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Human tryptophan hydroxylase 2 (TPH2) is the rate-limiting enzyme in the synthesis of
serotonin. Its dysfunction has been implicated in various psychiatric disorders such as
depression, autism, and bipolar disorder. TPH2 is typically decreased in stability and
catalytic activity in patients; thus, screening of molecules capable of binding and stabilizing
the structure of TPH2 in activated conformation is desired for drug development in mental
disorder treatment. Here, we solved the 3.0 Å cryo-EM structure of the TPH2 tetramer.
Then, based on the structure, we conducted allosteric site prediction and small-molecule
activator screening to the obtained cavity. ZINC000068568685 was successfully selected
as the best candidate with highest binding affinity. To better understand the driving forces
and binding stability of the complex, we performed molecular dynamics simulation, which
indicates that ZINC000068568685 has great potential to stabilize the folding of the
TPH2 tetramer to facilitate its activity. The research might shed light on the
development of novel drugs targeting TPH2 for the treatment of psychological disorders.

Keywords: serotonin, psychological disorders, TPH2, virtual screening, MD simulation

INTRODUCTION

The biogenic monoamine serotonin (5-hydroxytrptamine, 5-HT), defined as a neurotransmitter or a
hormone, has been implicated in various physiological functions ranging from cell growth and
development to metabolic processes (Weaver et al., 2016; Okaty et al., 2019; Bacqué-Cazenave et al.,
2020). Many psychiatric disorders such as depression, autism, and bipolar disorder, as well as
Alzheimer’s disease, are closely associated with the dysregulation of the serotonin secretion
(Mansour et al., 2005; DeFilippis and Wagner, 2014; Kraus et al., 2017; Chakraborty et al., 2019;
Takumi et al., 2020). Serotonin is also reported to play important roles in inflammatory,
osteoporosis, gastrointestinal, and cardiovascular diseases (Ayme-Dietrich et al., 2017; D’Amelio
and Sassi, 2018; Balakrishna et al., 2021). The regulation of the serotonin signaling, recycling, and
degradation has emerged to be potential targets for the therapy of related diseases (Bader, 2020).

Serotonin is synthesized from tryptophan by tryptophan hydroxylase (TPH) and subsequent
aromatic amino acid decarboxylase (AADC) (González-Castro et al., 2014; Zhang, 2016). AADC also
catalyzes the formation of other monoamines and thus is not specific for serotonin synthesis
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(Montioli et al., 2020; Montioli and Borri Voltattorni, 2021). By
contrast, TPH is specific and acts as the rate-limiting enzyme for
serotonin synthesis and is considered as a crucial target for the
regulation of the serotonergic system (Swami and Weber, 2018).
There are two distinct TPH homologies in humans, TPH1 and
TPH2, which are separately located on chromosomes 11 and 12,
respectively, sharing 71% sequence identity in amino acids
(McKinney et al., 2005). TPH1 and TPH2, together with
phenylalanine hydroxylase (PAH) and tyrosine hydroxylase
(TH), form the family of pterin-dependent aromatic amino
acid hydroxylases (AAAHs) that catalyze the hydroxylation of
their respective aromatic amino acid substrates in a conserved
mechanism, with molecular oxygen, tetrahydrobiopterin (BH4),
and Fe2+ as cofactors (Patel et al., 2016; Waløen et al., 2017). The
members of AAAHs are all similarly composed of three domains
in structures: an N-terminal regulatory domain for robustly
modulating its activity, a catalytic domain for substrate
binding, and a C-terminal domain for maintaining the
oligomerization states (Cao et al., 2010).

The oligomerization state is critical for the activities of AAAH
families. The C-terminal domain is important for their
oligomerization. Previous studies have shown that the deletion
of C-terminal residues will decrease and nearly abolish the
activities of TPH2 (Tenner et al., 2007). The addition of
phenylalanine will shift the state of the TPH2 variant from
monomer to dimer and change its activity by threefold
(Tidemand et al., 2016). In pathological conditions such as
Parkinson’s disease, TPH2 may form disulfide-bonded
aggregates upon oxidation and eventually affect its activity
(Kuhn et al., 2011). Studies on PAH have also shown that
PAH exists in the solution as a dimer and two architecturally
distinct tetramers, while its substrate phenylalanine is involved in
the regulation of PAH states and affect its activity (Arturo et al.,
2016; Flydal et al., 2019). Patel et al. (2016) also reported that
phenylalanine can bind to the dimerization interface and
regulatory domain of PAH and regulate its activity (Patel
et al., 2016). A previous report on human TH showed that it
exists as enzymatically stable tetramers and octamers in the
solution, and missense mutations on the interface will disrupt
its oligomeric states, decrease its activity, and eventually cause
disease such as DOPA-responsive dystonia (Szigetvari et al.,
2019).

