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Background: Despite ample evidence demonstrating that anterior cruciate

ligament (ACL) and meniscus tears are associated with posttraumatic

osteoarthritis (PTOA) development, the contributing factors remain

unknown. Synovial inflammation has recently been recognized as a pivotal

factor in the pathogenesis of OA. However, there is a lack of data on synovial

profiles after ACL or meniscus injuries, which may contribute to PTOA.

Methods: Twelve patients with ACL tears and/or meniscus injuries were

recruited. During surgery, synovial tissues were obtained from the injured

knees. The inflammation status of the synovium was characterized

according to macroscopic criteria and histological synovitis grades. Then the

synovial tissues were classified as control group or inflamed group. High-

throughput RNA sequencing of the synovial samples (3 vs. 3) was conducted

to identify differentially expressed (DE) RNAs. Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, and protein–protein

interaction (PPI) analyses were performed to investigate DE mRNAs. Next,

competing endogenous RNA (ceRNA) networks were constructed based on

bioinformatics analyses. Associations of the identified DE genes (DEGs) with

infiltrating immune cells were explored using Pearson correlation analysis.

Results: The results showed that 2793 mRNAs, 3392 lncRNAs and 211 miRNAs

were significantly DE between two groups. The top 3 significantly upregulated

GO terms and KEGG pathways were immune response, adaptive immune

response and immune system process, systemic lupus erythematosus,

haematopoietic cell lineage and cytokine–cytokine receptor interaction,

respectively. In PPI networks, the top 10 hub genes were IL6, CCR7, C3,
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CCR5, CXCR3, CXCL8, IL2, CCR3, CCR2 and CXCL1. Seven mRNAs (EPHA5,

GSN, ORC1, TLN2, SOX6, NKD2 and ADAMTS19), 4 lncRNAs (MIR4435-2HG,

TNXA, CEROX1 and TMEM92-AS1) and 3 miRNAs (miR-486-5p, miR-199a-3p

and miR-21-3p) were validated by quantitative real-time polymerase chain

reaction and sub-networks were constructed. In correlation analysis, MMP9

correlated positively with M0 macrophages and plasma cells, NKD2 positively

with CD8 T cells, and CCR7 and IL2RB positively with naive B cells.

Conclusion: Our study provides foundational synovial inflammation profiles

following knee trauma. The ceRNA and PPI networks provide new insight into

the biological processes and underlying mechanisms of PTOA. The differential

infiltration profiles of immune cells in synovium may contribute to PTOA

development. This study also highlights immune-related DEGs as potential

PTOA treatment biomarkers.

KEYWORDS

anterior cruciate ligament, meniscus, synovitis, RNA sequencing, competing
endogenous RNA, immune infiltration

Introduction

Osteoarthritis (OA) is the most prevalent form of joint

diseases and a major health burden. It is predicted to be the

leading cause of disability in the general population by 2030

(Thomas et al., 2014). Traumatic meniscal and anterior cruciate

ligament (ACL) tears are major causes of this degenerative

disease. Astoundingly, approximately 50% of patients

eventually develop posttraumatic OA (PTOA) within

10–20 years after joint injury (Lohmander et al., 2007; Oiestad

et al., 2009).

However, the mechanism that contributes to the

development of PTOA is still unknown. Several studies

have detected alterations in knee kinematics and kinetics

following ACL tears and meniscus injuries (Akpinar et al.,

2018; Kotsifaki et al., 2020; Wang et al., 2021), which may

contribute to both initiation and progression of OA

development. Recently, a renewed focus has been placed

on the inflammatory milieu after acute traumatic injury.

After joint trauma, increased levels of proinflammatory

cytokines, catabolic enzymes, and biomarkers of cartilage

breakdown and bone turnover have been detected in synovial

fluid, blood, and urine (Lohmander et al., 2003; Alonso et al.,

2020; Hagemans et al., 2021; Lisee et al., 2021), which may

also play a role in PTOA development. Moreover, a subset of

patients after ACL injury who demonstrate significantly

greater concentrations of biomarkers show more severe

PTOA progression (Amano et al., 2018; Jacobs et al.,

2020). Notably, patients show variability in responses to

anti-inflammatory treatment after ACL injury

(Lattermann et al., 2017), underscoring the need to

determine whether different ACL patient phenotypes exist

and to explore potential therapeutic targets to lessen

chondral degeneration following ACL injury. Recently,

proteomic analyses have been performed on synovial fluid

collected from patients after acute ACL injury (King et al.,

2020). In addition, the immune cell profiles of the joint

synovial fluid from individuals with ACL or meniscus

injuries have been evaluated (Kim-Wang et al., 2021).

However, the synovial membrane profiles that contribute

to or mediate OA progressive cartilage degradation and joint

dysfunction have not been studied in patients with ACL and

meniscus injuries (Ayral et al., 2005; Sellam and Berenbaum,

2010; Robinson et al., 2016).

