremely ill-posed problem that 

involves the reconstruction of the actual DTD (Jian et al., 2007; Topgaard, 2019) is likely 

to be infeasible under noisy conditions or with limited number of diffusion encodings. 

Interestingly, non-negativity of each microscopic diffusion tensor implied the (m) condition, 

which seemed to have a minor effect in our analyses. Much of the improvement is already 

obtained through imposing condition (d) together with the (c) condition, which follow from 

the nonnegativity of the covariance tensors11; these conditions are valid even when the 

distribution is over a more general space—not necessarily the space of positive semidefinite 

tensors.

Satisfactory performance obtained by imposing only the conditions (d) and (c) have 

implications also when one decides on which estimation method to use. Our findings suggest 

that the (m) condition is relevant for a small portion of the voxels. Moreover, imposing the 

(d) and (c) conditions in the linearized version of the problem already provides a substantial 

portion of the overall gain. Thus, the SDP(dc) routine can be employed with relative 

confidence, which makes the overall estimation computationally inexpensive compared 

to the full framework that includes the subsequent NLLS(dc), (m) check and SDP(dcm) 

methods.

11Here, we remark that the diffusion tensor is the covariance matrix of net displacements.
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Our work could be extended to include higher order terms in the expansion in Eq. 1. 

However, the next order term introduces 56 new unknowns (Westin et al., 2016), which 

demands longer acquisition protocols, which make them challenging for clinical studies.

Another matter that we did not address here concerns the limitations of the DTD model. 

The latter assumes that diffusion is described fully by a diffusion tensor and the effect of 

the waveforms on the signal are captured by the b-matrix. As discussed elsewhere (Özarslan 

et al., 2015; Yolcu et al., 2016), this would be valid for large compartments or at very 

short measurement times. To address this problem, one can consider the distribution of 

confinement tensors (Afzali et al., 2015; Yolcu et al., 2016; Zucchelli et al., 2016), which are 

shown to have the correct time dependence in small compartments making it the effective 

model for many scenarios of interest (Boito et al., 2020; Liu and Özarslan, 2019; Özarslan et 

al., 2017). One manifestation of this problem concerns acquisitions with isotropic b-matrices 

(Avram et al., 2018; Mori and van Zijl, 1995; Wong et al., 1995). In this case, the DTD 

model predicts the same signal for all measurements at each b-value, thus suppressing 

the potentially relevant information due to the non-Gaussianity of the diffusion process 

(Jespersen et al., 2019; de Swiet and Mitra, 1996). Similarly, the DTD model ignores the 

higher order cumulants of the diffusion process within each compartment; this challenge has 

been studied in recent works (Henriques et al., 2020; Paulsen et al., 2015). We note that the 

estimation methods introduced here may be instrumental in developing constrained fitting 

techniques for models aiming to overcome the limitations of the DTD picture.

The protocols obtained by downsampling a long protocol were not optimized as the 

waveforms were selected from a preexisting set. This poses an additional limitation 

for the downsampled protocols. However, our constrained estimation framework yielded 

acceptable image quality even for the shortest protocol comprising only 39 acquisitions. 

Thus, QTI+ could be more robust to imperfections in the experimental design as well; such 

imperfections are encountered, for example, due to gradient nonlinearities. More generally, 

a typical data set is likely to exhibit various artifacts such as Gibbs-ringing, subject motion, 

and frequency drift. In this case, unconstrained fitting will likely yield violations of the 

mathematically-necessary conditions. Employing a constrained estimation framework like 

QTI+ is thus expected to help alleviate the effects of artifacts. Similarly, studies have shown 

that identifying and discarding outliers is an effective approach for dealing with some 

of the confounding factors (Chang et al., 2012; Maximov et al., 2011; Tax et al., 2015; 

Zwiers, 2010). We would like to stress that we do not envision QTI+ to be a replacement 

for techniques developed to address such effects. Rather it could be part of a series of 

algorithms (Maximov et al., 2019) that collectively provide accurate maps of the desired 

parameters.