Although TPH1 and TPH2 are highly conserved in both
structural and catalytic mechanisms, there are many
differences in their phosphorylation sites, expression patterns,
and physiological processes (McKinney et al., 2005). TPH1 is
dominantly expressed in the enterochromaffin cells of the gut
epithelium, where serotonin is synthesized and taken up by
platelets via serotonin transporters (Schoenichen et al., 2019).
TPH1 also functions in other tissues such as the lung, pancreas,
and kidney as well as the pineal gland, where serotonin is
synthesized as a precursor for melatonin, a hormone that
functions in sleep and pain (Coon et al., 1996; Côté et al.,
2003; Walther and Bader, 2003). Most of the circulating
serotonin is deviated from TPH1 but not TPH2 (Gershon,
2013). TPH2 is dominantly expressed in the central nervous
system, where TPH1 is not expressed (Walther et al., 2003; Patel

et al., 2004). TPH2 was found in the Raphe nuclei of the brain
stem and plays multiple roles in neurometabolic and
neuropsychiatric disorders (Liu et al., 2021). A small amount
of TPH2 is expressed in the enteric nervous system, where it
functions similarly as TPH1 (Neal et al., 2009; Li et al., 2011).

The serotonin level is decreased in the brain; meanwhile, its
level is increased in peripheral blood inmost psychiatric disorders
(Gabriele et al., 2014; David and Gardier, 2016), indicating that
the activity of THP2 is decreased and the activity of TPH1 is
increased. Thus, an activation on TPH2 and inhibition on
TPH1 are desired. Inhibitors targeting TPH1 have been
designed and developed for a long time (Engelman et al.,
1967; Stokes et al., 2000; Zimmer et al., 2002). However,
owing to the extremely low stability of TPH2, the structural
and biochemical characterization of TPH2 has not been revealed
for a long time (D’Sa et al., 1996; McKinney et al., 2004). In our
report, we determined the cryo-EM structure of human TPH2 in
tetrameric conformation at 3.0 Å resolution. After that, we
carried out allosteric site prediction and small-molecule
screening using the virtual screening technology.
ZINC000068568685 (Cmpd 1) was successfully selected as the
best candidate with highest score of −10.8 kcal/mol. To get more
insight into the driving forces and binding stability of the
complex, we performed molecular dynamics (MD) simulation,
which indicates that Cmpd 1 has great potential to stabilize the
formation of the TPH2 tetramer to facilitate its activity. Our
research might shed light on the development of novel drugs
targeting TPH2 for the treatment of mental disorders.

MATERIALS AND METHODS

Gene Cloning, Protein Expression, and
Purification
The full-length human TPH2 gene was purchased from Sino
Biological Co., Ltd, and reconstructed to pCAG with an
N-terminal Twin-Strep-tag and a 3×Flag-tag. The construct
was then transfected into Expi293F (Thermo Scientific) with
PEI reagent and cultured for 72 h at 37°C under 8% CO2.
After that, cells were harvested, resuspended, and lysed by
sonication in buffer A (50 mM HEPES pH 7.5, 150 mM NaCl,
0.1 mM FeSO4, 0.1 mM tryptophan, 0.1 mM EDTA, 10% v/v
glycerol, 2% Tween-20, and 1 mM PMSF). Insoluble material was
removed by centrifugation at 15,000 g and the supernatant was
loaded on a 2 ml Strep-Tactin®XT column equilibrated with lysis
buffer. The column was washed successively with 2 mM ATP in
buffer A to remove the endogenously expressed HSP70 protein
before TPH2 was eluted in steps with three times of buffer A
containing 5, 25, and 50 mM biotin. Fractions containing pure
TPH2 protein were identified using SDS-PAGE and further
purified using size exclusion chromatography. TPH2 was
loaded on a Superose™ 6 Increase 10/300 GL column attached
to an AKTA pure system (Cytiva) equilibrated in buffer B
(50 mM HEPES pH 7.5, 150 mM NaCl, 0.02% w/v glyco-
diosgenin). Fractions were assessed using SDS-PAGE and
concentrated for cryo-EM analysis. Approximately 0.25 mg of
full-length TPH2 can be obtained from 500 ml of cells.
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Cryo-Electron Microscopy
The freshly purified TPH2 was used to prepare cryo-EM grids. A
drop of 4 μl TPH2 solution at the concentration of about 2.5 mg/
ml was loaded to the holey film grid (Ni-Ti R2/2, 300 mesh). The
grid was glow-discharged prior to sample loading and then
blotted for 2.5 s under 100% humidity at 4°C using Vitrobot
Mark IV (Thermo Scientific). After that, the grid was plunged
into liquid ethane, which was precooled by liquid nitrogen. The
grid was then observed using a Titan Krios microscope (Thermo
Scientific) operated at 300 kV and equipped with a K2 Summit
camera (Gatan). All images were recorded automatically using
SerialEM under a nominal defocus value ranging
from −1.5 to −2.5 μm and a nominal magnification of ×165 k,
corresponding to a pixel size of 0.842 Å. Each micrograph was
dose-fractionated to 32 frames with 0.1125 s exposure time in
each frame. The dose rate was 1.1 counts per physical pixel per
second, corresponding to 1.5625 electrons per square angstrom
per second.

