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Flaviviruses are zoonotic pathogens transmitted by the bite of

infected mosquitos and ticks and represent a constant burden

to human health. Here we review recent literature aimed at

uncovering how flaviviruses interact with the cells that they

infect. A better understanding of these interactions may

ultimately lead to novel therapeutic targets. We highlight

several studies that employed low-biased methods to discover

new protein–protein, protein–RNA, and genetic interactions,

and spotlight recent work characterizing the host protein,

TMEM41B, which has been shown to be critical for infection by

diverse flaviviruses and coronaviruses.
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Introduction
Flaviviruses and their worldwide importance

Flaviviruses are a family of positive-strand RNA viruses

that includes important human pathogens such as Zika

(ZIKV), yellow fever (YFV), dengue (DENV), West Nile

(WNV), Japanese encephalitis (JEV), Powassan (POWV)

and tick-borne encephalitis (TBEV) viruses. Together,

these viruses contribute to staggering numbers of human

infections and deaths each year [1]. Flaviviruses are

usually transmitted through arthropod vectors and dis-

semination is therefore influenced by climate and geog-

raphy. Increased human population densities, human

movement, and the expanding range for ticks and mos-

quitoes due to rising global temperatures associated with

climate change have contributed to increased numbers of

epidemics in new geographical locations [2–6].
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Successful vaccines have been developed for the preven-

tion of YFV, JEV, and TBEV infection, but none are

available for other pathogenic flaviviruses. Moreover,

there are currently no approved drugs available for the

specific treatment of any flaviviral disease; however, a

promising small molecule pan-DENV candidate was

recently described [7�]. An alternative approach to devel-

oping anti-flaviviral therapies is to disrupt critical inter-

actions that occur between host factors and viral proteins

or RNAs.

Host factors can be cellular proteins, RNAs, lipids, sugars,

or small molecules, and they can be discovered by direct

or indirect physical interactions with viral RNA or pro-

teins or through genetic interactions by perturbing the

host. As existing techniques improve and new technolo-

gies are developed, a steady stream of new virus–host

interactions continues to be uncovered. In this short

review, we highlight some of the papers published in

the past two to three years that used low-biased methods

to identify flavivirus–host interactions. We then spotlight

one host factor, transmembrane protein 41b

(TMEM41B), where a variety of recent studies collec-

tively shed light on how this protein, which has a reported

role in autophagy, may facilitate the formation of flavivi-

rus RNA replication organelles (ROs).

Low-biased approaches to identify flavivirus
host factors
Protein–protein interactions

Affinity purification-mass spectrometry (AP-MS) is one

low-biased approach to identify virus–host protein–pro-

tein interactions. This often entails engineering affinity

purification tags on viral protein(s) of interest, ideally, in

the context of the viral genome. This is challenging for

flaviviruses since all viral proteins are produced as a single

long polypeptide chain, and affinity purification tags can

interfere with polyprotein processing by virus and host

proteases and protein function. Consequently, most

flavivirus AP-MS studies rely on overexpression of indi-

vidual affinity-tagged viral proteins (which can affect

localization and protein–protein interactions), and results

can vary depending on the design of expression constructs

and purification conditions. Many flavivirus proteins are

also intimately associated with membranes, which poses

additional challenges for retaining protein–protein inter-

actions during sample preparation. Despite these caveats,

researchers have employed this strategy to identify bona

fide flavivirus host factors [8,9,10�,11,12].
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A recent review describes several flavivirus host factors

and pathways identified in large-scale AP-MS screens

[13�]. Here we highlight select host factors identified

in recent screens performed in human cells with known

roles in autophagy. Subsequently, we review several

studies performed in mosquito and tick cells. Among

386 ZIKV interactors identified by Scaturro et al. in

human SK-N-BE2 cells, TMEM41B was found to inter-

act specifically with ZIKV NS4B, a viral transmembrane

protein involved in forming ROs [10�]. TMEM41B has

since been shown to be important for early stages of

autophagy [14,15�,16,17]. Further, Scaturro et al. also

performed a global phospho-proteomics analysis in unin-

fected and ZIKV-infected cells and uncovered differen-

tial regulation of several signaling pathways including

downregulation of AKT-mTOR signaling in ZIKV-

infected cells and increased phosphorylation of DAP, a

negative regulator of autophagy. This is consistent with

an upregulation of autophagy previously observed in

ZIKV-infected cells [18]. In addition to these observa-

tions, Shah et al. identified an interaction between DENV

NS4B and p62/SQSTM1 [11]. SQSTM1 is also involved

in autophagy and was previously shown to be functionally

relevant for flavivirus infection [19,20]. Additional work is

required to determine whether autophagy itself is impor-

tant for flavivirus infection or whether proteins involved

in autophagy are hijacked simply to remodel membranes

and establish ROs [21�,22].