In recent years, the sensitivity of QTI-accessible quantities like μFA on various cerebral 

diseases including schizophrenia (Westin et al., 2016), brain tumors (Szczepankiewicz et 

al., 2016), epilepsy (Lampinen et al., 2020), multiple sclerosis (Andersen et al., 2020), 

and Parkinson’s disease (Kamiya et al., 2020) have been investigated. Having reliable 

estimates of those quantities is of paramount importance for such studies, which could 

benefit particularly from the robustness of QTI+ to SNR. In fact, in the brain the signal 

without diffusion weighting does have some (typically T2-weighted) contrast, which may 
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be amplified in the presence of pathologies. This contrast will lead to a spatially-dependent 

SNR, which ultimately affects the estimated parameters. Hardware-related effects such 

as spatially-varying sensitivity of the receiver coil are expected to contribute to this 

challenge. Our findings indicate that computing the sought after parameters via QTI+ could 

substantially reduce the SNR dependence of the findings, improving the accuracy and 

specificity of the estimated parameters.

Another important challenge in the translation of advanced imaging techniques into the 

clinical realm involves the limitations concerning the acquisition length. Recent works 

have attempted to address this issue by employing parsimonious data acquisition schemes 

(Nilsson et al., 2020). Our study demonstrates that sophisticated post-processing methods 

could be employed to achieve the same goal.

From a signal processing point of view, it is quite intriguing that the constrained 

estimation framework produces smoother maps and improved resilience to noise although 

the estimation is performed for each voxel independently, i.e., without employing any 

information from the adjacent voxels. Thus, the constrained methods do not yield a loss 

of image resolution, which is typically the case for routine smoothing methods. Moreover, 

the constraints have a very solid foundation pertaining to the mathematical properties of 

the estimated quantities. Consequently, the constrained estimation schemes like the ones we 

introduced here, do not involve any parameters that are to be decided in an ad hoc manner.

7. Conclusion

In conclusion, we introduced QTI+, a new estimation framework for q-space trajectory 

imaging that respects three positivity conditions arising from the mathematical properties 

of the quantities estimated. We demonstrated that QTI+ leads to notable improvements 

in the accuracy and precision of the measured parameters. Although data smoothing 

is not employed, our framework is exceptionally robust to SNR, which has important 

ramifications for the interpretability of the derived parameters. The benefits of QTI+ 

are more conspicuous when shorter acquisition protocols with fewer number of diffusion-

weighted volumes are available. Thus, our technique is expected to improve the feasibility 

as well as reliability, hence the diagnostic utility, of diffusion MRI measurements with 

generalized diffusion encoding.
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Appendix A.: Convention for the Voigt notation

It is customary to use the Voigt notation so that the matrix

Aij =
x1 x4 x5
x4 x2 x6
x5 x6 x3

is represented by the vector

vi =

a1
a2
a3
a4
a5
a6

=

x1
x2
x3
2x4
2x5
2x6

.

Here, Aij = ∑β = 1
6 aβ eij

(β), i.e., the coordinates a1, a2, … , a6 express the matrix Aij in the 

(orthonormal) basis {eij
(1), eij

(2), …, eij
(6)}. With the representation above, these basis matrices 

are

1 0 0
0 0 0
0 0 0

,
0 0 0
0 1 0
0 0 0

,
0 0 0
0 0 0
0 0 1

,

0 1
2 0

1
2 0 0

0 0 0

,

0 0 1
2

0 0 0
1
2 0 0

,

0 0 0

0 0 1
2

0 1
2 0

.

Appendix B.: Independence of (d), (c), and (m)

Here, we take independence to mean that there are examples of tensors Dij, ℂijkℓ, Mijkℓ, 

where two given constraints are satisfied but not the third.12 To see that the conditions (d), 

(c), and (m) are independent in the above sense, we give the following examples.

(d) & (c) ⇏ (m): Let ⟨Dij⟩ = 0ij and define Eij through Eij =
0 1 0
1 0 0
0 0 0

. Take ℂijkℓ = Eij ⊗ Ekℓ, 

which implies that also Mijkℓ = Eij ⊗ Ekℓ. By construction, ℂijkℓ is positive semi-definite 

as a symmetric mapping V → V, but the choice vi = (1, 1, 0)⊤, ui = (1, −1, 0)⊤ gives an 

example where Mijkℓuiujvkvℓ = −4 < 0.