Cryo-EM Image Processing
For all micrographs, motion correction was carried out
immediately after data collection using the
MotionCor2 program (Zheng et al., 2017). After that,
5,559 micrographs were imported to RELION 3.1.2 (Scheres,
2016) for further processing. CTFFIND 4.1 was applied to
evaluate the defocus parameters (Rohou and Grigorieff, 2015).
A total of 1,416,664 particles were picked using Gautomatch with
the template of the crystal structure of PAH (PDB entry: 5DEN).
Particles were imported into cryoSPARC for further analysis.
After several rounds of 2D classification, 486,660 particles
remained for 3D classification. One of the best 3D classes with
the highest quality in resolution was selected and performed for
refinement and postprocessing, which resulted in a final map at
3.0 Å overall resolution with D2 symmetry. The resolution was
estimated using the gold-standard Fourier shell correlation at the
cutoff value of 0.143. All 3D reconstruction structures were
visualized using Chimera 1.15 (Pettersen et al., 2004).

Model Building, Refinement, and Validation
The cryo-EM model of TPH2 was primarily generated in
PHNIX (Adams et al., 2010) by docking the crystal
structure of human TPH2 (PDB ID 4V06) into our map
and then manually revised in Coot (Emsley and Cowtan,
2004). After that, the model was refined using the real-
space refinement module in the Phenix program and
subsequently fixed manually in Coot. At last, the model was
validated using the MolProbity tool in Phenix. The figures of
the model were visualized and prepared in PyMOL (Barber,
2021) and Chimera. Structural analysis was performed using
LigPlot+ (Laskowski and Swindells, 2011).

Allosteric Site Prediction
The allosteric site prediction was performed using the CavityPlus
web server (Xu et al., 2018). First, we input the structure of the
TPH2 tetramer and applied the cavity program to detect the
potential cavity and ranked them using druggability scores. Based
on the detected cavities, the submodule CorrSite 2.0 program was

used to identify potential allosteric ligand binding sites. Allosteric
site prediction was performed using default parameters.

AutoDock Dataset Acquisition
The ZINC15 database (Istifli, 2020) provides a large quantity of
small molecules. We downloaded approximately 180,000 drug
compounds as the data list based on their log P and pH values. All
these compounds are standard, in-stock, neutral lead-like small
molecules, based on which we can use relevant software to decide
their protonation states and add hydrogen atoms and charges so
as to do subsequent procedures for molecular docking.

Molecular Docking
After the three-dimensional structure of TPH2 was
determined using cryo-EM, its protonation state was
obtained, H atoms were added, and atomic radius was
assigned using AutoDock prior to molecular docking. Then,
following the AutoDock algorithm, we added nonpolar
hydrogen atoms to heavy atoms and docked small
molecules into the target protein using the AutoDock Vina
v1.2.0 program (Koebel et al., 2016; Vieira and Sousa, 2019).
The Gasteiger partial charge (Bikadi and Hazai, 2009; Mittal
et al., 2009) was used, and the active pocket was chosen to just
cover the vital amino acid identified in the allosteric site
prediction step (Jain, 2006). The grid spacing was hereby
set to 0.508 Å with a box size of 50 × 48 × 47 to be the
active pocket. In total, 10 docking modes were set for each
molecule, and the best one was kept for MM/PBSA
calculations. The chosen mode had the expected lowest
binding affinity. We used an MPI-based parallel
implementation of the AutoDock Vina program VinaLC
(Zhang et al., 2013) for a large quantity of docking
computations.

Energy Minimization Step
Energy minimization, which requires the location of the
simulation system’s energy minimum, is a key determining
step before MD. It tries to decide the most stable molecular 3D
structure under the specified potential to ensure that steric
hindrance or the geometric structure is excluded. Afterward,
the solvent and charge are added. Then, the steepest descent
method is chosen as the algorithm (Donnelly et al., 2021).

Equilibration Procedure
Before MD simulation begins, we should do two equilibration
procedures: NVT equilibration and NPT equilibration. Under an
NVT ensemble, temperature is supposed to reach maximum
toward the desired value. Velocity-rescale is chosen as the
heat-bath algorithm. NPT equilibration is implemented under
an NPT ensemble, and Parrinello–Rahman is selected as the
pressure-bath algorithm. Periodic boundary conditions are
applied to both equilibrations. The simulation durations are
both 100 ps.

Molecular Dynamics Simulation
The 3D coordinates were obtained from the TPH2 cryo-EM
structure at 3.0 Å resolution. Then, the MD simulation was
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implemented using the Gromacs 2019.6 software package
(Faccioli et al., 2012; van der Spoel et al., 2012; Zhang et al.,
2019) with the AMBER99SB-ILDN force field (Somavarapu
and Kepp, 2015; Ouyang et al., 2018) for the protein and the
TIP3P force field (Ong and Liow, 2019) for the water solvent.
The appropriate number of sodium counter ions were added to
neutralize the system. VMD (Humphrey et al., 1996;
Fernandes et al., 2019) and XMGRACE software programs
(Machné et al., 2006; Saranya Ganesh et al., 2020; Yalameha
et al., 2022) were employed to visualize the molecules.

Here, we introduce the root-mean-square deviation (RMSD)
indicator, which quantitatively assesses the difference between
the target structure and the reference structure. This value can
recognize large protein structure changes from the beginning
point. A levering off of this curve usually reveals protein
stabilization.