Only a few studies have evaluated synovial biopsy

characterizations that are altered following joint injury in

animal models. Specifically, recent animal model

experiments have shown that the synovium may be

involved in the progression of PTOA after anterior

cruciate ligament rupture or medial meniscus transection

(Zhou et al., 2018; Salazar-Noratto et al., 2019; Kuroki et al.,

2021). In addition, several studies have evaluated synovial

profiles in patients with OA (Xiang et al., 2019a; Xiang et al.,

2019b; Zhou et al., 2020), showing that noncoding RNAs

may play key roles in OA synovitis and may have prospective

importance in OA diagnosis and therapy. Furthermore,

different gene expression patterns between inflamed and

normal areas of the synovium could reveal key pathways

involved in OA pathogenesis and provide new potential

targets of treatment (Lambert et al., 2014). Future studies

investigating molecular mechanisms and biologic pathways

in synovial membrane may provide an enhanced

understanding of the pathophysiology and development of

PTOA following joint injury. However, to the best of our

knowledge, there is a lack of data on synovial profiles in

patients after ACL or meniscus injuries. In addition, studies

have demonstrated that noncoding RNA expression patterns

are potentially disease specific (Tavallaee et al., 2020; Wang
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et al., 2020), supporting the need for further studies focused

on profiling noncoding RNAs in the contexts of ACL/

meniscus injuries.

Therefore, in this study, high-throughput RNA sequencing

(RNA-seq) was conducted to systematically explore different

expression profiles of microRNAs (miRNAs), mRNAs and long

noncoding RNAs (lncRNAs) between inflamed and normal

synovial tissues from patients undergoing ACL and/or meniscus

injuries. Moreover, lncRNA–miRNA–mRNA competing

endogenous RNA (ceRNA) and protein–protein interaction (PPI)

networks were established. Therefore, the purpose of our study was

to provide greater insights into molecular mechanisms and biologic

pathways that could regulate PTOA progression. In addition, this

study aimed to identify new potential targets for the prevention and

earlier treatment of PTOA following ACL/meniscus injuries.

Materials and methods

Patients and specimens

Synovial tissue samples from 12 patients with knee trauma

were obtained at the time of ACL reconstruction and/or meniscus

repair ormeniscectomy at the Department of Orthopaedics, Union

Hospital, Tongji Medical College, Huazhong University of Science

and Technology. This study was approved by the Ethics

Committee at Tongji Medical College (IORG No.

IORG0003571), and all subjects provided informed consent.

Patients between 18 and 45 years of age who had a traumatic

knee injury and were scheduled for arthroscopic knee procedures

were recruited from the Department of Orthopaedics, Union

Hospital. The inclusion criteria existence of an isolated ACL

injury as determined via clinical examination (positive Lachman

test) and validated using magnetic resonance imaging

examination and/or a meniscal tear identified on preoperative

MRI corresponding to the clinical presentation. The exclusion

criteria for the current study included previous traumatic injury

to the affected knee, history of diagnosed arthritis, and systemic

inflammatory or autoimmune disease.

All the synovium were collected from suprapatellar bursa in

all patients and by the same surgeon using biopsy forceps. The

inflammation status of the synovial membrane was characterized

by the surgeon according to macroscopic criteria (Ayral, 1996).

The synovial membrane was classified into 3 grades, normal,

reactive, and inflamed, according to the criteria established by

Ayral on the basis of synovial vascularization, villus formation,

and hypertrophy of the tissue. The synovial samples were divided

into two groups for this study: the normal (control) group and

the inflamed group. Twelve individuals (Table 1) met the

inclusion criteria. Normal or inflamed synovial biopsy samples

were immediately submerged in RNAlater™ Stabilization

Solution (Thermo Fisher Scientific, Vilnius, Lithuania). Each

sample was stored at 4°C overnight followed by −80°C until

RNA extraction.

Hematoxylin-eosin staining

At the same time, the histological features of the collected

synovium samples were verified by hematoxylin-eosin (H&E)

staining. All the synovial biopsy samples were fixed, dehydrated

in xylene, and embedded in paraffin according to standard

procedures. Five-micrometer sections were cut and

deparaffinized using a standard protocol. These sections were

stained with hematoxylin and eosin (H&E) to confirm the

inflammatory status of the synovial samples.

TABLE 1 Characteristics and clinical findings of patient groups.

Subject Sex Age
(years)

BMI
(kg/
m2)

Time from
injury to
surgery (days)

Injury type (ACL/meniscal
tear)

Status of
synovium
(inflamed/
normal)

Articular cartilage
(normal/degenerative/
defects)

I1 M 30 25.71 14 ACL and medial meniscal tear Inflamed Normal

I2 F 31 28.28 14 ACL tear Inflamed Normal

I3 F 43 19.92 21 ACL and medial meniscal tear Inflamed Normal

I4 M 21 22.49 30 ACL tear Inflamed Normal

I5 M 30 28.4 21 lateral meniscal tear Inflamed Normal

I6 F 44 25.39 20 medial meniscal tear Inflamed Normal

C1 M 41 27.68 14 ACL and medial meniscal tear Normal Normal

C2 M 23 29.24 30 ACL and meniscal tear Normal Normal

C3 M 31 31.52 27 ACL, medial and lateral meniscal tear Normal Normal

C4 M 31 24.22 60 ACL tear Normal Normal

C5 M 27 19.38 60 ACL and medial meniscal tear Normal Normal

C6 F 22 20.51 24 lateral meniscal tear Normal Normal

I1-I6 indicated subjects in the inflamed group and C1–C6 represented subjects in the control group.
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RNA extraction and RNA-seq analysis

Total RNA was extracted from the synovial tissues using TRIzol

(Invitrogen, Carlsbad, CA, United States) according to the

manufacturer’s protocol. The RNA integrity and concentration

were assessed using a Nano Drop and an Agilent

2100 bioanalyzer (Thermo Fisher Scientific, MA, United States).