12Not all possible constraints are independent in this sense. For instance, a possible constraint is that M viewed as a symmetric 
mapping V → V is positive semi-definite. If (d) and (c) are satisfied, then this is automatically true.
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(d) & (m) ⇏ (c): Again, take ⟨Dij⟩ = 0ij and define ℂ by

ℂijkℓ =
1 0 0
0 1 0
0 0 1

⊗
1 0 0
0 1 0
0 0 1

−
0 1 0
1 0 0
0 0 0

⊗
0 1 0
1 0 0
0 0 0

Then (c) is violated but on the other hand, for any vector vi = (x, y, z)⊤

Mij’ = Mijkℓvkvℓ =
x2 + y2 + z2 −2xy 0

−2xy x2 + y2 + z2 0
0 0 x2 + y2 + z2

.

This matrix has eigenvalues x2 + y2 + z2, (x − y)2 + z2 and (x + y)2 + z2, which means that 

Mij’  is positive semi-definite for any vector vi. Hence (m) is satisfied.

(c) & (m) ⇏ (d): This is immediate since if Mijkℓ is constructed as 

Mijkℓ = ℂijkℓ + 〈Dij〉 ⊗ 〈Dkℓ〉, then Mijkℓ is unaffected by the replacement ⟨Dij⟩ → −⟨Dij⟩, 

and by choosing an example with ⟨Dij⟩ ≠ 0, both ⟨Dij⟩ and −⟨Dij⟩ cannot be positive 

semi-definite.

Appendix C.: Heteroscedasticity compensation of the log-linearized 

problem.

In this appendix we motivate, very briefly the weighting of the linearized problem (4), i.e., 

the insertion of the weights Sn
2. With

Δn = S0e−Bij
(n)Dij + 1

2Bij
(n)Bkℓ

(n)Cijkℓ − Sn, n = 1, 2, …, N

a solution to (2) minimizes ∑n = 1
N ∣ Δn ∣2. By adding Sn to both sides and taking logarithms, 

we get

ln(Sn + Δn) = ln(S0) − Bij
(n)Dij + 1

2Bij
(n)Bkℓ

(n)Cijkℓ .

If Δn is small compared to Sn, we get ln(Sn + Δn) = ln(Sn) + ln(1 + Δn
Sn

) ≈ ln(Sn) + Δn
Sn

. As 

a result, a straightforward least squares implementation will (approximately) minimize 

∑n = 1
N ∣ Δn

Sn
∣2. This is compensated for by multiplying the linearized equation for the nth 

measurement with the corresponding signal values Sn.
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Appendix D.: Equivalence of QP and SDP for the unconstrained linearized 

equation

Here we show that (7) is equivalent to (9), namely, we first see that to find an x which 

minimizes x⊤Qx + c⊤x, where Q ≻ 0, is equivalent to solving the problem

argmin
t, x

t, subject to t − xTQx − cTx ≥ 0

because minimizing t in the inequality t ≥ x⊤Qx + c⊤x leads us to find the minimum 

value of x⊤Qx + c⊤x. Next, suppose P is a square matrix with P⊤P = Q. Then, 

(
I Px

xTPT t − cTx
) ≻ 0 is equivalent to the statement

∀v, a, (vT a)
I Px

xTPT t − cTx
v
a ≥ 0 .

But the expression on the left hand side can be written (using P⊤P = Q) as

(v + aPx)T(v + aPx) + a2(t − xTQx − cTx) . (D.1)

But if this is nonnegative for all v and a, then (by choosing v = −aPx) so is t − x⊤Qx − c⊤x. 

Conversely, if t − x⊤Qx − c⊤x ≥ 0. then so is the expression in (D.1).

Appendix E.: Checking condition (m) using SDP

Here, we describe our scheme for checking condition (m), i.e., For all vi, ui, 

Mijklvivjukul ≥ 0 ?