RMSD �

������������������∑N
j�0[mjp(Xj − Yj)2]

M

√√
Another numerical value similar to RMSD that usually

measures the spatial changes of biomolecules is root-mean-
square fluctuation (RMSF). RMSF is a per-residue or per-atom
quantity that describes each residue’s or atom’s change over the
whole trajectory. It measures each individual residue or atom
flexibility, or how much a specific residue or atom vibrates over
the simulation course.

RMSF �
�����������������
1
T
∑T
t�1
∑N
j�1
(xj(t) − xj)2

√√
The radius of gyration (Rg) is commonly described as the

imaginary distance from the centroid. It describes the
compactness of a protein, which can be formulated as follows:

k �
��
I

m

√
Prior to computing the above three parameters, we treat the

MD trajectories and make sure no periodic boundary condition is
applied.

MM/PBSA Energy Decomposition
The free energy of binding (ΔGbind) is used to judge how a ligand
changes from the solvated mode to the protein-bound mode, and
it is supposed to be a large negative free energy. In
thermodynamics, this term consists of the enthalpic change
(ΔH) and the entropic change (ΔS).

ΔGbind � ΔH − TΔS

The values for ΔH on the right-hand side can be decomposed
into three terms:

ΔH � ΔEMM + ΔGPB + ΔGnp

Therefore, ΔGbind can be rewritten as

ΔGbind � (ΔEMM + ΔGPB + ΔGnp) − TΔS

In this equation, ΔGnp, ΔGPB, and ΔEMM denote the nonpolar
solvation energy, the Poisson–Boltzmann energy, and the
molecular mechanics energy, respectively. ΔGnp + ΔGPB are
combined as ΔGPBSA. ΔEMM consists of internal, van der
Waals, and Coulombic energies.

For the MM/PBSA computation, the chief aim is to identify
important residues that bind most closely to the corresponding
protein. The nonpolar solvation free energy follows a linear
relationship with the solvent-accessible surface area (SASA):

ΔGnp � γSASA + β

In this calculation, we set the force field for the protein as
amber99sb-ildn and the ligand force field as generalized AMBER
force field (GAFF) (Ozpinar et al., 2010) to make energy
decomposition.

RESULTS AND DISCUSSION

Purification and Structure Determination of
Tryptophan Hydroxylase 2 Tetramer
Determining the oligomeric states and atomic models of
TPH2 is critical to understand its physiological roles and to
develop novel interventions. The crystal structure of the
TPH2 catalytic domain has been deposited in the Protein
Data Bank previously (PDB: 4V06). However, there is no
associated publication available, and thus, detailed
description is lacking. In the crystal structure, TPH2 is
deposited as a dimer form in the asymmetric unit.
However, when symmetry and crystal packing were
considered, a possible tetramer form can be found in the
unit cell, but it is still hard to tell its oligomeric states in
the solution. Thus, we set out to determine the solution
structures of human TPH2 using the cryo-EM method
using its full-length form.

Using the optimized expression and purification methods,
we successfully obtained the full-length human TPH2 in given
conditions. The size exclusion chromatography profile and the
SDS-PAGE result displayed in Figure 1A indicate that the
obtained protein is at high purity and in the monodisperse
oligomerization state. After several rounds of cryo-EM sample
preparation, image collection, and data processing, we finally
determined the structure of TPH2 in its tetrameric
conformation at 3.0 Å resolution (Supplementary Figure
S1, Table 1, EMDB-32540, PDB: 7WIY). The representative
2D classes in Figure 1B show that the symmetric tetramer is
the predominant form, while there are also a small population
of tetrameric particles without symmetry, and the four
monomers are not precisely the same (with red box), which
might indicate several potential transition states between
different assemble states. However, we failed to determine
the three-dimensional structures in high resolution for
those special states because of its small population and
insufficient projections in 2D classes. To boost the quality
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of the map, only the particles with clear symmetry were
selected during the data processing. The final postprocessed
3D map is shown in Figure 1C. TPH2 is assembled by four
protomers in a D2 symmetry, which is different from the
previously deposited crystal structure in dimer form.

Overall Structure Analysis of Tryptophan
Hydroxylase 2
The structure of TPH2 is dominantly formed with helices. As
shown in Figure 2A, there are 17 helices (labeled as H1–H17)
and 4 β sheets in the TPH2 monomer, together with Fe2+ and
imidazole as cofactors. The TPH2 monomer contains the
catalytic domain and oligomeric domain but lacks the
N-terminal regulatory domain, although full-length
TPH2 was used for sample preparation. Since the affinity
tag used for purification was located in the N-terminus and
the protein can be successfully purified, we speculate that
TPH2 exists as a full-length version in the sample solution
and the N-terminus is not degraded. Besides, the outcomes of
SDS-PAGE also indicate that the molecular mass of the sample
is in agreement with the full-length ones. Thus, it is most likely
that its N-terminal regulatory domain is too flexible to align
the signal during 3D construction and thus is not seen in the
final map. The crystal structure (PDB:4V06) also misses the
N-terminal domain, resembling the cryo-EM structure with
the RMSD value at 0.789 Å when chain A of each model was
aligned, although the crystal structure is in dimer form in the
asymmetric unit as deposited and the cryo-EM structure is in

FIGURE 1 | Purification and structure determination of human tryptophan hydroxylase 2 (TPH2). (A) domain organization, size exclusion chromatography profile,
and SDS-PAGE analysis of TPH2 in peak fraction. The target items are indicated with arrows. (B) 2D class average of cryo-EM micrographs of TPH2. The red box
indicates the TPH2 asymmetric tetramer in a dynamic state. (C) cryo-EM 3D map of TPH2 tetramer in different views and colored by chain.