Since flaviviruses persist in arthropod vectors it is also

important to understand how host factor interactions

overlap or differ between vector and host species. This

information could reveal essential interactions shared

across diverse hosts and/or cellular factors that can be

targeted in vector species to reduce virus dissemination.

While progress has been made [23,24], genome annota-

tions for tick species are still incomplete making

MS-based methods of host factor discovery difficult.

However, Lemasson et al. [25] recently reported a yeast

two-hybrid (Y2H)-based screen to identify protein–pro-

tein interactions of TBEV and louping ill virus (LIV)

proteins in tick cells. Here, all TBEV and LIV proteins

were screened against a cDNA library generated from

Ixodes ricinus-derived cell lines. The authors identified

interactions with multiple proteins implicated in signal

transduction, protein degradation, and cytoskeletal func-

tion. Interestingly, the viral NS5 and prM proteins

appeared to interact with several tumor necrosis factor

(TNF) receptor-associated factor (TRAF) proteins,

which may facilitate viral persistence in ticks and promote

viral transmission to mammalian hosts.

For the mosquito vector, Shah et al. [11] also reported a

DENV interactome using Aag2 cells, and Marin-Lopez

et al. [26] performed MS on purified DENV particles

incubated with salivary glands extracted from Aedes aegypti
mosquitoes. The authors of the latter study identified
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45 salivary gland proteins that potentially interact with

DENV virions. Two proteins (AAEL006582 and

AAEL004559) were further evaluated in vitro and in vivo
and found to regulate viral burden. AAEL006582 is a

calcium transporter ATPase protein that may play a role

in the secretory pathway, and AAEL004559 belongs to

the synaptosomal-associated protein (SNAP) family,

which is implicated in endocytic and exocytic trafficking,

vesicle fusion, and autophagy. These studies and others

[27] have become increasingly feasible as Aedes aegypti
genome annotations continue to improve [28].

Protein–RNA interactions

The �11 kb positive-sense single-stranded genomic

RNA found in virions serves as a messenger RNA which

gives rise to all flavivirus proteins and alone is sufficient to

initiate infection. Once sufficient viral proteins are pro-

duced and ROs are formed, this same RNA molecule

transitions to become the template for minus-strand RNA

synthesis, which is the template for making more plus

strands that yield more viral proteins, and ultimately, new

virus particles.

Several groups have taken a low-biased RNA-centric

approach to identify host proteins that interact directly

or indirectly with flavivirus RNA. In 2016 two groups

utilized UV light to covalently crosslink DENV RNA to

proteins, followed by denaturation and DENV RNA

capture using antisense oligos [29,30]. More recently, a

similar approach by Ooi et al. named ChIRP-MS (com-

prehensive identification of RNA-binding proteins by

mass spectrometry) was employed to capture proteins

associated with ZIKV and DENV RNA [31��]. A major

difference between this method and the previous reports

is the use of formaldehyde chemical crosslinking rather

than UV-crosslinking. While UV-crosslinking is specific

for direct protein–RNA interactions, formaldehyde cross-

linking forms covalent protein–RNA and protein–protein

crosslinks facilitating the recovery of larger complexes.

This may preserve information about the context in

which protein–RNA interactions occur. In comparison

to the UV-crosslinking studies which identified 12 and

93 protein interactors, respectively [29,30], the ChIRP-

MS method identified 494 proteins that the authors

categorized as high confidence interactors. Although

the list is large, it is encouraging that 75% of the hits

have known or predicted RNA binding domains and

proteins that localize to the ER, where the viral RNA

is replicated, translated, and packaged into new virions.

To prioritize candidates for further characterization, Ooi

et al., integrated their list of ChIRP-MS host factors with

previously published genome-wide knockout screen data

sets along with their results from additional screens [31��].
This analysis highlighted the overlap between known

host factor complexes such as the OST complex, and

identified Vigilin (aka, high-density lipoprotein-binding
www.sciencedirect.com
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protein; HDLBP) and RRBP1 (ribosome binding protein

1) as two host factors required for flavivirus infection.

While the mechanisms await further elucidation, the

studies described in the paper indicate that RRBP1

and Vigilin promote the translation, replication, and sta-

bility of flavivirus RNA.

The studies described above focused on the replication

stage of infection. In future studies, it may also be

interesting to interrogate the earliest protein interactions

of the incoming viral RNA using alternative crosslinking

methods such as the recently described VIR-CLASP

(viral cross-linking and solid-phase purification) method

used to identify host factors that associate with the pre-

replicated chikungunya virus genome [32].