By putting vi = (x, y, z)⊤ and ui = (r, s, t)⊤, the contraction Mijklvivjukul becomes a fourth 

order homogeneous polynomial p in the six variables x, y, z, r, s, t. Condition (m) can then 

be formulated as

Is p(x, y, z, r, s, t) ≥ 0 for all x, y, z, r, s, t ? (E.1)

Because of the symmetries of Mijkl and the form of the contraction with vi and ui, it is 

possible to represent p in the following way. We start by forming the vector V = (xr, xs, xt, 
yr, ys, yt, zr, zs, zt)⊤. Then, for any symmetric 9 × 9 matrix M, it is clear that also V⊤MV 
is a fourth order homogeneous polynomial in x, y, z, r, s, t, and it is not difficult to see that 

any M can be represented by such a matrix M. In fact, this representation is not unique, and 

by solving the equation V⊤MV = 0, one finds the solution space to be a nine-dimensional 

subspace (in the space of symmetric 9 × 9 matrices):
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V T

0 0 0 0 l1 l2 0 l4 l6
0 0 0 −l1 0 l3 −l4 0 l7
0 0 0 −l2 −l3 0 −l6 −l7 0
0 −l1 −l2 0 0 0 0 l5 l8
l1 0 −l3 0 0 0 −l5 0 l9
l2 l3 0 0 0 0 −l8 −l9 0
0 −l4 −l6 0 −l5 −l8 0 0 0
l4 0 −l7 l5 0 −l9 0 0 0
l6 l7 0 l8 l9 0 0 0 0

V = 0, l1, …, l9 ∈ R .

We indicate this freedom by writing

p(x, y, z, r, s, t) = V TM(ℓ )V

where ℓ = (ℓ1, … , ℓ9). Now if, for some value of the parameter vector ℓ, the matrix M(ℓ) is 

positive semi-definite, then it is clear that (E.1) (and hence also (m)) holds. This is exactly 

the feasibility problem (14). By diagonalizing M(ℓ) (if it is nonnegative) one sees that p is 

expressed as a sum of squared (SoS) polynomials, i.e.,

p(x, y, z, r, s, t) = ∑
i = 1

9
αipi2(x, y, z, r, s, t)

where {αi}i = 1
9  are the (non-negative) eigenvalues of M(ℓ) and each pi is a linear combination 

of the entries of the vector V. This is thus an example of the rich theory of SoS polynomials 

(Berg et al., 1976; Lasserre, 2007). We should remark that it is not strictly necessary that 

M(ℓ) is positive semi-definite for (E.1) to hold, which means that the condition M(ℓ) ≽ 0 

is slightly stronger, as there are non-negative polynomials which are not SoS. In practice, 

however, this drawback is compensated for by the computational convenience offered by 

SDP. Also, there are results which show that the set of SoS polynomials are, in a certain 

sense(Lasserre, 2007), dense in the set of non-negative polynomials.

Appendix F.: Imposing condition (m) using SDP

By choosing the independent variables x1, x2, … , x28 to encode for S0, Dij and ℂijkl as 

explained in Section 3, the tensor Mijkl = ℂijkl + Dij ⊗ Dkl becomes linear in x8, … , x28 but 

quadratic in x2, … , x7. For this reason, we have adopted the strategy that if (m) is violated 

(in an estimate where (d) and (c) are imposed), we fix the estimates of x1, … , x7, (i.e., 

ln(S0) and Dij) and re-estimate x8, … , x28 using SDP while imposing both (c) and (m).

We shall return to the (un-constricted) scenario formulated as a quadratic programming 

problem. We seek
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argmin
x

xTQx + cTx (F.1)

where x = (x1, … , x28)⊤ and Q is a symmetric matrix of size 28 × 28. Next, we decompose 

x = (xT, xT)T, where x = (x1, …, x7)T is fixed, while x = (x8, …, x28)T contains our remaining 

free parameters. To match this, we decompose Q and c into block matrices in the following 

fashion:

Q =
Q11 Q12
Q21 Q22

, and c =
c1
c2

where the sizes of Q11, Q12, Q21, Q22 are 7 × 7, 7 × 21, 21 × 7, and 21 × 21, respectively, 

and c1, c2 are vectors with 7 and 21 elements. Then x⊤Qx + c⊤x becomes

(xT, xT)
Q11 Q12
Q21 Q22

x
x + (c1

T c2
T) x

x

which simplifies to

xTQx + cTx + c0 (F.2)

where

Q = Q22
cT = 2xQ12 + c2

T and
c0 = xTQ11x + c1

Tx .