TABLE 1 | Summary of data collection, processing, and atom model statistics.

Data collection
EM equipment Titan Krios (Thermo Fisher)
Voltage (kV) 300
Detector Gatan K2 Summit
Energy filter Gatan GIF, 20 eV slit
Pixel size (Å) 0.842
Total Electron dose (e-/Å2) 50
Defocus range (µm) −1.5 to −2.5

3D Reconstruction
Software Relion/CryoSPARC
Number of micrographs 5559
Final particles 110,963
Symmetry D2
Final resolution (Å) 3.0
Map sharpening B-factor (Å2) 172.5

Refinement
Software Phenix

Model composition
Protein residues 240 × 4
ligand 4 Fe2+; 4 IMD

R.M.S. deviations
Bonds length (Å) 0.009
Bonds Angle (˚) 0.707

Ramachandran plot statistics (%)
Preferred 90.61
Allowed 9.39
Outliers 0
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tetramer form. Using the symmetry option, we prepared the
tetramer form of TPH2 based on the crystal structure and
superimposed it with the cryo-EM tetramer structure with
chain A as the reference. We found that the chain C–D of the
crystal structure and cryo-EM structure shows about 2°

rotation (with reference to the central oligomerization helix
domain) and about 4.2 Å displacement (with reference to Cα
from K394) (Figure 2B). This observation is similar to that in a
previous report that different conformational oligomers of
human phenylalanine hydroxylase show a rotation of ~3°

and displacements up to 3 Å (Flydal et al., 2019). Besides,
the secondary structure of the loops between H14 and H15 was
transformed to three pairs of β sheets in the crystal structure
(inside the rectangle box in Figure 2B). The cryo-EM model
seems to fold less tightly than the crystal structure and shows
more flexible and dynamic properties. A previous report
showed that the binding of the N-terminal regulatory
domain to the catalytic domain will inhibit TPH2 activity
and thus acts as a negative regulator (Tenner et al., 2007).
The deletion of the N-terminal domain has also been
demonstrated to abolish its inhibitory effect (Tenner et al.,
2007). Therefore, both the crystal structure and the cryo-EM
structure might represent the activated state of TPH2, because
their N-terminal is not bound closely to the catalytic domain
whether it resulted from truncation or flexibility.

Interface Analysis of the Tryptophan
Hydroxylase 2
The oligomeric state of the AAAH protein family has been
reported to be essential for their function (Flydal and
Martinez, 2013). For example, the deletion of the C-terminal
19 amino acids of TH leads to 70% reduction of enzyme activity
(Walker et al., 1994). Likewise, the removal of the last 51 amino
acids of TPH2 also dramatically interferes with the tetrameric
conformation and nearly abolishes the activity of TPH2 (Tenner
et al., 2007). To better understand the assembly mechanisms of
TPH2 oligomerization, we performed the interface analysis of the
TPH2 tetramer. Two types of interfaces were identified and
shown in Figure 2C. For the A/B interface, the C-terminal
helix 17 of each chain forms a leucine zipper–like motif to
maintain their interaction. The interface area is calculated to
be 882 Å2, involving 13 amino acids of each chain such as R461,
R471, L474, L481, and I490. However, it gets complicated for the
A/C interface, which forms a much tighter and consolidated
interface. The interface area expands to be approximately
1,838 Å2, and there are 27 amino acids participating in the
interaction, located at not only helix 17 but also helix 11/15/
16, as well as the antiparalleled β3/β4 sheets and some nearby
loops. Nonbonded contact including the hydrophobic effect and
van der Waals forces plays the most essential roles. The mutants
of those represented residues such as R441H and P449R are the

FIGURE 2 | Structure analysis of human tryptophan hydroxylase 2 (TPH2). (A) cartoon display of TPH2 monomer. The catalytic domain is colored cyan, while the
oligomerization domain is colored warm pink. (B) superposition of the cryo-EM structure with the crystal structure of TPH2 (PDB entry: 4V06). The cryo-EM structure of
TPH2 in tetramer is colored by chain, while the crystal structure is colored split pea. The tetramer of the crystal structure is obtained by dimer using the symmetry option.
The arrow and curve indicate the different secondary structures and the rotation they adapted. (C) interfaces analysis of TPH2 dimers. The left shows the interface
of chain A and chain B, and the right shows the interface of chain A and chain C. The interface is shown in light magenta. Key residues across interfaces of chain A/B and
chain A/C are shown as sticks.
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most deleterious factors impairing the stability of TPH2 and are
prevalent in depression, bipolar disorder, and autism patients.
P206 is also directly involved in the hydrophobic environment
and affects the stability of the A/C interface, which explains the
catastrophic effect of the P206S mutant in a previous report
(Cichon et al., 2008). Besides, we also identified three hydrogen
bondsmediated by E464, E468, and C478 in the A/B interface and
a stable salt bridge between K157 and E269 in the A/C interface,
which certainly contribute to the oligomeric assembly. Therefore,
understanding the assembly mechanism of TPH2 may be
beneficial to reveal the catalytic processes, explaining and
predicting the deleterious mutants in patients.