Appropriate quality of RNAs were stored at −80°C for

mRNA, lncRNA and miRNA sequencing and subsequent

experiments.

After the total RNA from each sample was qualified, RNA-

seq was performed to identify the differentially expressed (DE)

mRNAs, lncRNAs and miRNAs between both groups. Three

inflamed subjects and three control subjects were chosen

randomly for microarray analysis. Standard cDNA libraries

were constructed and sequenced using the DNBSEQ platform

(BGI-Shenzhen, China). Furthermore, differential expression

analysis was performed using DEGseq (Wang et al., 2010).

The significantly dysregulated RNAs had to meet the

following criteria: fold changes ≥ 1.5 or ≤ −1.5, p and q

values < 0.05.

Gene ontology and kyoto encyclopedia of
genes and genomes enrichment analyses

The differentially expressed mRNAs were analyzed with the

Gene Ontology (GO) database and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database. The GO categories

(http://geneontology.org) were used to define the molecular

mechanisms and biological functions of the candidate genes.

The biological functions of these genes were further annotated

with the KEGG database (http://www.genome.jp/kegg). The

hypergeometric distribution test was used to identify

significantly enriched gene sets. A p value < 0.05 was

considered to indicate statistical significance.

Real-time polymerase chain reaction

The remaining RNAs of synovial samples in each group

(n = 3 per group) were used to validate the RNA-seq results by

using real-time polymerase chain reaction (RT–PCR).

miRNAs and other RNAs were reverse-transcribed into

cDNA using iTaq™ M-MLV reverse transcriptase (#M170A,

Promega) and an iScript cDNA Synthesis Kit (#1708890,

Bio–Rad) according to the respective user manuals.

RT–PCR was performed on a CFX Connect platform

(Bio–Rad, United States) using iTaq™ Universal SYBR

Green Supermix (#1725124, Bio–Rad). The primer

sequences are presented in Supplementary Tables S1–S3. The

relative expression levels of targeted genes were calculated

using the 2−ΔΔCt method, and the data were normalized to

gapdh (endogenous internal control for mRNA and lncRNA)

or u6 (endogenous internal control for miRNA).

Construction of the competing
endogenous RNA and protein–protein
interaction network

The significantly DE mRNAs and lncRNAs between both

groups were used for ceRNA network construction. We used

the targeting relationships of mRNAs/lncRNAs regulated by

miRNAs to establish a lncRNA–miRNA–mRNA interaction

network. The RNAs that could be predicted by at least two of

the databases [RNAhybrid (https://bibiserv.cebitec.uni-

bielefeld.de/rnahybrid), miRanda (http://www.microrna.org/

microrna/home.do) and TargetScan (http://www.targetscan.

org)] were considered miRNA targets. The sequences of

mRNAs and lncRNAs were screened to obtain the potential

miRNA response elements. Protein–protein interaction (PPI)

analysis of the DE mRNAs was performed based on the

STRING database (https://string-db.org). These networks

were illustrated using Cytoscape 3.7.1. The degree centrality

of the involved genes was calculated by Cytoscan.

Construction of the competing
endogenous RNA and protein–protein
interaction network

The significantly DE mRNAs and lncRNAs between both

groups were used for ceRNA network construction. We used the

targeting relationships ofmRNAs/lncRNAs regulated bymiRNAs to

establish a lncRNA–miRNA–mRNA interaction network. The

RNAs that could be predicted by at least two of the databases

[RNAhybrid (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid),

miRanda (http://www.microrna.org/microrna/home.do) and

TargetScan (http://www.targetscan.org)] were considered miRNA

targets. The sequences of mRNAs and lncRNAs were screened to

obtain the potential miRNA response elements. Protein–protein

interaction (PPI) analysis of the DE mRNAs was performed based

on the STRING database (https://string-db.org). These networks

were illustrated using Cytoscape 3.7.1. The degree centrality of the

involved genes was calculated by Cytoscan.

Correlation analysis between DEGs and
immune cells

The association between the identified DEGs and levels of

infiltrating immune cells was explored using Pearson correlation

analysis in R software. The resulting associations were visualized

using the chart technique with the “ggplot2” package. The

complete workflow is shown in Figure 1.