Single-cell RNA-seq

Correlating gene expression with virus infection is

another powerful, low-biased approach to gaining insights

into virus–host interactions. In recent work by Zanini et al.
[33��], the authors performed single-cell RNA-seq on

DENV-infected and ZIKV-infected cells, then capital-

ized on the high degree of heterogeneity in gene

expression and virus replication naturally present in cell

populations to identify candidate proviral and antiviral

genes. Their approach, which they termed viscRNA-Seq

(virus-inclusive single cell RNA-Seq), entails a modified

library preparation that includes virus-specific oligos to

capture viral RNAs in addition to oligo-dT to capture

polyadenylated cellular mRNAs. In doing so, the authors

identified cells with a wide range of viral RNA abun-

dance. This information was used to draw a correlation or

anti-correlation with cellular mRNA abundance. The

prediction was that genes whose abundance correlated

with viral RNA may have a proviral role, whereas

genes whose abundance was anti-correlated may have

an antiviral role.

Several genes whose mRNA abundance correlated with

viral RNA were previously identified in genome-wide

CRISPR KO screens as proviral host factors, thereby

providing confidence in the approach [19,34]. The

authors then used siRNA knockdown to demonstrate

that other potentially pro-DENV factors including com-

ponents of the ER translocon (RPL31 and TRAM1) and

proteins involved in membrane trafficking (TMED2,

COPE, HSPA5, and DDIT3) were indeed important

for virus infection. Some of these host factors were also

found to increase viral infection when overexpressed as

cDNAs, indicating that their abundance may be rate-

limiting. Similar experiments were performed for poten-

tial anti-viral host factors and the authors found that

knocking down ID2 and CTTNB1 (B-catenin) increased

DENV infection indicating that these genes may indeed

have an antiviral role. Interestingly, the authors also

identified several genes that displayed a more compli-

cated relationship with virus infection over time—for
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example, some genes initially correlated with viral abun-

dance and then anticorrelated, and vice versa. The

authors speculate that these host factors may promote

the accumulation of viral RNA at one stage of the life

cycle and limit it at another. In summary, this RNA-seq

approach identified additional flavivirus host factors and

uncovered several potentially important differences

between ZIKV and DENV. It may be interesting to

couple the viscRNA-Seq approach with pooled CRISPR

activation or inhibition methods to further perturb gene

expression and determine the effect that induced changes

to host gene expression have on flavivirus infection.

Genetic screens

In recent years, pooled CRISPR KO screens have proven

to be a powerful and accessible genome-scale approach to

identify proviral host factors. Typically, a population of

KO cells is infected, the virus spreads through the culture

killing cells, and the surviving cells are collected for

analysis. Some limitations to this approach are that genes

essential for cell growth or survival cannot be interrogated

and screens are biased towards identifying host factors

required during the early stages of the virus infection.

Nevertheless, one advantage of this method is that it

inherently includes a functional readout.

Numerous flavivirus screens from multiple labs have used

this approach to identify critical flavivirus host factors

including, among others, STT3A/B involved in oligosac-

charide transfer, SSR1/2/3 involved in protein transloca-

tion into the ER, and ER membrane complex (EMC)

subunits, which facilitate folding of transmembrane pro-

teins [19,34,35]. Recently, Ngo et al. [36] further charac-

terized the role of the EMC in flavivirus infection and

found that this complex is essential for the proper topol-

ogy of flavivirus transmembrane proteins NS4A and

NS4B [36].

In addition, recent CRISPR KO screens have been pub-

lished including a genome-wide screen with ZIKV per-

formed in human stem cells differentiated into neural

progenitor cells [37], a ZIKV screen in Huh-7.5 cells [38�],
and screens with ZIKV and YFV in HAP1 cells [21�].
Highlights from these reports include mechanistic follow-

up where Shue et al. show that RACK1 is required for

multiple mosquito-borne and tick-borne flaviviruses as

well as the coronavirus, SARS-CoV-2 [38�]. The results

indicate that RACK1 may be involved in establishing

ROs on the ER membrane. Work from Hoffmann et al.,
focused on TMEM41B, which, like RACK1, was found to

also be required by multiple mosquito-borne and tick-

borne flaviviruses as well as multiple coronaviruses [39]

and is likely important for establishing ROs.

Like MS-based methods, the ability to perform low-

biased functional genomics screens in vector species

requires reasonably well annotated genomic information.
Current Opinion in Virology 2022, 52:71–77
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Figure 1
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A model of TMEM41B’s role in cellular and viral membrane remodeling processes.