Decoding of Tryptophan Hydroxylase
2 Catalytic Mechanism
To get insight into the catalytic mechanism of TPH2, we
superimposed and compared the obtained cryo-EM structure
of human TPH2 with that of chicken TPH1, which is the only
reported structure of TPH with substrate binding (PDB: 3E2T)
(Windahl et al., 2008). As shown in Figure 3A, they highly
resemble each other in whole although there are movements of
H3 and H16 for TPH2. Figure 3B shows that R258, T266, S337,
and I367 of chicken TPH1 determine the tryptophan binding
specificity, and two water molecules around also contribute to the
correct orientation of the substrate. The four residues also match
well with the counterpart positions R303, T311, S382, and I412 in
TPH2. Further analysis of the four residues also explains the
disastrous effects of variants R303W and S383F of TPH2 in
patients as in a previous report (Pereira et al., 2020). R303W
could immediately reduce the substrate binding affinity and

specificity. In contrast, S383F may impair the stability and
mobility of the catalytic domain and thus destroy the substrate
binding by changing the configuration of S382, according to a
previous MD study (Pereira et al., 2020). To further investigate
the potential substrate binding sites of human TPH2, we
performed sequence alignment of the substrate binding
regions using TPHs from different species including human,
chicken, mouse, and horse, with reference to the binding site
analysis of tryptophan in chicken TPH1. The results shown in
Figure 3C indicate that the four functional residues are quite
conserved across different species. It is possible that residues
R303, T311, S382, and I412 are involved in the substrate binding
in human TPH2. Furthermore, we performed interaction analysis
of the Fe2+ cofactor with the active site of the TPH2 cryo-EM
structure. Figure 3D shows that catalytic iron binds to conserved
H318, H323, and E363, which form a 2-His-1-carboxylate facial
triad, in a similar manner to that observed in other AAAHs
enzymes. The nearby density can fit well with imidazole, and this
is in agreement with the crystal structure, although the
orientation of imidazole is slightly different. Further studies on
decoding the catalytic mechanism are essential and may facilitate
the design and development of molecules to stabilize and increase
the activity of TPH2.

Small-Molecule Screening
As discussed before, the oligomerization of TPH2 affects its
activity dramatically, so we conducted computer-aided drug
design based on the cryo-EM structure of the TPH2 tetramer.
Prior to that, we carried out the allosteric site prediction of
TPH2 using the CavityPlus web server, which lists the
potential cavities according to the scores of druggability. Those

FIGURE 3 |Cofactor and substrate binding site analysis. (A) superimposition of human tryptophan hydroxylase 2 (TPH2) with chicken TPH1 and substrate binding
environment analysis. The human TPH2 is in cyan, and the chicken TPH1 is in chartreuse. The substrate tryptophan is depicted as sticks in yellow. The residues
participating in binding are shown as sticks in corresponding colors. (B) schematic graph of all the residues interacting with tryptophan of chicken TPH1 is displayed.
Electrostatic interaction is shown in pink, van der Waals interaction is shown in green, and water–ligand interaction is shown in cyan. (C) primary sequence
alignment of human TPH2 and chicken TPH1 produced by MULTALIN and Esprit, in which amino acids with red background represent identity. The secondary structure
of chicken TPH1 is depicted on the top, and the substrate binding sites are pointed below with a green pentagram. (D) display of Fe2+ and imidazole binding
environment.
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top candidates are typically distributed to three zones as indicated
in Figure 4A. Cavity 1 and cavity 2 zones are involved in substrate
and cofactor binding, where binding of small molecules would
inhibit its activity in theory. Cavity 3 shows the highest score of
druggability, and the binding of a ligand might promote and
stabilize the formation of the tetramer state, indicating it is more
suitable for drug screening. Therefore, we used virtual screening
technology based on cavity 3 with the ZINC15 database where we
selected approximately 180,000 small molecules to screen the
most desired candidate to bind and stabilize the tetramer
conformation of TPH2. Supplementary Table S1 shows the
top 20 ZINC IDs and their binding affinity to TPH2. The
binding affinity defines the favor of a ligand to the receptor.
The larger the negative value is, the stronger binding force it
illustrates. As shown in Figure 4B, Cmpd 1 possesses the most
negative binding affinity at −10.8 kcal/mol and is conceived as the
best ligand. The predicted complex of the Cmpd 1 with the
TPH2 tetramer after docking is shown in Figure 4B, where the
protein is shown as a cartoon and the ligand is displayed in sticks.
The capture suggests that the small-molecule Cmpd 1 fits well
with the given cavity. Cmpd 1 was coordinated by helices H11,
H16, and H17 and sheet β3. Further analysis using LigPlot +
reveals that residues E338, L341, A342, A436, R433, V445, Y446,
and F447 from chain A, together with residues Y450, S472,
D473 and T476 from chain C, may be involved in the binding
of Cmpd 1 to TPH2 (Figure 4C).