With P such that PTP = Q (and remembering that c0 is just a constant that does not affect the 

minimizing argument x), (F.2) is if the form which admits a SDP formulation. Disregarding 

c0, this is found in the upper left blocks of the matrix in (15). Since all the variables x8, 

… , x28 are still free, and since they form Cαβ, the positivity condition (c) remains the 

same: Cαβ ≽ 0. Finally, with Dij fixed, and since Mijkℓ = ℂijkℓ + Dij ⊗ Dkℓ, all entries of the 

components Mijkℓ will be first order polynomials in x8, … , x28 and hence can be cast into a 

9 × 9 symmetric matrix M as described in Appendix E. By adding the freedom in terms of 

the parameters ℓ1, ℓ2, … , ℓ9 as also described in the previous section, we get the matrix M(ℓ), 
(which could also be written M(ℓ , x)) and by this formulation, both conditions (c) and (m) 

will be imposed simultaneously in the formulation (15).

Appendix G.: Scalar measures in the rank deficient case

As mentioned in Section 3, protocols that use measurements of only type (i) and (iii), 

i.e., LTE and STE, will produce matrices A, which are rank deficient. In this case, the 

(maximum) rank will be 23 instead of 28, and as a result, there is a (five parameter worth) 
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family of covariance tensors ℂijkℓ compatible with the (fit of the) measurements. Here, we 

will describe this freedom and also indicate why the scalars measures FA, MD, CM, Cμ, 

μFA, CMD, and Cc are unaffected by this non-uniqueness in the estimates of ℂijkℓ.

First we note that for measurements of type (i), i.e., of type LTE, such a measurement picks 

up only the content of the completely symmetric part ℂ(ijkℓ) of ℂijkℓ. Namely, since any 

measurement tensor Bij of type (i) is symmetric, positive semi-definite and has rank one, 

we can write Bij = vivj for some vector vi. It is then clear that CijkℓBijBkl = Cijkℓvivjvkvℓ 
= C(ijkℓ)vivjvkvℓ since vivjvkvℓ itself is completely symmetric. As a result, the difference 

Kijkℓ = ℂijkℓ − ℂ(ijkℓ) satisfies Kijkℓvivjvkvℓ = 0 for all vectors vi. Moreover, since ℂijkℓ has 

21 independent components while ℂ(ijkℓ) has 15, this means that Kijkℓ has six degrees of 

freedom.

Next, we express the tensor Kijkℓ as a 6 × 6 matrix using the Voigt notation, yielding

Kαβ =

0 a + d − w w − d 0 0 e
a + d − w 0 w − a 0 c 0

w − d w − a 0 b 0 0

0 0 b −a − d + w − e
2 − c

2

0 c 0 − e
2 d − w − b

2

e 0 0 − c
2 − b

2 a − w

,

where a, b, c, d, e, and w are the six free parameters. Because Kαβ is symmetric, the 

corresponding fourth order tensor Kijkℓ has the correct symmetries. Moreover, for any 

vector vi = (x, y, z)⊤, the tensor vivjT can be expressed as V α = x2, y2, z2, 2xy, 2xz, 2yz T

through the Voigt notation. Using this, it can be verified that KαβVαVβ = 0 and hence 

Kijkℓvivjvkvℓ = 0 for all vectors vi.

To proceed, we now refer to (Westin et al., 2016), in which the definitions of the scalars 

can be found. The key observation is then that all the scalar measures involves ℂijkℓ (or, 

equivalently, Cαβ) in such a way that inner products are taken with linear combinations of 

the fourth order tensors Eijkℓ
iso  and Eijkℓ

bulk, whose 6 × 6 representations are given by
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Eαβ
bulk = 1

9

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

and

Eαβ
iso = 1

3

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

,

where in particular Ebulk is related to measurements of type (iii), i.e., STE. The contributions 

from Kijkℓ to such inner products are

KijkℓEijkℓ
bulk = 2w

9 ,

KijkℓEijkℓ
iso = − w

3 = − 3
2KijkℓEijkℓ

bulk .

This implies that the set of scalar measures considered here are sensitive to Kijkℓ only 

through w, which can be obtained via an STE measurement in addition to a proper set of 

LTE acquisitions that enable the estimation of ℂ(ijkℓ).

Appendix H.: The mean and covariance of the Wishart distribution

Deriving the first two moments of the non-central Wishart distribution directly from the 

probability distribution function is a bit involved. However, using (16), we can find these by 

matching this expression to our model (1). In essence, we want to find Dij and ℂijkℓ so that

∣ I + ΣB ∣−p exp( − Tr[B(I + ΣB)−1Ω]) = e−BijDij + 1
2BijBklCijkℓ + O((Bij)3) .