Transmembrane protein 41B (TMEM41B) and vacuole membrane protein 1 (VMP1) interact and function as lipid scramblases facilitating

membrane expansion and organelle biogenesis needed for the formation of autophagosomes. Upon flavivirus infection the viral polyprotein is

folded into the ER membrane and processed by host and viral proteases. TMEM41B is recruited by viral proteins, and its scramblase function is

redirected to facilitate membrane remodeling to form replication organelles (RO). ROs can be grouped into two morphologically distinct classes

designated as double membrane vesicles (DMV) or protrusion-type ROs and invaginated/spherule-type ROs. While DENV and ZIKV induce

invaginated ROs [52,53], HCV induces protrusion-like ROs [54]. Similar DMV structures derived from various organelles have been found in cells

infected with other (+) sense RNA viruses, for example, picornaviruses [55,56], noroviruses [57], arterivirus [58] and coronaviruses [59–63].
This, together with fewer options for delivering screening

machinery (e.g., Cas9 and sgRNAs) to mosquito and tick

cells, has limited similar studies in these cell types.

Nevertheless, CRISPR-Cas9 systems are established in

mosquito cells and larger-scale screens are within reach

[40–42].

TMEM41B — a critical host factor for membrane

remodeling

Here we highlight the host factor, TMEM41B, which is

involved in autophagy and is critical not only for flavi-

viruses, but also coronaviruses. TMEM41B was first

identified as a potential DENV host factor when it

appeared as a hit in a genome-wide CRISPR KO screen

[19]. Subsequently, Scaturro et al. identified TMEM41B

as a ZIKV NS4B interacting partner and verified that it

was indeed important for flavivirus infection [10�]. Aside

from this, little was known about the cellular function of

TMEM41B until within a short time frame three inde-

pendently reported CRISPR KO screens identified

TMEM41B as a critical regulator of autophagy

[14,15�,17]. In our recent publications [21�,39], we show

that TMEM41B is an essential host factor for diverse

members of both the Flaviviridae and Coronaviridae. We

found that TMEM41B is also required for multiple

flaviviruses in the mosquito vector and, that autophagy

per se is not required for flavivirus infection [21�].
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Additional studies corroborate these findings and solidly

establish TMEM41B as a bona fide host factor that is

broadly required for these two virus families [21�,22,
39,43,44].

Growing evidence indicates that TMEM41B and a

related protein, VMP1, act at the early stages of autop-

hagosome formation, possibly mobilizing lipids in the ER

to facilitate membrane curvature [14,15�,16,17,45,46].
Indeed, several groups have shown that both proteins

act as phospholipid scramblases capable of flipping lipids

between leaflets of lipid bilayers [47,48�,49–51]. It is

possible that flaviviruses and coronaviruses hijack this

function to form ROs on ER membranes by recruiting one

or both proteins through direct protein–protein interac-

tion. It is also possible that co-localization of TMEM41B

with ROs occurs through passive diffusion, where, by

mobilizing neutral and sterol lipids, TMEM41B helps

lower the local free energy imposed by viral protein-

induced membrane curvature. A model of TMEM41B’s

role in cellular and viral membrane remodeling processes

is depicted in Figure 1.

Several observations related to TMEM41B’s role as a

flavivirus host factor remain unexplained. For example,

there is variability in the requirement for TMEM41B

among cell types and viruses, and single amino acid
www.sciencedirect.com
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mutations in NS4A/B are sufficient for ZIKV and YFV to

replicate in TMEM41B KO cells [21�]. Can these obser-

vations be explained by redundancy in TMEM41B activ-

ity (e.g., compensation by VMP1)? Most importantly, can

TMEM41B’s role in autophagy and lipid homeostasis be

separated from its proviral role in flavivirus and coronavi-

rus infection? Answering these questions will be critical

for deciding whether targeting TMEM41B is a viable

antiviral strategy.

Future outlook
Unsurprisingly, most host factor studies to date have been

performed in mammalian cells. However, flaviviruses

have evolved to persist in vector species and characteriz-

ing host factor interactions in vector species represents a

new frontier for future studies. With new mosquito and

tick genomes being sequenced and gene annotations

improving, discovering host factor interactions in these

species is becoming increasingly feasible. Discovery,

however, is only the beginning, and obtaining mechanis-

tic insight will continue to be essential to advance the

field. As exemplified by the brief review of TMEM41B,

this often requires a variety of techniques and expertise

from diverse fields to gain new insights. With new dis-

coveries to be made and even more mechanistic details to

be sorted out, the field of flavivirus–host interactions is

sure to remain an exciting area of investigation for the

foreseeable future.
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