Energy Minimization, Equilibration, and
Unrestrained Molecular Dynamics
Simulation
Energy minimization and equilibration are performed before
conducting MD simulation. The topology file was produced by
AMBER99SB-ILDN for the TPH2 tetramer and TIP3P for water.
As illustrated in Supplementary Figure S2A, the initial potential
energy is −5.17 × 105 kJ/mol, which descends steeply and
stabilizes at 5.16 × 106 kJ/mol after 2,500 steps of
minimization. Supplementary Figure S2B shows that the
system was heated gradually in the NVT ensemble to 300 K in
100 ps followed by EM. The original velocities corresponding to
the starting temperature were assigned from a Maxwellian
distribution. Afterward, we performed the pressure
equilibration, as shown in Supplementary Figure S2C. The
input file is generally similar to the parameter file of NVT
equilibration. The Parrinello–Rahman barostat is exerted to
the pressure coupling section. In the process of NPT
equilibration, the mean value of pressure was 0.8 ± 59.3 bar,
and the reference pressure was set to 1 bar. The minor difference
in the mean value indicates the success of the simulation, and the
deviation is due to the large size of the protein. The pressure value
changes widely during the process of MD simulation, as indicated
by the large RMSF. Taking the pressure into consideration, the
running average of the density is calculated and demonstrated in
Supplementary Figure S2D; the expected density of the SPC/E

FIGURE 4 | Small-molecule screening based on the cryo-EM structure of tryptophan hydroxylase 2 (TPH2). (A) representative cavities of TPH2 predicted using the
CavityPlus web server. The cavity zones with high scores for allosteric sites are colored red. (B) cartoon display of TPH2 tetramer binding with the small-molecule Cmpd
1. Structure of Cmpd 1 was shown as sticks in the insert. (C) key residues are shown in the interaction analysis of Cmpd 1 and TPH2. (D) Structural alignment and
conformational changes of Cmpd 1–bound TPH2 structures before and after simulation. Double arrow curves in blue color indicate the rotation of chains B–D with
chain A as reference. (E) illustration of energy difference for the receptor–ligand complex. VDWAALS denotes the van der Waals energy, EEL denotes the electrostatic
energy, ENPOLAR denotes the nonpolar solvation energy, and EPB denotes the Poisson–Boltzmann energy. (F) per-residue decomposition energies for the TPH2 with
Cmpd 1 bound after simulation using MM/PBSA.
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mode is 1,008 kg/m3, and the experimental value is 1,000 kg/m3.
The obtained average over the entire period is 1,008 ± 2 kg/m3,
which is close to the two mentioned values and validates the
success of the simulation process. The density values are stable
over the entire course, indicating that the system is equilibrated
well for both pressure and density.

MD simulation was performed to investigate the binding process
of Cmpd 1 to TPH2. Supplementary Figure S3A demonstrates the
RMSD value relative to the minimized and equilibrated models
(black line) as well as to the cryo-EM structure of the TPH2 tetramer
(red line) after docking. The RMSD levels off to ~0.45 nm (4.5 Å) of
both time series in the plot, manifesting the stability of the
TPH2 complex, although slight differences exist between the two
lines when t = 0, whichmakes sense for the impact of EM. After that,
we analyzed the radius of gyration (Rg) of the complex, which is a
measurement of compactness and might provide further
information about its stability. The Rg value is theoretically
steady for a stably folded protein, and it changes over time once
the protein unfolds. From the results of the MD simulation, which is
shown in Supplementary Figure S3B, the TPH2 tetramer complex
is quite stable since the Rg value is basically unchanged over the
course of 100 ns at 300 K. RMSF is another useful measurement to
describe the stability of biomacromolecules, which instructs how
much an individual residue or atom moves over the MD simulation
process; a higher value usually indicates greater flexibility. The results
are shown in Supplementary Figure S3C; the greatest score comes
from atoms 21818 and 10908 from residue I490 (Figure 2C), as well
as from atom 21803 from residue L488 in the chain A/B interface,
which implies the important roles of these interface residues in
maintaining the stability of the TPH2 complex. After MD
simulation, we compared the conformational changes with Cmpd
1 during the simulation. The structural alignment shown in
Figure 4D indicates that the C-terminal oligomerization domain
has relatively larger conformational changes. When superimposed
with chain A, chains B–D have a relative rotation, similar to that
observed in the TPH2 crystal structure (Figure 2B). Analysis on the
chain A/C major interface shows that the number of salt bridges
increase from 3 to 9 for TPH2 with Cmpd 1 bound, while as control
there is only five salt bridges after simulation for the TPH2 without a
ligand bound. This indicates that binding of Cmpd 1 will stabilize
TPH2 and serve as the activator of TPH2. We also compared Cmpd

1with other top hits and found that binding of Cmpd 1 to TPH2will
give the largest RMSD with 3.567 Å compared with the structure
before simulation (RMSD: 2.546 for the unbound form and 3.567,
2.667, 2.893, 3.437, 3.155, 2.396, 2.805, 2.585, 2.794, and 2.270 for top
1–10 hits, respectively).