By taking logarithms and introducing a scale parameter x, we demand that for each fixed 

(symmetric, positive semi-definite) Bij, it holds that

−p ln ∣ I + xΣB ∣ − Tr[xB(I + xΣB)−1Ω]
= − xBijDij + x2

2 BijBklCijkℓ + O(x3) . (H.1)

It follows from the definition of the (3 × 3) determinant that

∣ I + xΣB ∣ = 1 + xTr[ΣB] + x2
2 (Tr[ΣB]2 − Tr[(ΣB)2])

+ O(x3)
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and

ln ∣ I + xΣB ∣ = xTr[ΣB] − x2
2 Tr[(ΣB)2] + O(x3)

so that

−p ln ∣ I + xΣB ∣ = − pxΣijBji + px2

2 ΣijBjkΣkℓBℓi

+ O(x3) .
(H.2)

Next, since (I + xΣB)−1 = I − xΣB + O(x2),

−Tr[xB(I + xΣB)−1Ω] = − xBik(Ikn − xΣkmBmn)Ωni + O(x2) . (H.3)

Inserting (H.2) and (H.3) into (H.1) and identifying terms w.r.t. x, we find that, for each 

symmetric Bij,

(Dij − pΣij − Ωij)Bij = 0 (H.4)

(Cijkℓ − pΣiℓΣjk − 2ΣjkΩℓi)BijBkℓ = 0 . (H.5)

Note that the first equation does not imply that Dij = pΣij + Ωij unless we take the 

symmetry of Dij into account since AijBij = 0 for any anti-symmetric matrix Aij 

(Bij being symmetric). On the other hand, with Dij symmetric, it is necessary that 

Dij = pΣij + Ωij, since if for a symmetric matrix Aij, AijBij = 0 for all symmetric 

positive definite matrices Bij, then Aij = 0. For (H.5), the terms ΣiℓΣjk and ΣjkΩℓi 
do not have the symmetries of ℂijkℓ. On the other hand, using the symmetry 

of Bij, one can check that, for all Bij, ΣiℓΣjkBijBkℓ = 1
2(ΣiℓΣjk + ΣikΣjℓ)BijBkℓ and 

2ΣjkΩℓiBijBkℓ = 1
2(ΣjkΩiℓ + ΣiℓΩjk + ΣjℓΩik + ΣikΩjℓ)BijBkℓ, so that we can replace (H.5) 

by

AijkℓBijBkℓ = 0

for all symmetric positive semidefinite matrices Bij, where 

Aijkℓ = Cijkℓ − p
2 (ΣiℓΣjk + ΣikΣjℓ) = 1

2(ΣjkΩiℓ + ΣiℓΩjk + ΣjℓΩik + ΣikΩjℓ) has the same 

symmetries as ℂijkℓ. But this forces Aijkl to be zero since we know (c.f. the discussion in 

(3.9)) that with general measurement tensors Bij, we can produce tensors with components 

BijBkl, which together determine Aijkl above. This proves (18).
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Fig. 1. 
Joint distribution of MD and FA values of the diffusion tensors in the simulated DTDs. Left: 

DTD with anisotropic mean. Right: DTD with isotropic mean.
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Fig. 2. 
The four protocols considered in this study for the analysis of the experimental data. From 

left to right: p217, p81, p56, and p39 refer to the protocols having 217, 81, 56, and 39 

volumes, respectively. The colored dots show the initial direction of each diffusion gradient 

waveform. Red, green, blue, and yellow dots indicate such directions for samples at b-values 

of 0.1, 0.7, 1.4, and 2.0 ms/μm2, respectively.
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Fig. 3. 
Simulations for isotropic Dij, and Rician distributed noisy signals. Frobenius norms 

(indicated by ∥ · ∥) and the estimated measures under varying noise levels for the estimation 

methods considered. ℂ stands for ℂijkl while D stands for Dij. (a) protocol p217. (b) protocol 

p56s.
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Fig. 4. 
Simulations for anisotropic Dij, and Rician distributed noisy signals. Frobenius norms 

(indicated by ∥ · ∥) and the estimated measures under varying noise levels for the estimation 

methods considered. ℂ stands for ℂijkl while D stands for Dij. (a) protocol p217. (b) protocol 

p56s.
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Fig. 5. 
The violations of the three constraints are color encoded and depicted on brain images. 