Frontiers in Genetics frontiersin.org04

Xiao et al. 10.3389/fgene.2022.983020

http://geneontology.org
http://www.genome.jp/kegg
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://www.targetscan.org
http://www.targetscan.org
https://string-db.org
https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid
http://www.microrna.org/microrna/home.do
http://www.targetscan.org
https://string-db.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.983020


Statistical analysis

Statistical analysis was calculated with GraphPad Prism v

8.3.0 software. All data were expressed as the mean ± SEM.

Unpaired Student’s t test was performed for comparisons

between two groups. Pearson correlation analysis was used to

assess the constructed ceRNA network. Statistical significance

was set at p or q < 0.05.

Results

Histological features of synovial biopsy
samples

Twelve samples from subjects with ACL and/or meniscus

injuries were collected (Table 1). During each arthroscopic knee

procedure, we collected synovial tissue at the time of surgery for

laboratory analysis. The gross appearances of synovial

membranes assessed by the surgeon during arthroscopy were

confirmed by the histological characteristics. The histological

features were highly consistent with the macroscopic views as

shown in Figure 2.

Differential expression analyses

To identify functionalmRNAs, lncRNAs, andmiRNAs involved

in the inflammatory mechanisms of the synovial membrane, total

RNA of synovial tissue samples randomly selected from the

inflamed groups and control groups (n = 3) was collected for

RNA-seq. All the DE miRNAs, mRNAs and lncRNAs are

presented in the hierarchical clustering heatmaps in Figure 3.

In total, 211 differentially expressed miRNAs

(177 upregulated and 34 downregulated), 2793 differentially

expressed mRNAs (1737 upregulated and 1056 downregulated)

and 3392 differentially expressed lncRNAs (1623 upregulated and

1769 downregulated) were detected in the inflamed group compared

with the control group (Figures 3A–C; Supplementary Data S1–S3).

Functional enrichment analysis of
differentially expressed mRNAs

GO and KEGG analyses were performed to investigate the

biological effects of the dysregulated mRNAs. First, GO analyses

were performed to analyze the up- and downregulated

differentially expressed targeted genes. The results revealed that

FIGURE 1
The workflow diagram of this study.
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FIGURE 3
Expression profiles of RNAs. (A–C) the miRNAs, mRNAs and lncRNAs, profiles were shown in heatmap in synovium from inflamed group and
control group. N = 3.

FIGURE 2
Representative arthroscopy view and H&E staining of normal (A,C) and inflamed (B,D) synovial samples in this study. The synovial inflammatory
state may result in a pannus-like response covering the suprapatellar bursa (B). Inflammatory cells infiltration in the synovial lining and sublining is
seen (black arrow), along with vascular proliferation (white arrow) in subintimal layer (D). Scale bar 50 μm.
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5055 upregulated and 3571 downregulated GO terms were

enriched in the biological process (BP) category. Moreover,

136 GO terms were significantly upregulated, and 15 GO terms

were significantly downregulated (Supplementary Data S4, S5).

The top upregulated and downregulated enriched terms are listed

in Figures 4A,B. Several significant GO terms, such as immune

response, immune system process, inflammatory response and

chemotaxis, were potentially associated with inflammatory and

immune processes following ACL/meniscus injuries (Figure 4A).

Pathway enrichment analyses were used to explore key

signaling pathways of PTOA. The results showed

41 upregulated and 1 downregulated markedly enriched

pathways, as shown in Supplementary Data S6, S7. The top

upregulated and downregulated enriched pathways are listed in

Figures 4C,D. Among the top upregulated signaling pathways

were immune response and inflammatory pathways, such as the

rheumatoid arthritis (RA), Th17-cell differentiation,

hematopoietic cell lineage and cytokine–cytokine receptor

interaction pathways. In comparison, two immune gene

databases (InnateDB and Immport) were selected to overlap

the DEGs with immune genes. A Venn diagram was

constructed, as shown in Figure 5. Eight-three overlapping

genes are listed in Supplementary Data S8.

Protein–protein interaction network
construction

PPI networks were constructed to identify critical genes

among the differentially expressed mRNAs. When the

inflamed group was compared with the control group, the

established network comprised 164 nodes and 923 edges

(Figure 6). The topological characteristics of nodes in the

PPI network are displayed in Supplementary Data S9. In

this network, the top 15 genes with the highest core degrees

were IL6, CCR7, C3, CCR5, CXCR3, CXCL8, IL2,

CCR3, CCR2, CXCL1, CXCL10, CCL5, AGT, CCR8 and

CXCL2.

FIGURE 4
GO analysis and KEGG pathway analysis. GO annotation of biological processes related to upregulated and downregulated mRNAs (A,B), KEGG
pathway enrichment analysis of upregulated and downregulated mRNAs (C,D) in inflamed synovium compared with normal synovium.
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Validation of differentially expressed
microRNAs

RT–PCR analysis was performed on RNA extracted from

synovial tissues to confirm the expression level changes gained

from the RNA-seq analysis. We randomly selected 11 miRNAs

with high fold change to validate the reliability of the RNA-seq

data. PCR analysis verified that miR-21-3p, miR-486-5p, miR-

142-5p andmiR-199a-3p were upregulated/downregulated in the

inflamed group compared with the control group. These results

were consistent with the RNA-seq data (Figure 7). However, PCR

analysis showed that miR-103a-3p was upregulated in the

inflamed group, which conflicted with the RNA-seq data. The

expressions of the remaining six miRNAs were not significantly

different between groups according to PCR analysis.