MM/PBSA Free Energy Calculation
The free energy of binding shows the suitability of the ligand
transited from the solvated mode to the protein-bound mode.
Models with lower free energies are convinced to be more stable
and rigid than those with higher ones. In our study, we conducted
free energy estimation using the approach of MM/PBSA to
characterize the stability of the TPH2 complex in a
semiquantitative method (Thompson et al., 2008; Cavalheiro
et al., 2017; Poli et al., 2020). The binding free energies of the
TPH2 tetramer are summarized in Supplementary Table S2, which
basically includes the electrostatic energy (EEL), van der Waals
energy (VDWAALS), and nonpolar solvation energy (ENPOLAR).
The graphical result is also shown in Figure 4E, which clearly
illustrates that van der Waals energy contributes most to favor the
binding and interacting of Cmpd 1 to the TPH2 tetramer. To better
understand the interaction of the TPH2 complex, we performed
MM/PBSA decomposition analysis, demonstrated in Figure 4F, and
we can see that Y446, L341, and A342 (Figure 4C) are most critical
in mediating the formation of the complex owing to their highest
energy contributions, which have also been deciphered to participate
in the confinement of dimeric interfaces.

CONCLUSION

Serotonin participates in various metabolic processes, and its
dysregulation of expression or activation results in several types
of mental illnesses including depression, autism, and bipolar
disorder as well as Alzheimer’s disease, placing a huge burden on
the patients and the families (Chakraborty et al., 2019; Bacqué-
Cazenave et al., 2020; Takumi et al., 2020). TPH is the rate-limiting
enzyme during the whole process of serotonin secretion and
therefore considered as a target for the regulation of serotonin
concentration (Waløen et al., 2017). In general, a decrease of
serotonin in the brain and an increase in the periphery of the

FIGURE 5 |Mapping the disease-causing mutations on tryptophan hydroxylase 2 structures. The left panel shows the mutants of the oligomerization domain, and
the right panel shows the catalytic domain. All mutants are shown as sticks.
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patients occurs simultaneously. Thus, the two main sources of
serotonin are TPH2 in the brain and TPH1 in the periphery, and
an activation in TPH2 and an inhibition in TPH1 are desired (Bader,
2020). Although several TPH1 inhibitors have been developed for
elevating serotonin levels in peripheral tissues, the severe side effects
such as impairing the activity of TPH2 hampered their clinical
applications (Crane et al., 2015). In particular, there are as many as
46 disease-causing mutations of TPH2 identified to affect its folding
and finally its catalytic activity (Pereira et al., 2020). The
oligomerization domain and catalytic domain are two hot spots
for those mutations. Some of those residues are mapped in Figure 5,
including R471, D473, L474, D479, and Q486 from the
oligomerization domain, as well as R156, P206, R276, P277,
R303, A328, I339, G345, D348, E363, A378, S383, C396, T404,
E430,M432, A436, and R441 from the catalytic domain. Besides, the
redox state also impairs the function of TPH2, and the oxidation-
facilitated disulfide cross-linking of C357 and C406 promotes the
misfolding and aggregating that lead to the formation of high-
molecular-weight aggregates with the tendency to be degraded and
inhibit the enzyme activity as demonstrated in vitro and in the
cellular level (Yohrling et al., 2000; Kuhn et al., 2011). The oxidation
also obstructs the obtaining of protein in vitro. TPH2 activation and
stabilization are hence regarded as two most meaningful and
valuable directions for the treatment of psychological disorders.

In this research, we reported the cryo-EM structure of human
TPH2 at 3.0 Å in the tetramer state, which explains the pathogenesis
of TPH2 mutants such as P206S, R441H, and P449R and provides
the fundamental information for drug design. To obtain the
stabilizers and activators of TPH2, we conducted virtual
screening accompanied with MD simulations, which is now a
rapidly growing method for faster and cost-efficient drug
discovery. The outcomes indicate that Cmpd 1 in the
ZINC15 database has the greatest potential to work on it,
shedding light on the development of novel drugs for the
treatment of psychology disorders. Although it could represent
challenges to chemically synthesize Cmpd 1, experimental
investigation will be the next direction to develop novel therapies
based on our study. For example, it will provide more details to
investigate how Cmpd 1 could affect the dimer–tetramer
equilibrium using solution measurements such as dynamic light
scattering or photometry and to analyze the complex structure of
TPH2 bound with Cmpd 1 by cryo-EM. The investigation on the
phosphorylation and interaction of TPH2 N-terminal to 14-3-
3 proteins is another route worth trying, although we still face a
wide range of challenges to nail it (Winge et al., 2008; Broadbelt et al.,
2012; Skjevik et al., 2014). More efforts on understanding the
mechanism of the TPH2 regulatory process must be taken to
foster the drug design and discovery.
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