Red, green, and blue indicate violation of conditions (c), (m), and (d) respectively. The last 

column indicates the constraints together where yellow indicates violations of (c) and (m), 

magenta (c) and (d), and cyan (d) and (m). All three conditions are violated in white pixels. 

(a) protocol p217. (b) protocol p56.
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Fig. 6. 
Maps estimated through various methods from data involving 56 volumes. Red voxels on 

the μFA maps indicate imaginary values. Despite the voxel-by-voxel analysis, the QTI+ 

maps (last three rows) are visibly smoother than the QTI maps employing weighted linear 

estimations (first two rows).
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Fig. 7. 
Scalar maps obtained by employing WLLS(ss) and SDP(dcm) estimation schemes on p217, 

p81, p56, and p39 protocols. Red pixels on the μF A maps indicate complex values. The bars 

on the last rows of panels (a) and (b) show the mean absolute deviation of the respective 

parameters due to downsampling the p217 protocol. Here, S0 has arbitrary units while MD is 

expressed in μm2/ms. (a) WLLS(ss), (b) SDP(dcm).
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Fig. 8. 
(a) FA maps obtained by fitting the QTI model with WLLS(ss) and SDP(dcm) on the four 

protocols. The fits performed with both methods on the p217 protocol are used as reference. 

(b) Difference between the reference FA maps and those estimated with both methods on the 

three downsampled protocols. (c) Histograms showing the distribution of FA values for the 

three protocols.
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Fig. 9. 
(a) μFA maps obtained by fitting the QTI model with WLLS(ss) and SDP(dcm) on the four 

protocols. The fits performed with both methods on the p217 protocol are used as reference. 

(b) Difference between the reference μFA maps and those estimated with both methods on 

the three downsampled protocols. (c) Histograms showing the distribution of μFA values for 

the three protocols.
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Fig. 10. 
Comparison of QTI and QTI+ on synthetic data. Frobenius norm of the difference between 

the ground truth and estimated ℂijkl (indicated by ∣ ∣ Δℂ ∣ ∣) and differences between the 

estimated and ground truth metrics. Positive and negative values in the difference plots 

indicate parameters over- and under-estimated, respectively. (a) Gaussian noise. (b) Rician 

noise.
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Table 1

The five protocols considered in this study. The protocol p217 contains thirteen non-diffusion weighted images 

while the others have one such image.

Protocol Encoding b-values [ms/m2] Samples per shell

p217 LTE 0.1, 0.7, 1.4, 2.0 10,10,16,46

p217 PTE 0.1, 0.7, 1.4, 2.0 10,10,16,46

p217 STE 0.1, 0.7, 1.4, 2.0 10,10,10,10

p81 LTE 0.1, 0.7, 1.4, 2.0 6,6,10,21

p81 STE 0.1, 0.7, 1.4, 2.0 6,6,10,15

p56 LTE 0.1, 1.4, 2.0 4,10,15

p56 STE 0.1, 1.4, 2.0 6,10,10

p56s LTE 0.1, 1.0, 2.0 4,10,15

p56s STE 0.1, 1.0, 2.0 6,10,10

p39 LTE 0.1, 1.4, 2.0 4,10,15

p39 STE 0.1, 1.4, 2.0 3,3,3
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Table 2

Run times for the protocols with 217 and 56 volumes.

Protocol Fitting Routine Run Times

p217 SDP(dc), single voxel 43 min

p217 SDP(dc), multi voxel 6 min

p217 NLLS(dc), single voxel 11 min

p217 m-check + SDP(dcm), single voxel 37 min

p217 m-check + SDP(dcm), multi voxel 5 min

p217 SDP(dcm), multi voxel 14 min

p217 WLLS(ss) 4 s

p217 WLLS 2 s

p56 SDP(dc), single voxel 50 min

p56 SDP(dc), multi voxel 10 min

p56 NLLS(dc), single voxel 15 min

p56 m-check + SDP(dcm), single voxel 38 min

p56 m-check + SDP(dcm), multi voxel 10 min

p56 SDP(dcm), multi voxel 14 min

p56 WLLS(ss) 2 s

p56 WLLS 5 s
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