Construction of the
lncRNA–miRNA–mRNA network

A ceRNA regulatory network was established based on the

differentially expressed RNAs. miRNAs validated by RT–PCR

analysis, which also showed expression patterns consistent with

the RNA-seq results, were selected as the cores of the ceRNA

network. The lncRNA–miRNA–mRNA ceRNA network

comprised four miRNAs, 211 mRNAs, and 120 lncRNAs

(Figure 8). The topological characteristics of nodes in the

ceRNA network are displayed in Supplementary Data S10.

Real-time polymerase chain reaction
validation of differentially expressed
mRNAs and long noncoding RNAs

Further RT–PCR analysis of 14 mRNAs and 8 lncRNAs

included in the ceRNA networks was performed to confirm the

RNA-seq results. The RT–PCR results showed that seven mRNAs

were significantly dysregulated (Figure 9A). These results were

found to be consistent with the RNA-seq data. However, PCR

analysis showed that one mRNA (NOS1) was downregulated in

the inflamed group, which conflicted with the RNA-seq data. The

expression of the remaining six mRNAs was not significantly

different between the groups according to PCR analysis.

Among the dysregulated mRNAs, GSN, ORC1, SOX6,

NKD2 and ADAMTS19 were involved in the ceRNA network

(Figure 8); EPHA5 and TLN2 were involved in both the PPI and

ceRNAnetworks (Figures 6, 8).Moreover, three lncRNAs (TMEM92-

AS1, TNXA and CEROX1) were significantly downregulated, while

one lncRNA (MIR4435-2HG) was significantly upregulated in the

inflamed group compared with the control group (Figure 9B). The

expression of the remaining four lncRNAs did not significantly differ

between the groups according to PCR analysis.

Establishment of a competing
endogenous RNA subnetwork based on
RNAs verified by polymerase chain
reaction analyses

We constructed a lncRNA-miRNA-mRNA subnetwork

using the above validated PCR results for further

investigation. The network included three miRNAs, seven

mRNAs and four lncRNAs (Figure 10).

Correlation between DEGs and differential
immune cells in synovial tissues following
knee trauma

Forty-five immune/inflammatory-related hub genes from the

PPI and ceRNA networks were selected mainly based on the

degrees of the hub genes. CD8 T cells and M1 macrophages were

significantly increased in inflamed synovial tissues. Correlations

among the 45 DEGs and 16 kinds of immune cells were analysed

between inflamed and normal synovial tissues in knee trauma, as

shown in the correlation heatmap graph (Figure 11). Significantly

related DEGs and immune cells were screened by |R| > 0.40 and

FIGURE 5
A Venn diagram of DEGs, immunerelated genes in InnateDB
and Immport databases. A total of 83 DEGs are obtained through
the intersection of the immune-related DEGs identified in this
study, InnateDB and Immport database.
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p < 0.001. The results indicated that MMP9 correlated positively

withM0macrophages (R = 0.99, p = 0.00033) and plasma cells (R =

0.99, p = 0.00033), NKD2 correlated positively with CD8 T cells (R

= 0.98, p = 0.00090), and CCR7 (R = 0.99, p = 0.00003) and IL2RB

(R = 0.99, p = 0.00017) correlated positively with naive B cells.).

Discussion

ACL and meniscus tears are common knee injuries.

Emerging evidence suggests that joint trauma is a major

cause of OA. Moreover, approximately 50% of patients

with knee trauma eventually develop PTOA several years

after their injuries (Oiestad et al., 2009; Stiebel et al., 2014).

Nonetheless, the factors that contribute to PTOA

development remain unclear. Recently, attention has turned

to the importance of synovial inflammation, which may play a

role in OA progression (Sellam and Berenbaum, 2010). To

better explore the etiology and evolution of PTOA, the specific

molecular mechanisms of synovial inflammation following

knee injuries need to be understood. Noncoding RNAs have

important regulatory roles in the pathogenesis of OA

(Reynard and Barter, 2020; Ali et al., 2021). By regulating

the expression of specific gene targets, noncoding RNAs may

play an essential role in establishing and maintaining the

homeostatic balance of biological systems. Furthermore,

studies have also suggested that biological changes in the

joint after injury may contribute to PTOA development

(Amano et al., 2018; Clair et al., 2019). There are some

FIGURE 6
PPI network analyses of the differentially expressed mRNAs. The red nodes represented upregulated mRNAs and green nodes represented
downregulated mRNAs.

FIGURE 7
PCR analysis of the differentially expressed miRNAs. N = 3.
pp < 0.05, ppp < 0.01.
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FIGURE 8
ceRNA network construction. lncRNA–miRNA–mRNA networks were established based on the differentially expressed lncRNAs, mRNAs, and
validated miRNAs. miRNAs were indicated to V-shape, lncRNAs were indicated to rhombus and mRNAs were indicated to ellipse. The red nodes
represented upregulated RNAs and green nodes represented downregulated RNAs. The size of a node indicated the degree of node in the network.

FIGURE 9
PCR analysis of the differentially expressed mRNAs (A) and lncRNAs (B). N = 3. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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previous studies on synovial inflammation, but the overall

design of these studies involved RNA-seq for synovial tissues

from inflammatory/degenerative joint diseases compared with

healthy individuals/trauma patients (Woetzel et al., 2014;

Lauwerys et al., 2015). To our knowledge, high-throughput

RNA sequencing of inflamed and normal synovial tissues

following ACL/meniscus injury have not been performed.

Thus, in the present study, we conducted RNA-seq to

systematically analyze the differentially expressed lncRNAs,

miRNAs and mRNAs between inflamed and normal synovial

membranes and established a ceRNA regulatory network to

uncover the corresponding underlying pathogenesis of PTOA.

In the present study, 2793 mRNAs, 211 miRNAs and

3392 lncRNAs were significantly upregulated or

downregulated between inflamed and normal synovial

membranes of patients following knee trauma. To further

investigate the potential biological roles of the aberrantly

expressed mRNAs, GO and KEGG pathway analyses. The

top significantly enriched upregulated GO terms were

conducted in the BP category in terms of fold enrichment,

such as immune response (GO: 0006955), immune system

process (GO: 0002376), inflammatory response (GO:

0006954), cytokine-mediated signaling pathway (GO:

0019221), and chemotaxis (GO: 0006935), revealed the

occurrence of a localized synovial membrane immune

response and inflammatory process in a subset of knees

with ACL/meniscus injury. Previous studies have revealed

that subjects diagnosed with primary OA exhibit elevated

percentages of activated macrophages and T cells in

peripheral blood, synovial fluid, and synovial tissues (Li

et al., 2017; Rosshirt et al., 2019). Specifically, a recent

study has revealed a T-cell-predominant immune profile in

the synovial fluid following ACL and meniscus injuries (Kim-

Wang et al., 2021). The immune cells present after joint

injuries may play a vital role in the development of PTOA.

Further studies will be needed to investigate the relationships

among macrophages, monocytes, and T cells to better

understand the pathogenesis of PTOA following joint injury.

The pathway analyses revealed 41 upregulated and

1 downregulated enriched pathways, which helped to further

elucidate the underlying functions of the differentially expressed

mRNAs. The notable upregulated pathway terms included the

systemic lupus erythematosus, hematopoietic cell lineage, Th17-

FIGURE 10
The sub competing endogenous RNA network. miRNA were
indicated to V-shape, lncRNAs were indicated to rhombus and
mRNAs were indicated to ellipse. The red nodes represented
upregulated RNAs and green nodes represented
downregulated RNAs. The size of a node indicated the degree of
node in the network.

FIGURE 11
The correlation heat map graph is shown by the rate of correlation between hub genes and immune cells.
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cell differentiation, Th1- and Th2-cell differentiation,

cytokine–cytokine receptor interaction, NF-kappa B signaling

pathway, and RA signaling pathway terms. Several signaling

pathways, such as the hematopoietic cell lineage pathway, the

phagosome pathway, extracellular matrix receptor interaction,

natural killer cell–mediated toxicity, and T cell receptor signaling

pathways, which are similar to the results of a synovial fluid

proteomic study (King et al., 2020), might be associated with the

inflammatory response after joint injury. Moreover, eight of the top

10 upregulated pathways in KEGG pathway analysis were related to

immune diseases or the immune response. The upregulation of the

RA pathway, which has also been reported in the knee synovium in

the context of OA (Xiang et al., 2019a), suggests that the initial

synovial membrane response to ACL/meniscus injuries is similar to

RA (King et al., 2020). The cardinal sign of RA is damage to cartilage

and bone owing to synovial invasion into adjacent articular structures

(Smolen et al., 2018). Therefore, a RA-like synovial response after

ACL/meniscus injuries may imply progressive cartilage degradation

(Alonso et al., 2020). In addition, Th1-, Th2- and Th17-cell

differentiation pathways were significantly upregulated in this

study. Similarly, studies have revealed that high percentages of Th

cells are present in blood samples and synovial fluid fromRAandOA

subjects (Lurati et al., 2015; Rosshirt et al., 2019). Recently, Kim-

Wang et al. (2021) also found that the numbers of immune cells,

primarily T cells with multiple Th phenotypes, are elevated in the

synovial fluid following ACL and meniscus injuries, while the

numbers of Th1, Th2, and Th17 cells are the dominant

populations of the CD4 subsets. Furthermore, T17 cells can

produce IL-17, which causes synovial fibroblasts, chondrocytes,

macrophages, and osteoclasts to elicit a cascade and finally

promotes inflammation, cartilage degradation, and changes in

bone metabolism (Koenders et al., 2006). Therefore, these

enriched immune cells may play an important role in joint

changes that account for the pathogenesis of PTOA following

ACL and meniscus injuries.

Moreover, we conducted PPI network analysis to further

characterize the differentially expressed mRNAs. EPHA5 and

TLN2 were involved in the network; these findings were verified

by PCR analyses. EphA5, a member of the Eph-Ephrin signaling

axis, can play a dual role in the growth regulation of human bone

marrow stromal cells, which might be involved in bone

remodeling (Yamada et al., 2016; Arthur and Gronthos, 2021).

Another study has demonstrated that miR-34a can target EphA5,

resulting in negative modulation of chondrogenesis (Kim et al.,

2011). In this study, EphA5 was downregulated in the inflamed

synovium after knee injury, which might be related to the

progression of PTOA.

Analyses of ceRNA networks, noncoding endogenous transcripts

that compete for shared miRNAs, have exciting implications for

diverse biological systems and pathophysiological conditions (Tay

et al., 2014). Because miRNAs are the cores of ceRNA networks, the

DE miRNAs in RNA-seq analysis were firstly evaluated by a

secondary PCR analysis approach. Our results revealed that four

miRNAs were DE in inflamed synovium compared with normal

synovium. Previous studies have shown that miR-486-5p is

upregulated in patients with knee OA and that it might aggravate

the progression ofOA (Kong et al., 2017; Shi et al., 2018). Inhibition of

miR-486-5p significantly increases cell proliferation and decreases

apoptosis inmurine chondrogenic cells (Chang et al., 2020). However,

Chen et al. reported that exosomal miR-486-5p derived from RA

fibroblast-like synoviocytes can promote osteoblast differentiation and

alleviate the disease severity of RA (Chen et al., 2020). In our study,

miR-486-5p was upregulated after knee injury. Therefore, more in-

depth studies are needed to investigate the biological role of miR-486-

5p after knee trauma. Previous studies have also found thatmiR-199a-

3p can directly regulate cyclooxygenase-2 expression and

prostaglandin E2 production in IL-1β-stimulated human OA

chondrocytes, suggesting that miR-199a-3p might be a novel target

for OA therapy (Akhtar and Haqqi, 2012; Rasheed et al., 2016).

Similarly, in our data, the expression of miR-199a-3p was

downregulated in inflamed synovium, possibly indicating a

destructive effect in articular cartilage.

Next, ceRNA networks were constructed using bioinformatics

methods based on the differentially expressedmRNAs, lncRNAs and

verified miRNAs. Then, subsets of RNAs in the networks were

analyzed by PCR to establish a subnetwork. Recently, some

mRNAs have been confirmed to be associated with OA,

chondrogenesis or osteogenesis. For example, studies have

revealed that bone marrow stromal cells and adipose stem cells

electroporation-mediated transfer of a trio of SOX genes (SOX-5,

SOX-6, and SOX-9) can enhance chondrogenesis potential in vitro

and regeneration of defective cartilage (Im and Kim, 2011; Kim and

Im, 2011). The levels of GSN, which was downregulated in our study,

have also been shown to be decreased in patients with RA, suggesting

local consumption of potentially anti-inflammatory proteins in the

inflamed joint (Osborn et al., 2008). NKD2, a signal-inducible

feedback antagonist of the canonical Wnt signaling pathway, can

promote the differentiation of dental follicle stem/progenitor cells

into osteoblasts (Chen et al., 2018).

With respect to lncRNAs in the ceRNA subnetwork, it has

recently been reported that MIR4435-2HG is downregulated in

OA and can regulate chondrocyte proliferation and apoptosis

(Xiao et al., 2019). Moreover, further study has demonstrated

that MIR4435-2HG can significantly suppress the progression of

OA via the miR-510-3p/IL-17A axis (Liu et al., 2020). In the

present study, MIR4435-2HG was upregulated in the inflamed

synovium group after knee injury, which did not support our

hypothesis that greater inflammation would lead to more cartilage

breakdown. A recent study has also demonstrated that the

concentrations of inflammatory markers in the synovial fluid

are not associated with worse cartilage outcomes (Amano et al.,

2018), which may be attributable to time-dependent effects on the

levels of inflammatory markers or individual variations in

susceptibility of the cartilage to inflammation. TMEM92-AS1

has been shown to promote gastric cancer progression by

targeting CCL5, and further study has shown that it may affect
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leukocytes via regulation of the expression of granulocyte colony-

stimulating factor in gastric cancer tissues (Song et al., 2021). It is

likely that deregulation of TNXA plays a key role in the

development and/or progression of bladder cancer (Zhu et al.,

2014). Cerox1 has been demonstrated to regulate mitochondrial

oxidative phosphorylation to decrease reactive oxygen species

production by binding to miR-488-3p (Sirey et al., 2019).

Surprisingly, most of the above lncRNAs have not been

extensively investigated in the context of OA. Thus, further

studies are needed to assess their characteristics.

GO and KEGG enrichment analyses revealed that immune cells

infiltrated the inflamed synovial tissues after ACL and meniscus

injuries. Increasing evidence has shown that immune cell infiltration

plays a key role in synovial inflammation and joint damage (Zhou et

al., 2021; Hu et al., 2022). In this study, CD8 T cells and M1

macrophages were significantly increased in inflamed synovial

tissues. Therefore, it is essential to further investigate the

correlation among the important hub genes and immune cells

following knee trauma. In this study, MMP9 correlated positively

with M0 macrophages. M0 macrophages differentiate into M1 and

M2 macrophages under specific circumstances, which may play a

role in the immune imbalance related to RApathogenesis. A study of

esophageal cancer showed that MMP-9 might regulate tumour-

associated macrophages (Yuan et al., 2021). Previous studies have

shown that MMP-9 and macrophages participate in the

pathogenesis of RA (Xu et al., 2021) and OA (Ostojic et al.,

2021). Our results indicate that MMP9 is significantly

overexpressed. Therefore, we speculate that MMP9 may

participate in the occurrence and development of PTOA through

the MMP9-macrophage axis, which needs to be verified by further

experiments. In the present study, NKD2 correlated positively with

CD8 T cells. Recently, researchers observed a strong correlation

between NKD2 expression and pro-inflammatory cytokine

production in effector T cells, demonstrating that NKD2 might

regulate the function of effector T cells, especially in an

inflammatory status (Wu et al., 2022). Intriguingly, the biological

function of the NKD2-CD8 T-cell axis merits further investigation

to understand the underlying mechanism and provide potential

therapeutic targets for PTOA.

In summary, the present study conducted RNA-seq between

inflamed and normal synovial tissues, and bioinformatics/PCR

experiments were used to analyse the transcriptional expression

characteristics of knee ACL/meniscus injuries. The most

predominant features of synovitis after knee trauma were an

increased immune response and immune cell infiltration. The

essential molecules of the regulatory network identified in this

study provide potential biomarkers for PTOA diagnosis,

development and treatment. However, subsequent studies

investigating the relationship between immune cells/essential

molecules and joint degeneration are needed.

The small sample size is an obvious limitation of this study.

Three patients with an inflamed synovium and 3 patients with

a normal synovium do not fully reflect all the aspects of

synovial profiling. Thus, it is necessary to expand the

sample size to reduce these limitations. In addition, the

functions of the above lncRNAs, miRNAs and mRNAs in

ceRNA networks have not been explored in various cells

related to PTOA. Further fundamental studies are needed to

investigate the roles of these molecules in the pathogenesis and

development of PTOA.

Conclusion

In conclusion, our study is the first to detect and analyze

mRNA, lncRNA, and miRNA differences between inflamed and

normal synovial membranes in injured ACL and/or meniscus.

This study reveals novel ceRNA and PPI networks, which may be

valuable for PTOA pathogenesis and diagnosis. These immune

cells that are present following ACL and meniscus injuries may

contribute to the development of PTOA. In addition, this study

shows that immune-related DEGs have the potential to serve as

biomarkers for PTOA treatment. Future studies that

investigating the relationship between immune cells/essential

molecules and joint degeneration may contribute to a

profound understanding of the pathophysiology of PTOA

after joint injury.
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Glossary

OA Osteoarthritis

ACL Anterior cruciate ligament

PTOA Posttraumatic osteoarthritis

RNA-seq RNA sequencing

miRNAs MicroRNAs

lncRNAs Long noncoding RNAs

ceRNA Competing endogenous RNA

H&E Hematoxylin-eosin

RT–PCR Real-time polymerase chain reaction

DE Differentially expressed

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI Protein–protein interaction

BP Biological process

RA Rheumatoid arthritis

IL6 Interleukin 6

IL2 Interleukin 2

IL17 Interleukin 17

IL-17A Interleukin 17A

IL-1 Interleukin 1

CCR7 Cinnamoyl-CoA reductase 7

CCR5 Cinnamoyl-CoA reductase 5

CCR3 Cinnamoyl-CoA reductase 3

CCR2 Cinnamoyl-CoA reductase 2

CCR8 Cinnamoyl-CoA reductase 8

C3 Complement C3

CXCR3 C-X-C motif chemokine receptor 3

CXCL8 C-X-C motif chemokine ligand 8

CXCL1 C-X-C motif chemokine ligand 1

CXCL10 C-X-C motif chemokine ligand 10

CXCL2 C-X-C motif chemokine ligand 2

CCL5 C-C motif chemokine ligand 5

AGT Angiotensinogen

NOS1 Nitric oxide synthase 1

GSN Gelsolin

ORC1 Origin recognition complex subunit 1

SOX Sex-determining region Y-box transcription factor

SOX-5 Sex-determining region Y-box transcription factor 5

SOX-6 Sex-determining region Y-box transcription factor 6

SOX-9 Sex-determining region Y-box transcription factor 9

NKD2 Naked cuticle homolog 2

ADAMTS19 A disintegrin and metalloproteinase with

thrombospondin type 1 motif 19

EPHA5 Ephrin receptor A5

TLN2 Talin 2

TNXA Tenascin-XA

CEROX1 cytoplasmic endogenous regulator of oxidative

phosphorylation 1

Th1 Helper T1

Th2 Helper T2

Th17 Helper T17

DEGs Differentially expressed genes

MMP9 Matrix metallopeptidase 9

IL2RB Interleukin 2 receptor subunit beta

RA Rheumatoid arthritis
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